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Convex optimization problem — standard form

minimize  fo(x)
subject to fi(x) <0, i=1,....m
Ax =b

with variable x € R"

» objective and inequality constraints fy, ..., f, are convex
for all x, y, 6 € [0,1],

fi(0x + (1 —0)y) < 0fi(x)+ (1 - 0)fi(y)

i.e., graphs of f; curve upward

> equality constraints are linear

Convex optimization



Convex optimization problem — conic form

minimize ¢’ x

subject to Ax = b
x ek

with variable x € R”

» /C is convex cone
» x € K is a generalized nonnegativity constraint

> linear objective, equality constraints
> special cases:

» IC=RI: linear program (LP)
» K =S : semidefinite program (SDP)

» the modern canonical form

Convex optimization



How do you solve a convex problem?

» use someone else's (‘standard’) solver (LP, QP, SOCP, ...)

> easy, but your problem must be in a standard form
» cost of solver development amortized across many users

» write your own (custom) solver
» lots of work, but can take advantage of special structure

» transform your problem into a standard form, and use a
standard solver

» extends reach of problems solvable by standard solvers

> this talk: methods to formalize and automate last approach

Convex optimization
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How can you tell if a problem is convex?

approaches:

> use basic definition, first or second order conditions, e.g.,
V2f(x) =0

> via convex calculus: construct f using

» library of basic functions that are convex
» calculus rules or transformations that preserve convexity

Constructive convex analysis



Convex functions: Basic examples

> xP(p>1orp<0), —xP(0<p<1)
> X, —logx, xlogx

»alx+b

» x"Px (P = 0)

> |Ix]| (any norm)

> max(xi,...,Xn)

Constructive convex analysis



Convex functions: Less basic examples

» x"x/y (y >0), xTYIx (Y =0)

> log(e 4 --- 4 e*)

» —log ®(x) (P is Gaussian CDF)

> logdet X~ (X = 0)

> dmax(X) (X = XT)

> f(x) = xp)+ -+ X (sum of largest k entries)

Constructive convex analysis
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Calculus rules

» nonnegative scaling: f convex, « > 0 = «f convex

> sum: f, h convex —> f + g convex

» affine composition: f convex — f(Ax + b) convex

> pointwise maximum: fi, ..., f, convex = max; f;(x) convex
» partial minimization: f(x,y) convex = inf, f(x,y) convex

> composition: h convex increasing, f convex => h(f(x)) convex

Constructive convex analysis 11



A general composition rule

h(fi(x),. .., fk(x)) is convex when h is convex and for each i

> his increasing in argument i, and f; is convex, or

v

h is decreasing in argument /i, and f; is concave, or

v

f; is affine

v

there's a similar rule for concave compositions

this one rule subsumes most of the others

v

in turn, it can be derived from the partial minimization rule

v

Constructive convex analysis
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Constructive convexity verification

v

start with function given as expression

v

build parse tree for expression

» leaves are variables or constants/parameters
» nodes are functions of children, following general rule

v

tag each subexpression as convex, concave, affine, constant

» variation: tag subexpression signs, use for monotonicity
e.g., (-)? is increasing if its argument is nonnegative

v

sufficient (but not necessary) for convexity

Constructive convex analysis 13



Example

forx<1l y<l1

(x—y)?
1 — max(x,y)
is convex
> (leaves) x, y, and 1 are affine expressions

v

max(x,y) is convex; x — y is affine

v

1 — max(x, y) is concave

v

function u?/v is convex, monotone decreasing in v for v > 0
hence, convex with u = x —y, v =1 — max(x, y)

Constructive convex analysis
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Example

analyzed by dcp.stanford.edu (Diamond 2014)

Variables: x,y
Parameters: None
Positive Parameters: None

Curvature 4)| \U quad_over_lin(x - y, 1 - max(x, y)) +|1— Sign

constant

+ positive
~ affine QELEELE — negative
\U convex A 1-max(xy) + + unknown
/N concave
@ unknown H D

[ xt] [ovt] [ 4] [Umaxn 4]

max
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Disciplined convex programming (DCP)

v

framework for describing convex optimization problems

v

based on constructive convex analysis

v

sufficient but not necessary for convexity

v

basis for several domain specific languages and tools for
convex optimization

Constructive convex analysis
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Disciplined convex program: Structure

a DCP has

> zero or one objective, with form

» minimize {scalar convex expression} or
» maximize {scalar concave expression}

» zero or more constraints, with form

» {convex expression} <= {concave expression} or
» {concave expression} >= {convex expression} or
» {affine expression} == {affine expression}

Constructive convex analysis 17



Disciplined convex program: Expressions

> expressions formed from

» variables,
> constants/parameters,
» and functions from a library

» library functions have known convexity, monotonicity, and
sign properties

> all subexpressions match general composition rule

Constructive convex analysis
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Disciplined convex program

» a valid DCP is

> convex-by-construction (cf. posterior convexity analysis)
> ‘syntactically’ convex (can be checked ‘locally’)

» convexity depends only on attributes of library functions,
and not their meanings

» e.g., could swap /- and /-, or exp- and ()., since their
attributes match

Constructive convex analysis 19
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Cone representation

(Nesterov, Nemirovsky)

cone representation of (convex) function f:
» f(x) is optimal value of cone program

minimize c'x+dTy+e
X

subject to Alxl—b, [ 1€IC
y y

» cone program in (x,y), we but minimize only over y

> i.e., we define f by partial minimization of cone program

Cone representation 21



Examples
> f(x) = —(xy)'/? is optimal value of SDP
minimize  —t

. X
subject to [ ‘

with variable t
> f(x) = Xy + -+ x| is optimal value of LP
minimize 17\ — kv
subjectto x+vl=X\—p
A=0, p=0

with variables A, u, v

Cone representation 22



SDP representations

Nesterov, Nemirovsky, and others have worked out SDP
representations for many functions, e.g.,

» xP, p > 1 rational

> —(det X)1/n

> Y Ai(X) (X =XT)

> [ X[l = o1(X) (X € R™")

> [ X[l = 2Zi0i(X) (X € R™T)

some of these representations are not obvious . ..

Cone representation
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Canonicalization

» start with problem in DCP form, with cone representable
library functions

» automatically transform to equivalent cone program

Canonicalization
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Canonicalization: How it’s done
» for each (non-affine) library function f(x) appearing in
parse tree, with cone representation
minimize c'x+dTy+e

subjectto A [ x ] = b,
y

| ex

» add new variable y, and constraints above
» replace f(x) with affine expression c"x +dTy + e

> vyields problem with linear equality and cone constaints

» DCP ensures equivalence of resulting cone program

Canonicalization 26
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Example

> constrained least-squares problem with ¢; regularization

minimize  ||Ax — b|3 + v||x]]1
subject to  ||x]|o0 <1

» variable x € R"
» constants/parameters A, b, 7 > 0

Modeling frameworks
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CvX

> developed by M. Grant

> embedded in Matlab; targets multiple cone solvers

» CVX specification for example problem:

cvx_begin
variable x(n) % declare vector variable
minimize sum(square(A*x-b,2)) + gamma*norm(x,1)
subject to norm(x,inf) <= 1

cvx_end

> here A, b, v are constants

Modeling frameworks
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Some functions in the CVX library

function meaning attributes
norm(x, p) Ix]lp, p>1 cvx
square (x) x? cvXx
square_pos (x) (x4)? cvx, nondecr
pos (x) X4 cvx, nondecr
sum_largest(x,k) X+ X cvx, nondecr
sqrt (x) VX, x>0 ccv, nondecr
inv_pos(x) 1/x, x>0 cvx, nonincr
max (x) max{xi,...,Xn} cvx, nondecr
quad_over_lin(x,y) | x?/y, y >0 cvx, nonincr in y
lambda_max (X) Amax(X), X = XT cvx

{ x2, x| <1
huber (x) cvX

2x| -1, |x|>1

Modeling frameworks
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CVXPY

» developed by S. Diamond

> embedded in Python; targets multiple cone solvers

» CVXPY specification for example problem:

from cvxpy import *

x = Variable(n)

cost = sum_squares (A*x-b) + gamma*norm(x,1)
obj = Minimize(cost)

constr = [norm(x,"inf") <= 1]

prob = Problem(obj,constr)

opt_val = prob.solve()

solution = x.value

Modeling frameworks
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Parameters in CVXPY

» symbolic representations of constants
> can specify sign

» change value of constant without re-parsing problem

» computing a trade-off curve for example problem:

x_values = []

for val in numpy.logspace(-4, 2, num=100):
gamma.value = val
prob.solve()
x_values.append(x.value)

Modeling frameworks 32



Signed DCP in CVXPY

function meaning attributes
cvx, nondecr for x > 0,
norm(x, p) | [xllp p>1 .
nonincr for x <0
5 cvx, nondecr for x > 0,
square (x) X )
nonincr for x <0
x2, x| <1 cvx, nondecr for x > 0,
huber (x) .
2Ix| -1, |x]>1 nonincr for x <0

Modeling frameworks
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Conclusions

» DCP is a formalization of constructive convex analysis

» simple method to certify problem as convex
» basis of several domain specific languages for convex
optimization

» modeling frameworks make rapid prototyping easy
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