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Signal Decomposition Using

Masked Proximal Operators
Bennet E. Meyers! and Stephen P. Boyd?

LStanford University, USA; bennetm@stanford.edu
2Stanford University, USA; boyd@stanford.edu

ABSTRACT

We consider the well-studied problem of decomposing a
vector time series signal into components with different char-
acteristics, such as smooth, periodic, nonnegative, or sparse.
We describe a simple and general framework in which the
components are defined by loss functions (which include
constraints), and the signal decomposition is carried out by
minimizing the sum of losses of the components (subject to
the constraints). When each loss function is the negative
log-likelihood of a density for the signal component, this
framework coincides with maximum a posteriori probability
(MAP) estimation; but it also includes many other inter-
esting cases. Summarizing and clarifying prior results, we
give two distributed optimization methods for computing
the decomposition, which find the optimal decomposition
when the component class loss functions are convex, and are
good heuristics when they are not. Both methods require
only the masked proximal operator of each of the component
loss functions, a generalization of the well-known proximal
operator that handles missing entries in its argument. Both
methods are distributed, i.e., handle each component sep-
arately. We derive tractable methods for evaluating the
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masked proximal operators of some loss functions that, to
our knowledge, have not appeared in the literature.
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Introduction

The decomposition of a time series signal into components is an age old
problem, with many different approaches proposed, including traditional
filtering and smoothing, seasonal-trend decomposition, Fourier and
other decompositions, PCA and newer variants such as nonnegative
matrix factorization, various statistical methods, and many heuristic
methods. It is believed that ancient Babylonian mathematicians used
harmonic analysis to understand astronomical observations as collections
of ‘periodic phenomena’ [58].

As we will discuss in detail in §3, formulating the problem of de-
composing a time series signal into components as an optimization
problem has a long history. We introduce a simple framework that
unifies many existing approaches, where components are described by
their loss functions. Once the component class loss functions are chosen,
we minimize the total loss subject to replicating the given signal with
the components. We give a simple unified algorithm, based on variations
of well-known algorithms, for carrying out this decomposition, which is
guaranteed to find the globally optimal decomposition when the loss
functions are all convex, and is a good heuristic when they are not. The
method accesses the component loss functions only through a modified
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proximal operator interface, which takes into account that some data
in the original signal may be missing. The method is distributed, in
that each component class is handled separately, with the algorithm
coordinating them.

Handling of missing data. The methods discussed in this monograph
are designed to handle missing data in the original signal to be de-
composed, a common situation in many practical settings. The signal
components in the decomposition, however, do not have any missing
data; by summing the components in the decomposition, we obtain a
guess or estimate of the missing values in the original signal. This means
that signal decomposition can be used as a sophisticated method for
guessing or imputing or interpolating missing or unknown entries in a
signal. This allows us to carry out a kind of validation or self-consistency
check on a decomposition, by pretending that some known entries are
missing, and comparing the imputed values to the known ones.

Expressivity and interpretability. The general framework described
here includes many well-known problems as specific instances, and it
enables the design of newer, more complex components classes than
traditional simple ones such as a periodic signal, a trend, a smooth
signal, and so on. For example we can define a signal component class
that consists of periodic, smooth, and nonnegative signals, or piecewise
constant signals that have no more than some specified number of jumps.
The resulting decomposition is always interpretable, since we specify
the component classes.

Outline. We describe the signal decomposition framework in §2, where
we pose signal decomposition as an optimization problem, concluding
with an illustrative simple example in §2.9. In §3 we cover related and
previous work and methods. Two distributed methods for solving the
signal decomposition problem, based on variations of well established
algorithms, are described in §4. The next two sections concern loss func-
tions for signal component classes: general attributes are described in §5
and some example classes in §6. The topic of how to fit component class



losses given archetypal examples is discussed in §6.3. We conclude the
monograph with examples using real data: Weekly CO2 measurements
at Mauna Loa in §7.1, hourly traffic over a New York bridge in §7.2,
and 1-minute power output for a group (fleet) of seven photo-voltaic
(PV) installations in §7.3.

Software. Our monograph is accompanied by an open-source soft-
ware implementation called 08D, short for ‘Optimization(-based) Signal
Decomposition’, available at:

https://github.com/cvxgrp/signal-decomposition.


https://github.com/cvxgrp/signal-decomposition
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Signal Decomposition

2.1 Signal decomposition into components

Vector time series signal. Consider a vector time series or signal,
possibly with missing entries, y1,...,yr € (RU{?})P. We denote the
ith entry of y; as (y¢); = yi;. The value ? denotes a missing entry in
the signal; we say that entry y;; is known if y;; € R, and unknown
if y;; =7. We define K as the set of indices corresponding to known
values, i.e., K = {(t,7) | yr, € R}. We define U as the set of indices
corresponding to unknown or missing values, i.e., U = {(t,4) | yr; =7}.
We represent the signal compactly as a T x p matrix y € (RU {?})7*?,
with rows 37, ..., yk.

The mask operator. Let ¢ = |K| be the total number of known entries
in y, with ¢ < Tp. We introduce the mask operator M : (RU{?})T*P —
RY) which simply lists the entries of its argument that are in K in a
vector, in some known order. We will also use its adjoint M*, which
takes a vector in R? and puts them into a T' X p matrix, in the correct
order, with other entries zero. Note that while the original signal y can
have missing entries, the vector My does not. We also observe that for
any z € RT*P, M*Mz is z, with the entries in U replaced with zeros.



2.2. Component classes 7

Signal decomposition. We will model the given signal y as a sum (or
decomposition) of K components z', ..., 2% € RT*P,

yri = @i+ + (@i, (4 €K

We refer to this constraint, that the sum of the components matches the
given signal at its known values, as the consistency constraint, which
can be expressed as

My = Mz + - + Ma™. (2.1)

Note that the components z!,. ..,z do not have missing values.
Indeed, we can interpret the values

?/Jt,i - x%,i +o mt{(iv (ta 7’) € M? (22)
as estimates of the missing values in the original signal y. (This will be
the basis of a validation method described later.)

2.2 Component classes

The K components are characterized by functions ¢y : RT*? — RU{oo},
k=1,...,K. We interpret ¢ (x) as the loss of or implausibility that
zF = 2. We will see later that in some cases we can interpret the classes
statistically, with ¢ (x) the negative log-likelihood of x for signal class k.
Roughly speaking, the smaller ¢ (x) is, the more plausible it is. Infinite
values of ¢y (z) are used to encode constraints on components. We refer
to x as feasible for component class k if ¢(z) < oo, and we refer to
{z | ¢r(x) < oo} as the set of feasible signals for component class k.
When a component class takes on the value oo for some z, we say that
it contains or encodes constraints; when ¢, does not take on the value
00, we say the component class has no constraints, or has full domain.
We will assume that every component class has at least one feasible
point, i.e., a point with finite loss.

We will see many examples of component class losses later, but for
now we mention a few simple examples.
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Mean-square small class. One simple component class has the mean-
square loss

1 1
o(x) = — 1‘t7-2:—$2, 2.3
)= 75 Do’ = el (23)
where || - || denotes the Frobenius norm, the squareroot of the sum of

squares of the entries. (To lighten the notation, we drop the subscript
k when describing a general component class.) All signals are feasible
for this class; roughly speaking, smaller signals are more plausible than
larger signals. We call this the component class of mean-square small
signals.

We will assume that the first class is always mean-square small, with
loss function (2.3). We interpret z! as a residual in the approximation

y%a:2+~-+xK,
and ¢1(z') as the mean-square error.

Mean-square smooth class. The component class of mean-square
smooth signals has loss

L Tl
o) = = 1p ; [zer1 — 24|, (2.4)

the mean-square value of the first difference. Here too all signals are fea-
sible, but smooth ones, i.e., ones with small mean-square first difference,
are more plausible.

Boolean signal class. As one more simple example, consider the
component class with loss function

b(z) = { 0 a¢;€{0,1} for all ¢,4 (2.5)

oo otherwise.

This component class consists only of constraints, specifically that each
entry is either 0 or 1. It has a finite number, 27P, of feasible signals,
with no difference in plausibility among them. We refer to this class as
the Boolean component class.
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2.3 Signal decomposition problem

We will estimate the components ', ..., z¥ by solving the optimization
problem
minimize ¢y (z!) + - + dx ()
subject to My = Ma! + -+ Mz,

with variables z!,..., 2%, We refer to this problem as the signal de-

(2.6)

composition (SD) problem. Roughly speaking, we decompose the given
signal y into components so as to minimize the total implausibility.

We observe that the entries of the mean-square small component 2!
with indices in & do not appear in the contraints, so their optimal value
is zero, i.e., 1 = M*Mz!. Tt follows that ¢1(z!) = %p”M.r”’% We
can now eliminate 2!, and express the SD problem as the unconstrained
problem

minimize T%) HMy — Ma?— - — M:EKHE + pa(z?) + - + i (2,
(2.7)
with variables 22,...,2%. From a solution of this problem we can
recover an optimal x! for (2.6) from the residual in the first term, as

vt = M*(My — Mz? — - — MzF).

Solving the signal decomposition problem. If the class losses ¢y
are all convex functions, the SD problem (2.6) is convex, and can be
efficiently solved globally [21]. In other cases it can be very hard to find
a globally optimal solution, and we settle for an approximate solution.
In §4 we will describe two methods that solve the SD problem when
it is convex (and has a solution), and approximately solve it when it
is not. The first method is based on block coordinate descent (BCD)
[8], [85], and the second is based on ADMM [20], an operator splitting
method. Both methods handle each of the component classes separately,
using the masked proximal operators of the loss functions (described in
§4.1). This gives a very convenient software architecture, and makes it
easy to modify or extend it to many component classes.

Existence and uniqueness of decomposition. With the assumption
that the first component class is mean-square small, and all other
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component classes contain at least one signal with finite loss, the SD
problem is always feasible. But it need not have a solution, or when
it does, a unique solution. For example, consider K = 2 with a mean-
square small component and a Boolean component. If the (¢,4) entry in
y is unknown, then xfl can be either 0 or 1, without affecting feasibility
or the objective. The uniqueness of specific instances of the SD problem
(particularly when K = 2) has been studied extensively [31], [55]. (See
§3 for a longer discussion.)

2.4 Statistical interpretation

We can give the losses a simple statistical interpretation in some cases,
which conversely can be used to suggest class losses. Suppose that ¢ is
continuous on its domain, with

Z = /exp —¢(x) dx < 0.

(The integration is with respect to Lebesgue measure.) We associate
with this component class the density

p(r) =  exp—(a).

Thus, ¢(z) is a constant plus the negative log-likelihood of x under this
density, a standard statistical measure of implausibility. Convex loss
functions correspond to log-concave densities.

As an example, with the mean-square loss ¢(z) = ﬁHxH% (note
the additional factor of two in the denominator), the associated density
is Gaussian, with the entries of x IID AN(0,1). As another example, the
mean-square smooth component class with loss (2.4) has Z = oo, so we
cannot associate it with a density.

When all component classes have Z < oo, we can interpret the
SD problem statistically. Suppose z!,...,z¥ are independent random
variables with densities p1,...,px. Then the SD objective is a constant
plus the negative log-likelihood of the decomposition with z!, ..., 2%,
and the SD decomposition is the maximum a posteriori probability

(MAP) decomposition of the observed signal y.
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2.5 Optimality and stationarity conditions

Here we give optimality or stationarity conditions for the SD problem
for some special but common cases. In all cases, the conditions include
primal feasibility (2.1), i.e., consistency, and a second condition, dual
feasibility, which has a form that depends on the properties of the losses.

Differentiable losses. We first suppose that the losses are differentiable.
The dual feasibility condition is that there exists a Lagrange multiplier
v € RY for which

Vor(eh) = M*v, k=1,... K,

where v € R? is a dual variable or Lagrange multiplier associated with
the consistency constraint (2.1). In words: the gradients of the losses
all agree, and are zero in the unknown entries. If all losses are convex,
this condition together with primal feasibility are the necessary and
sufficient optimality conditions for the SD problem. If the losses are
not all convex, then this condition together with primal feasibility are
stationarity conditions; they hold for any optimal decomposition, but
there can be non-optimal points that also satisfy them.
Since ¢1(z) = %p”l’”%, we have Vo¢l(z) = (2/Tp)x. The dual
conditions can then be written as
= MMz, V(b)) = ;pxl, k=2,...,K, (28
i.e., the gradients of the component class losses all equal the mean-
square residual, scaled by 2/(Tp) in the known entries, and are zero
in the unknown entries. These are also the conditions under which the
gradients of the objective in the unconstrained SD problem formulation

K

(2.7) with respect to 22, ..., 2% are all zero.

Convex losses. If the losses are convex but not differentiable, we
replace the gradients in (2.8) with subgradients, to obtain

2
= M* Mz, gk:T—pxl, g € 9pp(z®), k=2,...,K, (2.9)

where O¢y, (") is the subdifferential of ¢y, at 2*. This condition, together
with primal feasibility, are optimality conditions for the SD problem.
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Other cases. When the losses are neither convex nor differentiable, the
stationarity conditions can be very complex, with the gradients in (2.8)
or subgradients in (2.9) substituted with some appropriate generalized
gradients.

2.6 Signal class parameters

The component class losses ¢ can also have parameters associated
with them. When we need to refer to the parameters, we write ¢, (%)
as ¢ (z¥;0;), where ), € Oy, the set of allowable parameters. These
parameters are fixed whenever we solve the SD problem, but it is
common to solve the SD problem for several values of the parameters,
and choose one that works well (e.g., using a validation method described
later). The role of the parameters 6; will be made clear when we look
at examples. For now, though, we mention a few common examples.

Weight or scaling parameters. It is very common for a parameter
to scale a fixed function, i.e., ¢(x;0) = 0¢(x), 6 € © = R4, the set
of positive numbers. (Of course we can have additional parameters as
well.) In this case we interpret the parameters as weights that scale the
relative implausibility of the component classes. We will use the more
traditional symbol A to denote scale factors in loss functions, with the
understanding that they are part of the parameter 6.

Value and constraint parameters. Parameters are often used to specify
constant values that appear in the loss function. For example we can
generalize the Boolean loss function, which constrains the entries of z
to take on values in {0, 1}, to one where the entries of x take on values
in a finite set {61,...,0r}, where 6; € R, i.e.,

¢(x):{ 20 iihefviilam for all ¢, (2.10)
In this case, the parameters give the values that the entries of z are
allowed to take on. As another example, consider a loss function that
constrains the entries of x to lie in the interval [0, 03] (with 6; < 65).
Here the parameters set the lower and upper limits on the entries of x.
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Basis. Another common use of parameters is to specify a basis for the
component, as in

0 1z =0z for some z € R¥¥P
o) = { (2.11)

oo otherwise,

where 8 € R™*4 and z € R*P. This component class requires each
column of z, i.e., the scalar time series associated with an entry of x,
to be a linear combination of the basis (scalar) signals given by the
columns of # (sometimes referred to as a dictionary). The entries of z
give the coefficients of the linear combinations; for example, the first
column of = is 21101 + - - - + 21404, where 6; is the ith column of 6, i.e.,
the ith basis signal.

2.7 Model selection

We refer to a particular choice of component classes and their parameter
values as an SD model. A natural question is: How should we choose the
SD model? In some contexts such as prediction in machine learning the
analogous question of what prediction model we should use, and what
parameters we should select, has a straightforward answer: We should
use the model that has the best out-of-sample prediction performance.
(In some cases there are secondary objectives such as model simplicity
or interpretability.) At the other extreme we have unsupervised machine
learning methods, such as clustering methods, where it is harder to
identify a measure of model performance, and therefore harder to find
a method for choosing one model over another. In such cases the model
and parameter values are chosen so that the results correspond to what
the user expects or wants to see. If the model can handle missing data, it
can also be checked for internal consistency by checking how it imputes
values that we actually know, but pretend while building the model are
unknown. Signal decomposition lies closer to the unsupervised learning
setting.

The methods described in this monograph are typically applied in
situations where the analyst has a strong prior belief about what they
want from a decomposition, often drawn from domain expertise. The
analyst has a rough sense of the number of components they are looking
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for and the general characteristics of those components, which inform
the selection of K, ¢, and 0.

The classic example of this style of analysis is seasonal-trend decom-
position (see §3 and §7.1), in which a scalar signal (p = 1) is decomposed
into K = 3 components: seasonal, trend, and residual. (We will see
later that this can be approached as an SD problem.) Here we use the
strong prior that the seasonal component should vary smoothly over
the year, and the trend component must change slowly. So K = 3, and
the specific forms of the component losses, are not arbitrary; each has
a specific meaning. In this case the weights or parameters in the loss
functions are chosen to give a plausible or useful decomposition.

This can be contrasted and compared with PCA, where we need to
determine the number of principal components K to use. Aside from the
general idea that smaller K is to be preferred over larger K, there is no
particular meaning to prefer K = 3. In PCA we let the data determine
K, typically by finding the smallest K for which the model is at least
reasonably self-consistent.

For SD, the specific components, and the form of the loss functions,
are specified by the analyst. The quality of the decomposition is judged
using the analyst’s domain expertise and intuition. It is also possible to
validate an SD model, or at least, check its consistency. We describe
this now.

Model validation. We can validate, or at least check consistency of, a
choice of the component classes and their parameter values. To do this,
we select (typically randomly) some entries of y that are known, denoted
T C K (for ‘test’), and replace them with the value 7. A typical choice
of the number of test entries is a fraction of the known entries, such as
20%. We then carry out the decomposition by solving the SD problem,
using the entries K\ 7 of y. This decomposition gives us estimates or
guesses of the entries of y in T, given by (2.2). Finally, we check these
estimates against the true values of y, for example by evaluating the
mean-square test error

1 _
G =N Z (yt,i_yt,i)Q'

TP oer
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A more stable estimate of test error can be found by evaluating the
mean-square test error for multiple test sets 7, ..., T(M)  each with
the same number of entries, and averaging these to obtain a final
mean-square error.

It is reasonable to prefer a model (i.e., choice of component classes
and their parameters) that results in small test error, compared to an-
other model with higher test error. The out-of-sample validation method
described above can be used to guide the choice of the component classes
and parameters that define an SD model.

Validating with non-unique decompositions. We note that the basic
validation method fails when the SD problem has multiple solutions, or
more precisely, when multiple optimal signal decompositions correspond
to different values of y;; for (t,i) € 7. One simple work-around is
to regard the multiple solutions as each providing an estimate of the
missing entry, and to evaluate the test loss using the best of these
estimates. For example, suppose the second component class is Boolean,
so (x2);; can have the value 0 or 1 for (¢,i) € 7. We judge the error
using

1 ‘ .
Tl § min 52,
|T|P (t i)eTmf,ie{Oal}(ytﬂ yt,z)

Parameter search. As is standard in machine learning and data fitting,
it is common to carry out multiple decompositions with the same loss
functions but different parameters, and validate each of these choices
on one or more test sets, as described above. We then choose as the
final parameter values ones corresponding to the lowest achieved test
error. As in machine learning and data fitting, the final decomposition
is then fit with all known data, using the parameter values found in the
parameter search.

2.8 Data pre-processing

As in other data processing problems, pre-processing the raw data is
often useful, leading to better results or interpretability.
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Standarization. The most basic pre-processing is to standardize the
entries of y, with a scale and offset for each component that results in
the average value being around zero and the standard deviation around
one. In some cases, for example when the entries of y are all measured
in the same physical units, it can be more appropriate to use the same
scaling for all components of y.

Log transform. If the data are all positive and vary over a large
range of values, a log transform of the raw data can be appropriate.
Roughly speaking, this means that we care about relative or fractional
deviations, as opposed to absolute errors in the raw data, e.g., we
consider the values 10 and 11 to be as close as the values 1000 and 1100.
With a log transform, the signal decomposition has an interpretation
as a multiplicative decomposition (in the raw data), as opposed to
an additive decomposition. If we denote the raw data as i and the
transformed data as y = logy (entrywise), and the decomposition is

Y Kt + -4+ 2 in terms of the raw data we have
gt,i = %%,z e ZE{,{;) (tu 7’) € K?

where 7¢ = expa® (entrywise), i = 1,...,K. The signals # can be
though of as multiplicative factors.

2.9 Simple example

In this section we give a simple synthetic example to illustrate the idea.

Signal decomposition model. We construct an SD problem with p = 1
(i.e., a scalar signal), T = 500, and K = 3 component classes: mean-
square small, mean-square second-order smooth, and a scaled Boolean.
For mean-square small we use loss function (2.3), and for mean-square
second order smooth we use the loss

LE(;C — 22y + xp_1)? (2.12)
T—2)p 2 t+1 t t—1)" .
where 601 is a positive weight parameter. For the Boolean component
class, we require that all entries of = are in {0,603}, where 05 is an-
other positive parameter. Our SD problem contains two signal class

p2(x) =
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parameters, 61 and 5. Since ¢3 is not convex, the SD problem is not
convex. (Nevertheless the methods we describe below do a good job at
approximately solving it.)

Data generation. We generate a signal y of length 7' = 500 as a sum
of three ‘true’ signal components, one that is Gaussian noise, one that
is smooth, and one that is Boolean, i.e., takes on only two values. The
first signal, denoted Z! € R, has IID entries A/ (0,0.12). The second
true component is the quasiperiodic signal with three frequencies

3
il = Zajcos(wjt+5j)7 t=1,...,T,
j=1
where a; > 0 are the amplitudes, w; > 0 are the frequencies, and
d; € [0,27] are the phases, all chosen randomly. The last true component
signal Z3 has the form

3 { 0y ?:1 a; cos(wit + %) > 0

710 21 dfcos(Wit + 6)) < 0,

fort =1,...,T, where a’;, w, and ¢’ are a different set of amplitudes,

g g
frequencies, and phases, also chosen randomly. We construct the signal
as

y = 51 + 52 + %3,
with 6 (the ‘true’ value of #3) chosen randomly. The signal y and the
three true components Z' are shown in Figure 2.1. The data in this

example have no missing entries.

Parameter search. We use the method described below to approxi-
mately solve the SD problem for a grid of 21 values of 61, logarithmically
spaced between 10~! and 106, and 21 values of 65, linearly spaced be-
tween 0.1 and 2.0, for a total of 441 different values of the parameters.
For each of these, we evaluate the test error using 10 random selections
of the test set as described above. Thus all together we solved 4410
instances of the SD problem, which took about 13 minutes on a 2016
MacBook Pro. Each SD problem took about 0.17 seconds to solve. (We
solved the problems sequentially, but the computation is embarrassingly
parallel and could have been carried out faster using more processors.)



18 Signal Decomposition

Signal, y

71

0.4

0.2

0.0

-0.2

Figure 2.1: Synthetic data for simple signal decomposition example.

The mean-square test error for the parameter grid search is shown as
a heat map in Figure 2.2. We use the final values 6; = 320, 6, = 0.765,
which achieved the smallest mean-square test error. Having chosen 64
and 65, we approximately solve the SD problem one final time, using
all the data.

There is some discrepancy between the value we find 63 = 0.765
and the true value used to generate the data, 0y = 0.7816, due to the
discreteness of the grid search. (In a real application, we might do a
secondary, refined grid search of values near the best ones found in this
crude grid search.)

Final decomposition. The final decomposition is shown in Figure 2.3.
Evidently the decomposition is quite good. The Boolean component is
exactly reconstructed, aside from the slight discrepancy in its amplitude.
The smooth component is also well reconstructed, with an RMS (root
mean-square) error about 0.04.
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optimization of weight and scale parameters

10°
10°
107"
10"
107
1072

02 04 18 20
92

01
bootstrap MSE

Figure 2.2: Validation mean-square test error as a function of the parameters 6
and 0s.

Component z!
0.4

| estimated

0.2

0.0
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5
Component %

estimated

_9  — true
Component z°
0.75
0.50
0.25 Pitlmat?d
- truc
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Figure 2.3: Signal decomposition for simple example. The top three plots show the
true component and the esimated component. The bottom plot shows the original
signal y and z? + 23, i.e., the decomposition without the residual component z'.
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Background and Related Work

Here we discuss a wide variety of methods that relate to the topic
of signal decomposition, some of which are quite old. Many methods
described below do not explicitly form an optimization problem, and
when they do, it need not conform to the signal decomposition framework
described in this monograph. Other methods involve minimizing a sum
of loss functions for signal component classes subject to their sum
matching an observed or given signal at known entries, exactly as in the
proposed framework. In these cases, the discussed methods are often
specific instances of the SD problem (2.6), and these connections will
be noted where appropriate. The SD formulation can be thought of
as a generalization of the specific approaches to signal decomposition
discussed in this section.

Regression. Least-squares linear regression is a particular instance
of the SD problem, with two component classes, a mean-square small
component, and a component defined by a basis (2.11), with the basis
components the regressors or features. This SD problem instance admits
a well-known, closed form solution [22, Ch. 12]. The idea of solving an
over-determined system of linear equations by minimizing the sum of the

20
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squares of the errors was proposed independently by the mathematicians
Carl Friedrich Gauss and Adrien-Marie Legendre around the beginning
of the 19th century. Statistical justifications for this fitting procedure
were subsequently provided by Gauss, Laplace, Cauchy, and Thiele,
among others [32].

Robust regression. Robust regression covers a variety of techniques
to reduce model variance in the presence of data ‘outliers,” which is a
term without a precise definition but can be thought of as data points
that are not well explained by a linear regression model. Common
methods include Huber regression [42], [43], Theil-Sen estimation [68],
[76], and RANSAC [33], which are included in the popular Python
package, scikit-learn [62]. In the SD framework, the residual compo-
nent class used in linear regression is substituted with an alternative
penalty function that is less sensitive to outliers. The penalty function
formulation is discussed in detail in [21, §6.1 and §6.4]. Interestingly,
the idea of minimizing the sum of absolute errors in an over-determined
system of equations actually predates the development of least-squares
minimization, having been proposed in the mid-18th century by Roger
Joseph Boscovich [33]. In the SD framework, robust regression is mod-
eled using two residual classes, one the standard mean-square small,
and the other a loss function that grows slowly for large values, like the
average absolute loss

1 1 I
¢(z) = Tprl’”l = Tp ;Z |t (3.1)
=1:=1
(This same loss is used as a convex heuristic for a sparse signal, i.e.,
one with many entries zero.)

Regularized regression. Regularized regression, also known as penal-
ized regression or shrinkage methods, is a family of estimators that
introduce an additional penalty term on coefficients of a linear regres-
sion problem. Well known examples include ridge regression [41], [63],
[79], lasso regression [78], and elastic-net regression [90]. An overview of
different regularizer functions for regression is given in [21, §6.3], and a
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review of other regressor selection methods is given in [39, Ch. 3-4]. In
the SD framework, regularized regression is modeled by extending the
basis class (2.11) with an additional loss term on the internal variable,
as in
b(z) = { ((z) x =0z for some z € R¥P
oo  otherwise.

Isotonic regression. In isotonic (or monotonic) regression we fit a
given signal with a non-decreasing (or non-increasing) signal [10], [86].
This is a particular instance of the SD problem, with p =1 and K = 2
component classes: a sum-of-squares small residual and a monotone
component, which has a loss function that is zero if its argument is non-
decreasing and infinite otherwise. As efficient algorithm, with complexity
linear in 7', is included in scikit-learn [62]. A detailed discussion of
a linear time algorithm and the connection to projection operators is
given in [38].

Trend filtering. Trend filtering, also called signal smoothing, is the
process of estimating a slowly varying trend from a scalar time series
that includes rapidly varying noise. In many cases this is also a special
case of SD, with a mean-square residual component and a component
that is slowly varying, for example, with a mean-square second difference
loss function. Trend filtering has been employed in a wide variety of
applications and settings, including astrophysics [80], geophysics [6], [15],
[16], social sciences [51], biology [52], medicine [37], image processing [77],
macroeconomics [40], [69], and financial time series analysis [82, §11].
Many specific trend filtering methods have been proposed, including
moving-average filtering [60] and Hodrick-Prescott (HP) filtering [40],
[50] being two of the most well known. More recently, Kim et al. have
proposed ¢; trend filtering [47], which uses as component loss function
the £1 norm of the second difference, which tends to result in piecewise
affine signals (see §6.2 for an example). A Bayesian interpretation of
trend filtering and signal denoising is presented in [17], [28], [77], [80].

Seasonal-trend decomposition. Seasonal-trend decomposition was
originally motivated by the analysis of economic data which tend to
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have strong seasonality; this method is arguably what most people
think of when they hear the term “time series decomposition,” having
first been proposed in the 1920s as a natural extension of moving
average smoothing [3]. Seasonal-trend decomposition is the only one
presented in the chapter on time series decomposition in Hyndman and
Athanasopoulos [44, §6]. A popular algorithm that implements a specific
method for seasonal-trend decomposition is STL [27], with packages
available for Python, R, and Matlab [71]-[73].

STL can be considered a specific case of the SD problem, with a
scalar signal y and K = 3 component classes, i.e., seasonal, trend, and
residual. However, STL does not formulate the method as an optimiza-
tion problem and uses an iterative heuristic to form the estimates of
the components.

Modern extensions of the seasonal-trend decomposition problem
have been introduced. In 2019, researchers from the remote sensing
community proposed an extension that introduces a new ‘abrupt change’
component, which is modeled as a piecewise linear component with a
small number of breakpoints [89]. Somewhat unique to this work is a
focus on calculating uncertainty in the components and particularly the
breakpoint locations.

Traditional frequency domain filtering. Traditional EE-style filtering
(e.g., [59]) can be interpreted as a form of SD. For example, low pass
filtering decomposes a signal into a smooth component (the filter output)
and a small, rapidly varying component (the residual, or difference of the
original signal and the low pass signal). This can often be represented
as SD with two components, a residual and a smooth or low-pass
component with appropriate time-invariant quadratic loss function. A
traditional filter bank can be interpreted as giving a decomposition of a
signal into multiple components, each one corresponding to a different
region (or sub-band) in the spectrum of the signal.

Sparse signal recovery. Sparse signal recovery is concerned with find-
ing sparse representations of signals with respect to some known (typi-
cally over-complete) basis. The use of (convex) optimization to solve
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sparse signal recovery problems has a long history with many proposed
approaches, and there are some very nice overviews available in [54],
[81], [84]. These methods have historically been applied to the problem
of data compression, such as the JPEG and JPEG2000 standards [7],
[53]. These methods are all related to the regularized linear inverse
problem [25],

minimize  f(x)

3.2
subject to Az =y, (3.2)

where the matrix A and the vector y are problem data, and f is some
‘complexity measure’ that encourages sparseness. A common variant is
to relax the equality constraint,

minimize | Az — y||3 + Af(x). (3.3)

When f(z) = ||z|l1, (3.2) is known as basis pursuit or compressed
sensing, and (3.3) is the lasso, which we encountered in the previous
paragraph. The geometry of these and related problems, specifically in
the case where f(x) = ||z||1, has been extensively analyzed to determine
when sparse signals are recoverable in [2]. The matrix A generally
represents the data generation process, either derived from known
measurements or, in the case of dictionary methods, derived from pre-
defined, parameterized waveforms, like sinusoids or wavelets. With
dictionary learning methods the matrix A is fit to the data as well [81].
When A is introduced as a decision variable, problems (3.2) and (3.3)
are no longer convex, but there exist well established methods exists
for approximately solving problems of this form [83].

Matrix completion. In the basic formulation of this problem, we seek a
low rank matrix X which matches a known matrix M at a set of known
indices [24]. A closely related problem is (robust) principle component
pursuit, in which an observed matrix is decomposed into a low-rank
component and a sparse component [23], [84].

Convex demixing. Convex demixing has a long history [55, §7.1],
beginning in the geophysics community in the 1970s [26], [75]. It refers
to the task of identifying two (or sometime more) ‘structured signals,’
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given only the sum of the two signals and information about their
structures [54], [55]. The standard formulation for convex demixing is

minimize  f(x) + Ag(2)

3.4
subject to =+ 2z =y, (3-4)

where = and z are the decision variables, y is the observed signal, and
A is a regularization parameter. This is evidently a two-class, convex
SD problem. In this formulation, the focus tends to be on demixing
signals that are sparse in various senses. A classic example is the ‘spikes
and sines problem’, which shows up in a variety of applications includ-
ing astronomy, image inpainting, and speech enhancement in signal
processing [31], [70]. More generally, these types of problems include
demixing two signals that are sparse in mutually incoherent bases,
decoding spread-spectrum transmissions in the presence of impulsive
(i.e., sparse) errors, and removing sparse corruptions from a low-rank
matrix. Problem (3.4) has been deeply studied in many contexts, and
much of the existing work has focused on finding solution methods and
analyzing recovery bounds (i.e., uniqueness) when f and g are various
sparsity-inducing matrix norms [5], [25]. A three-operator extension
of (3.4)—where one operator is a smooth, nonconvex function and the
other two operators are convex functions—is studied in [88]. These are
instances of the signal decomposition problem.

Contextually supervised source separation (CSSS). This is an opti-
mization-based framework for solving signal decomposition problems, in
which the signal components are assumed to be roughly correlated with
known basis vectors [87], and is very similar in many ways to the method
presented in this monograph. CSSS is extensible, allowing for different
loss terms on the linear representations, component estimates, and linear
fit coefficients. The SD formulation proposed in this monograph is a
further generalization of contextually supervised source separation, and
the proposed solution method in §4 solves all instances of contextually
supervised source separation as a subset of all SD problems.
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Infimal convolution. The infimal convolution of functions f; : R” — R,
1=1,..., K denoted f1lJ---UOfg, is defined as

(A0 Ofx)(0) = inf {ile") -+ fre(a?) v ="+ +a"]

as described (for convex functions) in [66, §16] and [61, §3.1]. The case
of nonconvex functions was considered in [64]. We see that the SD
problem, with no missing data, is the problem of evaluating the infimal
convolution of the component loss functions, on the given signal y.

Proximal operator. The proximal operator of a function f arises often
in optimization, and is the basis of the solution methods described
below. The details are given below, but we note there that evaluating a
proximal operator of the function f is an SD problem (again, with no
missing data) with a mean-square loss and the loss f.

Our contribution. We present a common formulation for describing
generalized signal decomposition problems as optimization problems.
This treatment fully embraces the handling of missing data and is
extensible to many new problem formulations. When no data is missing,
this framework exactly represents many methods described in this
section as specific cases. Aside from the use of a masked proximal
operator (described below), the proposed solution method is based
on well known algorithms, block coordinate descent (BCD) and the
alternating direction method of multipliers (ADMM). We note that
ADMM is a common choice for convex demixing problems [54], and that
we are able to apply BCD to these problems because of the structure
that we enforce on the signal decomposition models that the first term
be a mean-square-small residual term.
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Solution Methods

In this section we describe two related methods for solving the SD
problem (when it is convex), and approximately solving it (when it
is not convex). Both rely on the masked proximal operators of the
component class losses, but aside from that, they are small variations
of block coordinate descent and the alternating direction method of
multipliers. Finally, we describe a hybrid algorithm, combining the BCD
and ADMM approaches.

4.1 Masked proximal operator

Recall that the prozimal operator [56], [61] of ¢y is defined as

prox, (v) = argmin (qbk(x) + gHCI: - v|%>
x

= argmin ((Z)k(:r) + gZ(wm - ’Ut,z‘)z) )
z t,i

where p is a positive parameter, and v € R™*P. When ¢y, is convex, the
function minimized is strictly convex, so there is a unique argmin. When
¢ is not convex, there can be multiple argmins; we simply choose one.

27
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The masked proximal operator is defined as

mprox,, (v) = arg;nin (@bk(l‘) + gHM(l‘ - U)H%)

= argmin | ¢x(x) —i—g Z (@t _'Ut,i)2
z (t,i)eK

Roughly speaking, it is the proximal operator, with the norm term only
taken over known entries. (The masked proximal operator depends on
IC, but we suppress this dependency to keep the notation lighter.) The
function minimized in the masked proximal operator need not have a
unique minimizer, even when ¢y, is convex. In this case, we simply pick
one.

When the function ¢ takes on the value oo (i.e., encodes con-
straints), the point x = mprox,, (v) is feasible, i.e., satisfies ¢y () < oo.
We also note that mpr0x¢k(v) does not depend on v ; for (t,i) € U,
so we have

mprox,, (v) = mprox, (M*Mu). (4.1)

When there are no unknown entries, i.e., i = (), the masked proximal
operator reduces to the standard proximal operator. There is another
simple connection between the proximal operator and the masked prox-
imal operator. Starting with a loss function ¢, we define the function

d(z) = inf{G(M* Mz + u) | Mu = 0},

which is, roughly speaking, the original loss function where we minimize
over the unknown entries in y. If ¢ is convex, so is ¢, since it is its
partial minimization [21, §3.2.5]. The masked proximal operator is then

mprox,(v) = prox$(v),

the proximal operator of the partially minimized loss function.

For many component loss functions we can work out the masked
proximal operator analytically. In many other cases we can compute
it with reasonable cost, often linear in 7', the length of the signals.
The monographs [61, §6] and [20] discuss the calculation of proximal
operators in depth and list many well known results. Many closed form
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proximal operators are listed in the appendix of [28]. Many of these
have straightforward extensions to the masked proximal operator.

As a final generalization, we introduce the weighted proximal opera-
tor, which we define as

N D

wprox,, (v) = arginin or(z) + Z wy (@i — vt,i)Q ,
(tyi)eK

with nonnegative weights w;; € R4 for all (¢,i) € K. The weighted
proximal operator arises in the evaluation of certain masked proximal
operators, as discussed in §5.3 and §5.4. When all the weights are one,
the weighted proximal operator coincides with the masked proximal
operator.

Proximal operator as SD problem. We note that the proximal oper-
ator itself can be seen as a simple instance of an SD problem, with v
playing the role of y, and components x and v — x, with associated loss
functions ¢ and (p/2)| - ||%, respectively. The masked proximal operator
is the version of this signal decomposition problem with missing entries
inwv.

Thus, evaluating the masked proximal operator is the same as solving
a simple SD problem with two components, one of which is scaled mean-
square small. Our algorithms, described below, solve (or approximately
solve) the general SD problem by iteratively solving these simple two
component SD problems for each component.

Surrogate gradient. When ¢ is convex, the optimality condition for
evaluating the masked proximal operator 2 = mprox,(v) tells us that

g =pM*M(v—2x) € 0¢(x), (4.2)

where 0¢(x) is the subdifferential (set of all subgradients) of ¢ at z. So
evaluating the masked proximal operator at a point v automatically
gives us a subgradient of the loss at the image point = mprox,(v).
When ¢ is not convex, we can interpret g in (4.2) as a surrogate gradient.
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Stopping criterion. In both algorithms, 22, ...,z are found by eval-

uating the loss function masked proximal operators, i.e.,
k __ k _
z" = mprox (v°), k=2,...,K,

for some vF. (The particular vk used to find zF depend on which
algorithm is used, but each of them satisfies v* = M*MuvF, i.e., they
are zero in the unknown entries of y.) We define 2! = M*M(y — 2% —
o=l so 2!, ..., 2X are feasible and 2! = M*Mz!.

We combine (2.9) with (4.2) and define the optimality residual r as

( : 3 k k 2 2\ 12
r=|—— pM MW" —2") — —=z ) , (4.3)
K-1 P Tp lip
which can be written as
K o 1/2
L < by 2 1) )
r=|—— M| p" —2%) — —= .
(K -1 = Tp 9
When r = 0 and the losses are convex, ', ...,z are optimal.
Both algorithms use the standard stopping criterion
abs rel 2 1 abs rel 2 1
r< e 4% —a|| =+ || =Mz (4.4)
Tp lir Tp 2
where 2P and €™ are specified positive absolute and relative tolerances.

4.2 Block coordinate descent algorithm

The BCD algorithm repeatedly minimizes the objective in (2.7),
1 2
2 My = a2 o MK [ 4 20 4+ (),

over a single (matrix) variable z¥, holding the other variables fixed.
Minimizing the objective over z¥, with z! fixed for i # k, is the same
as evaluating the masked proximal operator of ¢y:

ok = mproxg, (y — Zml)

ik
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with parameter p = 2/(Tp). (Note that the masked proximal operator
does not depend on the entries of its argument that are unknown in y.)
There are many choices for the sequence in which we minimize over the
variables, but we will use the simplest round-robin method, updating
3 and on to 2%, and then back to 22 again. This gives the
SD-BCD algorithm described below, with superscript j on the variables

22, then

denoting iteration number, where an iteration consists of one cycle of

(successively) minimizing over 22,. .., 2.

Algorithm 4.2.1 BLOCK COORDINATE DESCENT ALGORITHM FOR SD
PROBLEM (SD-BCD)

Initialize. Set (z%)°, k =2,..., K, as some initial estimates.
for iteration j =0,1,...
for component class k =2,..., K

Update a component using masked proximal operator.

(eFP*t = mprox,,, (y— 3 () Y@y

i<k i>k

In SD-BCD we use the most recently updated value for the other
components, in Gauss-Seidel fashion. Since we fix p = 2/(Tp), this
algorithm contains no parameters to tune. Note that SD-BCD accesses
the component class loss functions only through their masked proximal
operators; in particular we never evaluate ¢ or its derivatives.

Stopping criterion. We evaluate the stopping criterion (4.4) at the
end of each iteration, using ' = M*M(y — 22 — --- — %) and v* the
argument of the proximal operator in SD-BCD.

Convergence. SD-BCD is evidently a descent algorithm, i.e., the ob-
jective is nonincreasing in each iteration. (In fact, it is nonincreasing
after each update of one of the components.) Well known simple ex-
amples show that block coordinate descent need not converge to an
optimal point even when the objective is convex. There is a large body of
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literature on the convergence of block coordinate descent type methods.
Some recent review papers inlcude [8], [65], [85] and a classic textbook
that addresses the topic is [9, §3.7]. These convergence proofs often rely
on randomly permutating the block update order, but we have found
this has no practical effect on the convergence of SD-BCD. None of cited
literature exactly proves the convergence of the algorithm presented
here, so we give a simple proof that any fixed point of SD-BCD must
be optimal, when the losses are all convex. When one or more loss
functions are not convex, the algorithm may (and often does) converge
to a non-optimal stationary point.

Fixed point of SD-BCD. Here we show that if 22, ..., 2" are a fixed
point of SD-BCD, and the losses are all convex, then the decomposition
is optimal. If these variables are a fixed point, then for £k =2,..., K,

zt = mprox, (y — Z x’) .

i>2, ik

From these and (4.2) we find that for k = 2,..., K,

i>2, itk
2 * K 7
= TpMM(y—iZ;c)
_ 2 4
- Tp
€ O¢r(zh),

where in the third line we use ' = M*M(y — K, 2%). This is the
optimality condition (2.9).

4.3 ADMM algorithm

Here we introduce an operator splitting method for the SD problem.
The particular operator splitting method we use is the alternating
directions method of multipliers (ADMM) [20], [35], [36]. The ADMM
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algorithm we develop for the SD problem is closely related to the sharing
problem [20, §7.3] and the optimal exchange problem [20, §7.3.2], but
not the same. The algorithm uses a scaled dual variable v € R?, and
we denote iteration number with the superscript j.

Algorithm 4.3.1 ADMM ror SD PROBLEM (SD-ADMM)

Initialize. Set u® = 0 € R?, and (2%)° € RT*P Lk =1,... K, as some
initial estimates

for iteration j =0,1,...
1. Ewaluate masked prozimal operators of component classes in parallel.
(zF)I+1 = mproxm((:ﬂk)j —oM*u?), k=1,...,K.
2. Dual update.

K
Wt =l o ( E M(zF)Itt — My) .

k=1

A detailed derivation of this algorithm is given in the Appendix.
Unlike BCD, SD-ADMM is not a descent method. It is also not a
feasible method: the iterates satisfy the consistency constraint My =
Mzt + -+ Mz® only in the limit.

Interpretations. From the dual update, we see that «/ is the running
sum of the residual in the consistency constraint, scaled by 1/K; this
term is used in the argument of the masked proximal operator to drive
z¥ to optimality.

Convergence with convex losses. When ¢, are all convex, SD-ADMM
converges to a solution, and pu/ converges to an optimal dual variable
v [20, §3.2]. In particular, the consistency constraint (2.1) holds asymp-
totically.

Convergence with nonconvex losses. When any of the loss functions
is nonconvex, there are no convergence guarantees at all. The ADMM
algorithm need not converge, and if it converges it need not converge



34 Solution Methods

to a solution of the SD problem. But it has been observed in practice
that ADMM, when applied to nonconvex problems, often converges to
a useful value, which in this case is a useful signal decomposition; see,
e.g., [20, §9].

Stopping criterion and final decomposition. The consistency con-
straint generally does not hold for the iterates. To obtain a decomposi-
tion that satisfies the consistency constraint, we can simply absorb the
residual in the consistency constraint into ' to obtain a feasible signal
decomposition. We can then evaluate the residual in (4.4), with v* the
arguments of the proximal operators in step 1 of SD-ADMM.

Choice of p. When the problem is convex, SD-ADMM converges to a
solution for any positive value of the algorithm parameter p, although
the practical convergence speed can be affected the choice of p. The
natural value p = 2/(T'p) seems to give good performance in practice.
When the problem is not convex, the choice of p is more critical, and can
affect whether or not the algorithm converges, and when it converges,
the decomposition found. For such problems too, the natural choice
p =2/(Tp) seems to often give good results, although we have found
that scaling this value can improve the practical convergence for some
nonconvex problems. We take p = 2n/(T'p), with 7 in the range between
0.5 and 2.

4.4 Hybrid algorithms

Comparison of SD-BCD and SD-ADMM. For convex SD problems,
SD-BCD often outperforms SD-ADMM, but not by much. For nonconvex
SD problems, we have found that SD-ADMM often outperforms SD-
BCD in the quality of the decomposition found. Specifically, CD-BCD
often ends up converging to a poor local minimum, whereas SD-ADMM
is able to find a much better (lower objective) decomposition. On the
other hand, for nonconvex SD problems, one or two iterations of SD-
BCD, starting from the decomposition found by SD-ADMM, can lead
to a modest improvement in the objective value found. (These iterations
cannot increase the objective, since SD-BCD is a descent method.)
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Hybrid methods. A reasonable strategy, and the default in our imple-
mentation, is to use SD-BCD if the SD problem is convex. If the SD
problem is nonconvex, the default uses SD-ADMM (with scale factor
n = 0.7) until convergence, and then follows this with SD-BCD, again
run until convergence (quite often, but not always, only a few itera-
tions). This hybrid method seems to work well on a wide variety of SD
problems.

Numerical examples. In this monograph we consider four numerical
examples, summarized in Table 4.1. They include convex and nonconvex
problems, and range from small to large, with the SD problem in PV
having over 700,000 variables. We use these examples to illustrate the
convergence of the hybrid algorithm. In Figure 4.1 we plot the residual
(4.3) versus iteration number for these four problems.

10-1 —— simple
co2

—— traffic
—— PV

1072

10°°

optimality residual

0 20 40 60 80
iteration

Figure 4.1: Residual versus iteration number for the 4 numerical examples given in
§2.9, §7.1, §7.2, and §7.3 respectively.

We see rapid and monotonic convergence for problems C02 and
traffic, which are convex. For simple and PV, which are nonconvex,
we can see the switch to SD-BCD at the end, with a sharp reduction in
residual in simple in just a few iterations, and a smoother reduction of
residual over 12 iterations in PV. None of the examples requires more
than 100 iterations to converge.
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Table 4.1: Summary of numerical examples

Name ‘ Section ‘ K ‘ T ‘ P ‘ Size (KTp) ‘ q | Convex
simple §2.9 3 500 | 1 1,500 500 no
02 §71 | 3| 2459 |1 7377 | 2441 | yes
traffic §7.2 5 | 105,552 | 1 527,760 | 101,761 yes
PV §7.3 5 20,212 | 7 707,420 | 135,899 no
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Component Class Attributes

In this section we describe some very basic attributes that component
class losses can have.

5.1 Separability

A component class loss function can be separable across time, or entries,
or both.

Time-separable losses. A function ¢ : RT*? — R U {o0} is separable
across time if it has the form

T
P(z) = li(zy)
t=1
for some functions ¢, : RP - RU {00}, t = 1,...,T. It is common

for the loss functions to not depend on t, in which case we say it is
time-invariant. A simple example is the mean-square loss (2.3), with

l(zy) = ip||xtH% for all ¢.

37



38 Component Class Attributes

Entry-separable losses. A component class function ¢ is separable
across entries if it has the form

¢(x) = Lli(d)
i=1
for some functions £; : RT — R U {00}, i =1,...,p, where #; is the ith

column of z (which can be interpreted as a scalar time series), the ith
entry of the vector time series {x;}. Here too it is common for the loss
function to not depend on i, in which case we say it is symmetric (in
the entries of ;). The mean-square loss (2.3) is symmetric (in addition
to being time-separable).

Separability and proximal operators. Separability reduces the com-
plexity of evaluating the masked proximal operator. For example if ¢
is separable across time, say, ¢(z) = >, ¢i(z;), its masked proximal
operator is

mprox,, (v1)”

mprox,(v) = z ,

mprox,(vr)”
i.e., we can evaluate the masked proximal operator in parallel for each
time ¢t = 1,...,T. (Note the masked proximal operator for ¢ depends
on the missing data for that time period.)

5.2 Time-invariance

Time-invariance or shift-invariance is another important attribute. We
let M < T denote the memory of the loss function ¢. We say ¢ is
time-invariant if it has the form

T—M+1

o(z) = Z Uzpgym—1),
t=1

where ;.44 p7—1 is the M x p slice of x, that includes rows ¢, ... t+M —1,
and £ : RM*P — R U {oo} is the slice loss. Thus, a time-invariant
component class loss is sum of the slice loss, applied to all M-long slices
of its argument. With this definition, a time-separable time-invariant
loss is a special case of time-invariance, with memory M = 1.
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The second-order mean-square smooth loss (2.12) is a simple example
of a time-invariant component class loss, with M = 3. As another
example, consider the class of P-periodic signals, with loss

0 Tt4+pP = T, t:]_,...,T—P,
= 5.1
(@) { oo otherwise, (5-1)
which has memory M = P + 1.
5.3 Convex quadratic
A loss is convex quadratic if it has the form
(1/2)zT Px. +¢"z. +r Ax. =10
= ‘ 5.2
(@) { o0 otherwise, (5:2)

where z. € R? is a vector representation of  (and 27 is its transpose),
P e RTPXTP g symmetric positive semidefinite, ¢ € R'?, r € R,
A e R¥*TP and b € R*. Thus ¢ is convex quadratic, with some
equality constraints. We have already encountered a few examples of
convex quadratic loss functions, such as mean-square small and mean-
square smooth.

As a more interesting example, consider the P-periodic smooth loss,
defined as

1
0@) = o (w2 = w13+ + llzp = wpal3 + o1 — zpl) , (53)

provided x is P-periodic, i.e., xyyp = x; for t = 1,...,T — P, and
¢(x) = 0o, otherwise. This is the same as the P-periodic loss (5.1), with
mean-square smoothness, taken circularly.

Masked proximal operator of convex quadratic loss. The masked
proximal operator of a convex quadratic loss function can be efficiently
evaluated; more precisely, after the first evaluation, subsequent evalua-
tions can be carried out more efficiently. Evaluating the masked proximal
operator involves minimizing a convex quadratic function subject to
equality constraints, which in turn can be done by solving a set of linear
equations, the KKT (Karush-Kuhn-Tucker) equations [22, §16]. If we
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cache the factorization used to solve this set of linear equations (e.g., the
LDLT factorization of the coefficient matrix), subsequent evaluations
require only the so-called back-solve step, and not the factorization.
This idea is often exploited in ADMM; see [20, §4.2].

Weighted proximal operator. In evaluating the masked proximal
operators of certain convex quadratic loss functions, it can more com-
putationally efficient to evaluate a related weighted proximal operator.
This is seen commonly with loss functions that are P-periodic. In this
case, the solution to the masked proximal operator may be found by eval-
uating a smaller weighted proximal operator. Specifically, the weighted
proximal operator is evaluated over a vector z € RP*P , representing a
single period of component. The input to this smaller proximal operator
is the original input, averaged across periods, using only the available
data, e.g., the entries in . The weights are defined as the number
of real entries used in each averaging operation, divided by the total
possible number of entries. (Some additional care must be taken here
when evaluating signals that are not an even multiple of the period
length.)

5.4 Common term

Another common attribute of a component class is when it represents a
common term across the entries of the signal. The loss has the form

¢($):{ o(z) zp=2z1, t=1,...,T (5.4)

s otherwise,

where gg ‘R - RU {o0} is a loss function for a scalar signal. Roughly
speaking, this component class requires that all entries of z (i.e., its
columns) are the same, and uses a scalar-valued signal loss function on
the common column. If 5 is separable, then ¢ is separable across time.

The proximal operator of such a ¢ is readily found in terms of the
proximal operator of (Z It is

prox,(v) = prox$((1/n)v1)1T.
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In words: to evaluate the proximal operator for a common term loss
function, we first average the columns of v, then apply the proximal
operator of gz~5, and finally broadcast the result to all columns.

The masked proximal operator is a bit more complex. Each row
can have a different number of entries in the known set, so the average
across columns must be taken with respect to the number of real entries
in the row instead of the number of columns. However, to make use
of the scalar formulation qg(z), we must invoke the weighted proximal
operator,

mprox,(v) = arg;nin o(2) + g Z (zei —vei)? |, stoxp =21
tiek

= WpI'OXg(I'an(U) it

where ravg : (RU{?}H)T*? — (RU{?})7 is the row-wise average of the
matrix v, over only the known entries. (If a row has no known entries,
the function returns ? for that time index.) The weights are the number
of known entries used in each averaging operation, divided by the total
possible number of entries.
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Component Class Examples

There is a wide variety of useful component classes; in this section we
describe some typical examples. In most cases the proximal operator of
the loss is well known, and we do not give it; we refer the reader to other
resources, such as [20], [28], [61]. When the loss function is convex, but
an analytical method to evaluate the proximal operator is not known,
we can always fall back on a numerical method, e.g., using CVXPY
[1], [30]. In a few cases where we believe our method of evaluating the
proximal operator is new, we give a short description of the method.

6.1 Time-separable classes

Time-separable classes are given by the loss functions ¢; on R?. We have
already seen the mean-square small class, with loss £y (u) = T%)Hu”%, and
the finite set class, which requires that x; be one of a given set of values.
We mention a few other examples in this section.

Value constraint component classes. As an extension of the finite
value class, we require that x; € S;, where S; C R? is some given set.
If §; are all convex, we have a convex loss function. Simple convex
examples include the nonnegative component class, with S = R% | and

42
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the vector interval signal class, with & = {u | ® < u < 2%} where
the inequality is elementwise and x™ and zI"®* are given lower and
upper limits on the entries of the signal (which can be parameters).
In addition to the constraint z; € S;, we can add a nonzero penalty

function of z; to the objective.

Mean-square close entries. The loss

p
()= 25 (wi—p)? p= ;Zui, (6.1)
=1

Pis
which is the variance of the entries of the vector u, defines the mean-
square close entries class. If we scale this class by a very large weight,
this gives an approximation of the common term class (5.4) (with ¢ = 0),
in which the entries of the signal must be the same for each ¢.

Robust losses. We can modify the sum of squares loss so the compo-
nent class can include signals with occasional outliers, using so-called
robust losses, which grow linearly for large arguments, when they are
convex, or sub-linearly when they are not. One well-known examples is
the Huber loss, defined as

2 G la| < M
E(u)—;H(Ui)a H(“)—{M(z\a|—M) la| > M,

where M > 0 is a parameter [21, §6.1.2]. An example of a nonconvex
robust loss is the log Huber loss,

— = . H = a2 |a| SM
U(u) = ;H(uz), H{a) —{ M?(1 + 2log(|al/M)) |a| > M.

Convex sparsity inducing losses. The loss function ¢(u) = ||u||2 (note
that this norm is not squared) leads to vector-sparse (also called block
sparse) component signals, i.e., ones for which for many values of ¢,
we have z; = 0. In machine learning this is referred to as group lasso
[39, §3.8.4]. With this loss, we typically find that when z; # 0, all its
entries are nonzero. The loss function ¢(u) = ||ul|;, sum-absolute small
component class, tends to yield signals that are component-wise sparse,
i.e., for many values of (¢,i), we have z;; = 0.
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Non-convex sparsity inducing losses. The most obvious one is the
cardinality or number of nonzeros loss, with ¢(u) being the number
of nonzero entries in u (or, in the vector version, 0 if u = 0 and 1
otherwise). In this case the overall loss ¢(x) is the number of nonzero
values of z;;. A variation is to limit the number of nonzeros to some
given number, say, r, which gives the r-sparse signal component class.

These losses are nonconvex, but have well-known analytic expressions
for their proximal operators. For example when the loss is the number of
nonzero entries in x, the proximal operator is so-called hard thresholding
[20, §9.1.1],

0 ol <V2/p
rox, (v)i; = k t=1,...,T,
p ¢k( )M { Vi ‘vm‘ > /2/ :

Quantile small. The quantile loss [48], [49] is a variation on the ¢; loss
|lu||1, that allows positive and negative values to be treated differently:

P
Ou) = (Jui + (27 — 1)uy), (6.2)

i=1
where 7 € (0,1) is a parameter. For 7 = 0.5, this class simplifies to
sum-absolute small. (Its proximal operator is given in [61, §2.2, §6.5.2].)

6.2 Time-invariant classes

Any time separable loss for which £; do not depend on ¢ is time-invariant.
We give a few other examples here.

Index-dependent offset. In the common term class (5.4), the entries
of signals are the same. The index-dependent offset class is analogous:
Its signals are different for different indexes, but the same over time.
It is given by ¢(x) = 0 if for some z, z; = z for all ¢, where z € R,
and oo otherwise. Of course we can add a penalty on z. This loss is
time-invariant, with a memory of one.

Higher order mean-square smooth component classes. We have al-
ready mentioned the mean-square smooth class which uses the first-order
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difference (2.4), and its extension to the second-order difference (2.12).
Higher order mean-square smooth classes use higher order differences.

Mean-absolute smooth. Replacing the mean-square penalty in mean-
square first-order smooth classes with a average-absolute penalty yields
a components whose signal entries are typically piecewise constant.
With the second-order difference,

1 T-2

o lwe = 2we1 + wig2], (6.3)

¢($) = (T _ 2)p P

we obtain a class who entries are typically piecewise linear. (This is
discussed under the name ¢;-trend filtering in §3.)

Periodic. The component class of signals with period P has loss
function

¢(z) =

{o tyup=mz, t=1,...,T—P, (6.4)

oo otherwise.

We can also express this using a basis.

To this constraint we can add a loss function such as mean-square sig-
nal or mean-square smooth, to obtain, for example, the component class
of P-periodic mean-square smooth signals. (In this case the differences
are computed in a circular fashion.)

Quasi-periodic. A variation on the periodic signal class does not
require strict periodicity, but allows some variation period to period,
with a penalty for variation. The simplest version uses the quadratic
loss function

T—p
P(x) = Y llwerp — 3, (6.5)
t=1

the sum of squares of the differences in signal values that are P period
apart. Variations include adding a smoothness term, or replacing the
sum of squares with a sum of norms, which tends to give intervals of
time where the signal is exactly periodic.
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Composite classes. Components may be combined to generate more
complex loss functions. An example that we will use later has time
entries that are smooth (2.12) and periodic (6.4) and entries that are
mean-square close (6.1),

' ) Mb(z) + Xela(z) wpyp =, t=1,...,T P,
@ M, A2) = { 00 otherwise.
(6.6)
where
=

() = —— _2 2
1(z) T2 ; |zt — 22441 + 2422,

1 T p 1 p
bo(x) = =3 > (wi—m)? =) @

Pioii=a Pz

This composite example is convex quadratic (§5.3).

Monotone non-decreasing. The monotone nondecreasing loss is

)l gz t=1,...,T -1, i=1,...,p
¢($)_{ 0 otherwise.

It is used in monotone or isotonic regression, typically to represent
something like cumulative wear, that does not decrease over time. This
loss is a constraint, but we can add an additional term such as mean-
square smoothness.

Markov. The Markov class is, roughly speaking, an extension of the
finite set class (2.10) that includes costs for the different values, as
well as transitions between them. It is specified by some distinct values
01,...,0) € RP, a transition cost matrix C € RfXM, and state cost
vector ¢ € Rﬂ\f . Like the finite set component class, the loss is oo unless
for each t, we have x; € {01,...,0x}. We write this as z; = 05,, where
we interpret s; € {1,..., M} as the state at time ¢t. When this holds,
we define

T T
¢($) = cht + Z Cst,st—l'
t=1 t=2
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The first term is the state cost, and the second is the cost of the state
transitions.

This component class gets it name from a statistical interpretation
in terms of a Markov chain. If the state s; is a Markov chain with states
{1,..., M}, with transition probabilities 7;; = Prob(s; =i | si—1 = j).
Then with ¢ = 0 and C; ; = log m;;, the loss is the negative log-likelihood,
up to a constant.

The proximal operator of this component loss function can be
efficiently evaluated using standard dynamic programming. We create
a graph with MT nodes, with each node corresponding to one state at
one time. All nodes at time ¢ are connected to all nodes at time ¢ — 1
and ¢ + 1, so there are (T — 1)M? edges. Let v be the signal for which
we wish to evaluate the proximal operator. At each node we attach
the cost (p/2)||v; — cs||3, and on each edge from state s at time ¢ — 1
to state s’ at t we attach the cost Cs . Then ¢(z) + (p/2)||v — z||% is
exactly the path cost through this graph. We can minimize this over
S1,..., 87 using dynamic programming to find the shortest path. The
cost is O(TM?) flops, which is linear in the signal length 7.

Single jump. As a variation on the Markov component class we de-
scribe the single jump component class. We describe it for a scalar
signal i.e., p = 1; it is extended to vector signals with a loss that is
separable across entries. The loss function is

1 x=(0;alp_;)
plx)=4 0 x=0 (6.7)

oo otherwise,

for some (jump magnitude) a # 0 and some (jump time) 7 € {1,...,T}.
Roughly speaking, feasible signals start at zero and either stay zero, or
jump once, at a time 7, to the value a. The cost is zero if x is zero, and
one if it does jump. This loss function is evidently nonconvex.

Its proximal operator is readily evaluated directly, by evaluating

(p/2)|z = vll3 + ¢(x)

for all feasible z. For = 0 we have the value (p/2)||v||3. For a jump at
time 7, the value of a that minimizes the cost above is simply the average
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of x; over t = 7,...,T. This value and the cost is readily computed
recursively, so the proximal operator can be evaluated in time linear in
T. This method extends reaadily to the masked proximal operator.

6.3 Fitting component class losses

In the discussion above we specify component classes directly in terms
of the loss function. We mention here that it is also possible to fit a
component class loss from examples of signals in that class, assuming
they are available.

One simple method is based on the statistical interpretation given
in §2.4. Given a collection of example signals, we fit a statistical model,
for example a Gaussian distribution N (i, ¥) with an appropriate mean
1 € RTP and covariance . € RTP*TP. We use as loss for this component
class the convex quadratic ¢(z) = (2. — pu)T X1 (2. — p), which is the
negative log-likelihood, up to a scale factor and constant. If we fit a
statistical model for each component of the signals we obtain an entry-
separable loss; if we fit a common model for the entries of the signal, we
obtain an entry-separable symmetric loss. We can fit a time-invariant
loss by creating a common statistical model of all M-long slices of the
signal examples, and using the negative log-likelihood as the slice loss.

Another elementary method for fitting a loss to example signals
uses the singular value decomposition (SVD) or generalized low-rank
model [83] to find a set of archetype signals a!,...,a" € RT*P, for
which each of the examples is close to a linear combination of them. We
then use the basis loss function

0 z=za"+ -+ z-a" for some z € R"
¢($)—{ ' (6.8)

oo otherwise.

(As a variation on this, we can find a set of (scalar) archetypes in R for
which each component of the examples in close to a linear combination
of them, as in (2.11).) A soft version of the basis loss is the loss function

¢(z) = min |z — z1a' — - = zd" |7, (6.9)

which has full domain. (It can also be thought of as a combination of
two classes: the basis class, and the a mean-square small residual class.)
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The soft basis model can be used to fit a time-invariant loss. We use
SVD to find a set of archetypes or basis for which each M-long slice
of each exmaple is close to a linear combination, and then use the soft
basis loss (6.9) as the slice loss.
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Examples

7.1 Mauna Loa CO> measurements

An example often used to demonstrate seasonal-trend decomposition
is atmospheric carbon dioxide (CO3), which has both a strong sea-
sonal component and a underlying trend. These data were utilized in
the original STL paper [27] as well as the documentation for various
implementations of STL [71]. In this section we compare the Python
implementation of STL in the statsmodels package to an SD formula-
tion of the problem of decomposing measurements of atmospheric COq
into seasonal, trend, and residual components.

Data set. The weekly average CO2 measured at Mauna Loa, HI from
May 1974 through June 2021, available online from the National Oceanic
and Atmospheric Administration Global Monitoring Laboratory [74], is
shown in Figure 7.1. The data set is a scalar signal of length 2459 with
18 missing entries. In our notation, y1,...,yr € RU{?}, with T" = 2459,
and |U| = 18.

Decomposition using STL. We use the implementation in statsmo-
dels (v0.12.2) with default settings and period=52. We note that while

50
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atmospheric COy at Mauna Loa observatory

420
400

380

parts per million (ppm)

340 W W\/\/W
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year

weekly average CO2

Figure 7.1: Atmospheric CO2 data obtained from NOAA, which shows clear seasonal
and trend components.

the original STL paper describes how to handle missing data, this
particular software implementation cannot handle missing values, so we
used simple linear interpolation to fill the missing values before running
the algorithm. The resulting decomposition is shown in Figure 7.2, using
the conventional names for the components. Interestingly, the “seasonal”
component in this estimation is not periodic; it almost repeats each
year but with some variation.

Decomposition using SD. We form an SD problem with p = 1,
T = 2459, and K = 3, with component classes mean-square small (2.3),
second-order-difference small (2.12), and a quasi-periodic signal with
period 52 (6.5). All the component classes are convex, so this SD problem
is convex. This problem has two parameters Ao and A3, associated with
the weights on the second and third loss functions respectively. We
found that Ao = 10* and A3 = 1 give good results, although better
parameter values could be found using a validation procedure. The
resulting decomposition is shown in Figure 7.3.

Comparison. The decompositions found using STL and SD, shown in
figures 7.2 and 7.3, and nearly identical. The RMS deviation between
trend estimates is 7.52 x 1072, about 0.02% of the average measured
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Figure 7.2: Decomposition of the CO2 data into residual, trend, and seasonal
components, using STL.
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Figure 7.3: Decomposition of the CO2 data into residual, trend, and seasonal
components, using SD. It is nearly identical to the decomposition found by STL,
shown in Figure 7.2.
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value. The RMS deviation between seasonal estimates is 8.79 x 1072.
While STL is based on a heuristic algorithm, SD is based on solving a
convex optimization problem (for our particular choice of loss functions).

7.2 RFK bridge traffic

This example illustrates how the concept of seasonal-trend decompo-
sition can be extended in the SD framework to handle more complex
analyses with additional components. Traffic volume is measured with
sensors embedded in the roadways that count the number of cars that
pass in each hour; from these data, summary statistics such as “Annual
Average Daily Traffic” and “Peak Hour Volume” are derived [67].

Data set. The hourly outbound vehicle count for the Manhattan toll
plaza on the Robert F. Kennedy Bridge in New York City from January
1, 2010 through August 28, 2021 is shown in Figure 7.4 as a heat map,
with the hour of day shown vertically and the day shown horizontally,
and missing entries shown in white. Daily and seasonal variations can
be seen, along with the effects of COVID-19. A single week of data
is shown in Figure 7.5, where daily variation, and the weekend effect,
are evident. The data set is made available online by the New York
Metropolitan Transportation Authority (MTA) [57].

Hourly vehicle counts on RFK bridge, Manhattan outbound
4000

'WMI”’ W W""W‘WN’Vﬂ”’"‘f'”HMM Ll ,‘,u‘ v,W]x.Hw\ [l M

| ‘\ \‘ 2000

Hour of day
number of vehicles

1000

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Year

Figure 7.4: Hourly vehicle counts for the outbound Manhattan toll plaza of the
Robert F. Kennedy bridge, with hour of day on the y-axis and days on the x-axis.
White pixels represent missing values.
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Hourly vehicle counts over one week
3500
3000
2500

2000

numer of vehicles

[
o w
S S
S 3

ot
S
S

24 25 26 27 28 29 30
May
2010

Figure 7.5: One week of hourly vehicle counts in May 2010.

The data y is scalar (i.e., p = 1), with 7" = 102192 (24 hours
per day, 4258 days). We take the natural logarithm of the data, using
the convention log 0 =7. With these unknown entries, plus those that
are unknown in the original data set, we have || = 3767. Thus the
decomposition is multiplicative; the components are multiplied to obtain
the decomposition.

SD problem formulation. We form an SD problem with K = 5
components. The residual component is mean-square small (2.3), as in
previous examples. The second component is the weekly baseline, which
is the smooth-periodic cost given in (5.3) with P = 168 and a weight
parameter 2. The third component is the yearly seasonal correction,
which is also smooth-periodic (5.3) with P = 8760 and weight parameter
A3z, and the additional constraint that the sum over each period must
be equal to zero. The fourth component is the long-term trend, modeled
as piecewise linear with the ¢; second difference loss (6.3), with weight
parameter A4 and the additional constraint that the first value of z*
must be equal to zero. The fifth and final component is a sparse daily
outlier, defined as

65 (x) = { Asllzlly €D (7.1)

s otherwise,
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where D is the set of signals that are constant over each day. All the
component class losses are convex, so this SD problem is convex with
parameters Ao, A3, A\g, and As.

Results. We solve the SD problem using parameter values
Ao =10"1 A3=5x10°, A\ =2x10°, X5=1,

selected by hand to provide good results. The decomposition yields
components that have vastly different timescales.

By exponentiating the component estimates, Z% = exp(ack), we
recover a multiplicative model of the traffic count data. The residual
component Z! is centered around 1, with 90% of the residuals in the
interval [0.74,1.30], shown in Figure 7.6. This means that in any given
hour, the decomposition predicts traffic typically within around +30%.

= o e
IS = 0

cumulative density [1]

o
o

0.4 0.6 0.8 1.0 1.2 1.4 1.6

residual factor [1]

Figure 7.6: Cumulative distribution function of the multiplicative residual E%l for
(t,7) € K. The gray dashed lines indicate the 5th and 95th percentiles. 90% of the
residuals are between 0.74 and 1.30.

Figure 7.7 shows one week of the (periodic) weekly baseline. We see
many of the phenomena present in Figure 7.5, such as reduced traffic
over the weekend, daily variation, and a small increase from Monday to
Friday, and a commute rush hour on weekdays.
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Figure 7.7: Weekly baseline signal 2, shown for a single week (168 values).
Figure 7.8 shows component Z2, the seasonal correction factor, which

varies from around —9% to +7%, with the peak in summer and the low
point in late January and early February.

seasonal factor [1]
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time [months]
Figure 7.8: Seasonal adjustment z*, shown for a single year (8760 values).

Figure 7.9 shows the long term 2*. The component z* is piecewise-
linear with a small number of breakpoints, so Z* is piecewise exponential,
with a small number of breakpoints, shown as red dots in the plot. We
can see a slight increase in traffic over the first 10 years followed by the
a precipitous drop in traffic due to COVID-19 in early 2020, coinciding
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with the mandatory lockdown implemented by the New York state
government on March 22, 2020 [29].

®  change-point

trend factor [1]

2010 2012 2014 2016 2018 2020 2022
time [years]

Figure 7.9: Long-term trend multiplicative factor z*. This trend is piecewise
exponential, with breakpoints shown as red dots.

The final component z° is sparse, which means that Z°, shown in
Figure 7.10, mostly takes on the value one. This component identifies
42 days (out of 4258) as outliers, with multiplicative corrections ranging
from around 0.2 (i.e., one fifth the normal traffic on that day) to around
twice the normal traffic on that (one) day. All but two of the outliers
represent a decrease in traffic on that day. Many of the detected outlier
days are weather related, with some notable examples being various
blizzards including February 10, 2010 [11], December 27, 2010 [12],
January 27, 2015 [13], and February 1, 2021 [14]. About 9 outlier days
are associated with reduced traffic during the COVID-19 lockdown
event in early 2020. Figure 7.11 highlights the detection of Hurricane
Irene in August of 2011 [4], with Z° < 1 during the hurricane.

The two positive outlier days occur on May 6 and 10, 2018. The
authors could find no explanation for the very high measured traffic on
those days in the archives of the New York Times and the New York
Post. It is possible that sensors were simply malfunctioning on those
two days.
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Figure 7.10: Daily outlier component z°.

7.3 Outage detection in a photovoltaic combiner box

Data set. We consider a set of 7 measurements of real power from
inside a photovoltaic (PV) combiner box [34], corresponding to 7 strings
of series-connected PV modules that are joined in parallel. These data
are from PV strings forming the canopy at the NIST campus in Mary-
land [19]. Detailed documentation of the PV systems at this site, includ-
ing system designs, meteorological station information, and site layout,
are also available [18]. The canopy has multiple roof orientations, so the
constituent strings have similar but different power curves, depending
on the specific geometry of each string.

The raw data consist of the power output of each of the 7 PV strings,
measured each minute over a month (August 2016), organized into a
matrix with each column corresponding to a single string and each row a
particular minute. This raw data contains some missing data. The power
output of each string depends on available sunlight, weather conditions,
soiling accumulation, string geometry, and local shade patterns. Two
days of string power output are shown in Figure 7.12.

Data pre-processing. We first eliminate all data points corresponding
to night time and early morning and evening, when string powers are
zero or very small. We removed data between 5:40pm and 6:49am.
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Figure 7.11: Decomposition components for two weeks in August 2011 (336 values).
Hurricane Irene hit New York city on August 27 and 28, greating reducing traffic on
those days, clearly seen as outliers in z°.
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Figure 7.12: Raw PV combiner box data, shown for two days in August 2017.
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(These times were found as the times when the whole system was
producing less than 10% of system capacity.) Thus each day consists
of 652 one minute measurements. Next we scale each of the 7 string
powers (columns) so that the 95th percentile is one. This gives each
column an approximate range of about 0.1 to 1.3.

Finally we take the log of each power output value, resulting in
columns with a range of about -2.3 to 0.25. Carrying out signal de-
composition on this log signal gives us a multiplicative decomposition,
which makes sense for this application. (For example, a cloud passing
between the sun and the string gives a percentage reduction in power.)
The final data is a signal y with T'= 20212, p = 7, and |U/| = 6402.

Outage simulation. We modify this real data to include some simu-
lated faults or outages, where some part of each PV string no longer
generates power. This is modeled as a (multiplicative) reduction in
power output, from the time of failure to the end of the data. We
simulated these fault for strings 2, 5, and 6, with onset times

To = 12132, 15 =16573, 1= 6063,
and power reduction factors
f2 = _7%7 f5 = _10%7 f6 = _125%7

chosen randomly. (These are realistic values.) The modified data is
shown in Figure 7.13, with vertical red lines indicating the onset of the
outages in spower trings 2, 5, and 6. These power reductions can be
seen in the plot, but would likely be hard to spot by eye.

SD problem formulation. We form an SD problem with K = 5
components. Our signal decomposition models string output as the
product of a mean-square small residual (2.3), a clear sky signal, a
common daily correction term, a common cloud/weather term, and a
failure term. The clear sky component is modeled as the composite
class that is smooth and periodic in time and close in entries (6.6)
(with a small modification to remove the smoothness penalty across
day boundaries). This component has two parameters, one for the
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Figure 7.13: PV combiner box data after pre-processing, with simulated outages.
The onset times of the simulated outages are shown as vertical red lines.

smoothness term and one for the variance across entries, Ay, and Agp,
respectively. The third component is a daily scale adjustment that is
constant across columns, and constant over each day, meant to capture
day-to-day macro-scale changes in atmospheric conditions that effect
all strings, such as precipitable water and aerosol optical depth [45].
The fourth component is also constant across the columns and has a
quantile loss function (6.2). This models a common cloud-loss term
between the strings, assumed to be equal because the strings are so
close to each other and are experiencing the same local weather. The
fourth component has two parameters, the quantile term, 7, which we
set to be 0.65, and a weight, A\s. The third and fourth components
make use of the common term formulation (5.4). The fifth component
is the failure detector. This component uses the single jump class (6.7),
constrained to only have negative jumps, with each column treated
independently. The fifth component also has a weight parameter, As.
Since the failures are simulated, we know exactly when the onsets are,
and what the values are, which we can compare to the estimated failure
component.
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Results. We solve the SD problem with hand-selected weights,
Aao =5 x 10*/(Tp), Aoy =5 x 107°/(Tp),

A =2/(Tp), Xs=10/(Tp),

giving us estimates of z!, ..., 2°. Our estimates of the components are

2 7% 75 as multiplicative components,

zF = exp 2¥. We interpret !, 72,74, 7
and we interpret Z2 as the baseline clear sky values, normalized. It
takes approximately 15 seconds to run the SD-ADMM algorithm to
convergence on a 2016 MacBook Pro, with no parallelization of the
proximal operator evaluations. A segment of the decomposition is shown
in Figure 7.14, highlighting 5 days of data for string 2, including the

time of an estimated failure.
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Figure 7.14: Components z* for string 2 over 5 days.
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The residual term Z'! is shown as a histogram in Figure 7.15. The
residual is centered at 1 and has a standard deviation of 0.082. 95% of
the entries in the known set have residuals in the range of [0.85,1.15],
i.e., £15%.

0.4 0.6 0.8 1.0 1.2 1.4 1.6
zl, for (i,t) € K [1]

Figure 7.15: Histogram of the residual term z* for all entries of the known set K.

The clear sky component Z2 is shown in Figure 7.16. We plot two
days of this periodic component to illustrate the discontinuities in
values between adjacent days. We see that the clear sky estimates for
the strings are smooth in time, and vary a bit between strings.
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Figure 7.16: The clear sky component 22, with two days shown.

The common daily scale factor 3, shown in Figure 7.17(a), is
constant across days and across columns. This can be thought of how
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much the clear sky signals need to be scaled to recreate any given day,
and the all strings must agree on the factor. Days with significant cloud
cover tend to have much smaller scale factors, while clearer days tend
to vary by about 10-15%.
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Figure 7.17: (a) Top, the common daily scale factor 2°. (b) Bottom, the common

weather component z*. Only one column of each component is plotted as all columns
are equal to each other.

The common weather term Z*, shown in Figure 7.17(b), is also
constant across columns, and it captures the effects of local weather,
particularly attenuation by clouds. This term is typically a loss, that is
% < 1. We chose the value of the quantile parameter 7 = 0.65 through
hand-tuning and selecting a value that gave good agreement between
the clear sky component and the measured data on periods without
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significant cloud impacts. While having a weather correction term that
is larger than about 1.5 does not make much physical sense (see, for
example, [46]), we observe that this factor is applied to the combination
of components 2 and 3, the clear sky component and the daily scale
factor. In fact, we see the larger values in Z% exactly on the days that
are highly cloudy and use very small daily scale factors.

The failure component Z° correctly identifies the failures correctly
as appearing in only strings 2, 5, and 6, as depicted in Figure 7.18,
which shows the predicted and real failure onset times and amounts.
The estimated failure time is 5 minutes late for string 2, about 2 hours
late for string 5, and exactly correct for string 6; for all three strings,
the loss was detected within the same day that the failure occurred.
We can also see that the estimated failure amounts are quite good. A
comparison of actual to predicted failures is given in Table 7.1.

— strl
— str2
—-==- str2 actual

§ — str3

@ —6 — str4

T_E ______________________ — strd
5 _8 --=- str5 actual

e | str6
10 A str6 actual

— str7

—12
0 5 10 15 20 25 30

time (days)

Figure 7.18: Failure component, shown as the percentage 100 x (1 — 2°)%. The
dashed lines show the actual simulated failures.

Table 7.1: Outage detection results

string metric actual | predicted
2 amount (%) -7 -6.24
2 time (days) | 18.60 18.61
5 amount (%) | -10 -9.10
5 time (days) | 25.42 25.60
6 amount (%) | -12.5 -12.44
6 time (days) | 9.30 9.30
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Appendix

SD-ADMM Algorithm Derivation

To derive an ADMM algorithm for SD, we introduce new variables
2!, ..., 2% € R? and reformulate the SD problem (2.7) as

minimize ¢y (') + - + Px ()
subject to MaF —2F =0, k=1,....K
My =z 4. 42K,

We let g denote the indicator function of the last constraint,

e K)—{ 0 My=zt. 2K

oo otherwise,
so the SD problem can be expressed as

minimize ¢y (z!) + - +¢K:rK) (zl,...,zK)
subject to MaF —2F =0, k=1

We write this in compact form as

minimize  ¢(x) + g(2) (3)
subject to MazF -2k =0, k=1,... K,
1 K)

where x = (z!,...,2%), 2 = (21,...,25), and ¢(x) = ¢1(a!) + - +
o (25). We are now ready to derive the ADMM algorithm.
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We form the augmented Lagrangian, with parameter p > 0,

Ly(z,2,)) = +Z(A’“ Mak = 28) + (p/2) | Ma® — 2[3)

K
o(x) +9(2) + (0/2) Y (Ir* +u® 3 = a"]3)
k=1

where ¥ = MazF — 2* are the residuals, \¥ are the dual variables, and

uk = (1/p)\F are the so-called scaled dual variables [20, §3.1.1].
Iteration j of ADMM consists of three steps:

2/t = argmin L, (27, 27, u?)
x
P argmian(:UjH,zj,uj)
4
@Y = W+ MENYT - L k=1 K,

which we refer to as the xz-update, z-update, and u-update, respectively.

We now work out and simplify these steps. Since L, is separable in

z¥F, we can minimize over zF separately in the z-update to obtain

(")t = arglr;qin (qﬁk(mk) + (p/2)|IMz" = (2F) + (uk)]Hg) E=1,...,K. (4)

The z-update can be written as
A =TIM( Y 4 (W), MR+ (7)),

where II is the projection onto the domain of g, i.e., the constraints
My = 2! + ... + zF. To simplify notation, let a* = M (2F)7+! 4 (u¥).
The z-update can be written as

(P =k (1K) (My —al = — )
M(FYH 4 (WP 4+ (1K) (My — a* — -+ — ).
Now consider the u-update. Plugging in the new z-update above,

we get

(W) = —(1/K)(My —a' — - —a").

The righthand side does not depend on k, which means that all (u*)7*!
are the same and can be denoted as u/*!. (This simplification is not
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unexpected since the original problem has only one dual variable, which
is a vector in R?.) With this simplification, the u-update (now for just
one scaled dual variable u € R?) becomes

. 1 (K .
JHL _ 04— k\j+1
u uw + (ngM(I ) My>

Substituting w/ for (u*)7 in the z-update, we get
(Zk)j—i-l — M(mk)j+1 o uj+1.
Substituting (2¥)7 = M(2*)? — w/ into the original z-update (4) above,
we obtain

(@) = argmin (9x(e*) + (p/2)l|Ma* — M(a*) + 207 3)
= argmin (6(a") + (p/2)|M(2* — (") + 2M7u)[3)

= mprox¢k((wk)j —2M*ud),

for k=1,..., K. (We use (4.1) in the second line.)
We now see that the variables z* have dropped out, and we arrive
at the final set of ADMM iterations

(a5 = mprox,, ((«*) —2MW), k=1,.. K

. 1 (X .
Jj+1r J - k\j+1 _
w = o+ I (;M(a: ) My).
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