
C H A P T E R

3 Point-to-point communication:
detection, diversity, and channel
uncertainty

In this chapter we look at various basic issues that arise in communication over
fading channels. We start by analyzing uncoded transmission in a narrowband
fading channel. We study both coherent and non-coherent detection. In both
cases the error probability is much higher than in a non-faded AWGN channel.
The reason is that there is a significant probability that the channel is in
a deep fade. This motivates us to investigate various diversity techniques
that improve the performance. The diversity techniques operate over time,
frequency or space, but the basic idea is the same. By sending signals that carry
the same information through different paths, multiple independently faded
replicas of data symbols are obtained at the receiver end and more reliable
detection can be achieved. The simplest diversity schemes use repetition
coding. More sophisticated schemes exploit channel diversity and, at the same
time, efficiently use the degrees of freedom in the channel. Compared to
repetition coding, they provide coding gains in addition to diversity gains. In
space diversity, we look at both transmit and receive diversity schemes. In
frequency diversity, we look at three approaches:

• single-carrier with inter-symbol interference equalization,
• direct-sequence spread-spectrum,
• orthogonal frequency division multiplexing.

Finally, we study the impact of channel uncertainty on the performance of
diversity combining schemes. We will see that, in some cases, having too
many diversity paths can have an adverse effect due to channel uncertainty.
To familiarize ourselves with the basic issues, the emphasis of this chapter is

on concrete techniques for communication over fading channels. In Chapter 5
we take a more fundamental and systematic look and use information theory
to derive the best performance one can achieve. At that fundamental level,
we will see many of the issues discussed here recur.
The derivations in this chapter make repeated use of a few key results in

vector detection under Gaussian noise. We develop and summarize the basic
results in Appendix A, emphasizing the underlying geometry. The reader is
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50 Point-to-point communication

encouraged to take a look at the appendix before proceeding with this chapter
and to refer back to it often. In particular, a thorough understanding of the
canonical detection problem in Summary A.2 will be very useful.

3.1 Detection in a Rayleigh fading channel

3.1.1 Non-coherent detection

We start with a very simple detection problem in a fading channel. For sim-
plicity, let us assume a flat fading model where the channel can be represented
by a single discrete-time complex filter taph0�m�, whichwe abbreviate ash�m�:

y�m�= h�m�x�m�+w�m�� (3.1)

wherew�m�∼�� �0�N0�. We suppose Rayleigh fading, i.e., h�m�∼�� �0�1�,
where we normalize the variance to be 1. For the time being, however, we do
not specify the dependence between the fading coefficients h�m� at different
times m nor do we make any assumption on the prior knowledge the receiver
might have of h�m�. (This latter assumption is sometimes called non-coherent
communication.)
First consider uncoded binary antipodal signaling (or binary phase-shift-

keying, BPSK) with amplitude a, i.e., x�m�=±a, and the symbols x�m� are
independent over time. This signaling scheme fails completely, even in the
absence of noise, since the phase of the received signal y�m� is uniformly
distributed between 0 and 2� regardless of whether x�m�= a or x�m�=−a

is transmitted. Further, the received amplitude is independent of the trans-
mitted symbol. Binary antipodal signaling is binary phase modulation and
it is easy to see that phase modulation in general is similarly flawed. Thus,
signal structures are required in which either different signals have different
magnitudes, or coding between symbols is used. Next we look at orthogonal
signaling, a special type of coding between symbols.
Consider the following simple orthogonal modulation scheme: a form of

binary pulse-position modulation. For a pair of time samples, transmit either

xA �=
(
x�0�
x�1�

)

=
(
a

0

)

� (3.2)

or

xB �=
(
0
a

)

� (3.3)

We would like to perform detection based on

y �=
(
y�0�
y�1�

)

� (3.4)



51 3.1 Detection in a Rayleigh fading channel

This is a simple hypothesis testing problem, and it is straightforward to
derive the maximum likelihood (ML) rule:

	�y�
≥
<

XA

XB

0� (3.5)

where 	�y� is the log-likelihood ratio

	�y� �= ln
{
f�y�xA�
f�y�xB�

}

� (3.6)

It can be seen that, if xA is transmitted, y�0� ∼ �� �0� a2 +N0� and y�1� ∼
�� �0�N0� and y�0�� y�1� are independent. Similarly, if xB is transmitted,
y�0� ∼ �� �0�N0� and y�1� ∼ �� �0� a2 +N0�. Further, y�0� and y�1� are
independent. Hence the log-likelihood ratio can be computed to be

	�y�=
{�y�0��2−�y�1��2}a2

�a2+N0�N0

� (3.7)

The optimal rule is simply to decide xA is transmitted if �y�0��2 > �y�1��2 and
decide xB otherwise. Note that the rule does not make use of the phases of
the received signal, since the random unknown phases of the channel gains
h�0�� h�1� render them useless for detection. Geometrically, we can interpret
the detector as projecting the received vector y onto each of the two possible
transmit vectors xA and xB and comparing the energies of the projections
(Figure 3.1). Thus, this detector is also called an energy or a square-law
detector. It is somewhat surprising that the optimal detector does not depend
on how h�0� and h�1� are correlated.
We can analyze the error probability of this detector. By symmetry, we

can assume that xA is transmitted. Under this hypothesis, y�0� and y�1� are

Figure 3.1 The non-coherent
detector projects the received
vector y onto each of the two
orthogonal transmitted vectors
xA and xB and compares the
lengths of the projections.
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52 Point-to-point communication

independent circular symmetric complex Gaussian random variables with
variances a2+N0 and N0 respectively. (See Section A.1.3 in the appendices for
a discussion on circular symmetric Gaussian random variables and vectors.)
As shown there, �y�0��2� �y�1��2 are exponentially distributed with mean a2+
N0 and N0 respectively.1 The probability of error can now be computed by
direct integration:

pe = �
{�y�1��2 > �y�0��2�xA

}=
[

2+ a2

N0

]−1

� (3.8)

We make the general definition

SNR �= average received signal energy per (complex) symbol time
noise energy per (complex) symbol time

(3.9)

which we use consistently throughout the book for any modulation scheme.
The noise energy per complex symbol time is N0.

2 For the orthogonal mod-
ulation scheme here, the average received energy per symbol time is a2/2
and so

SNR �= a2

2N0

� (3.10)

Substituting into (3.8), we can express the error probability of the orthogonal
scheme in terms of SNR:

pe =
1

2�1+ SNR�
� (3.11)

This is a very discouraging result. To get an error probability pe = 10−3

one would require SNR ≈ 500 (27 dB). Stupendous amounts of power would
be required for more reliable communication.

3.1.2 Coherent detection

Why is the performance of the non-coherent maximum likelihood (ML)
receiver on a fading channel so bad? It is instructive to compare its perfor-
mance with detection in an AWGN channel without fading:

y�m�= x�m�+w�m�� (3.12)

1 Recall that a random variable U is exponentially distributed with mean 
 if its pdf is
fU �u�= 1



e−u/
.

2 The orthogonal modulation scheme considered here uses only real symbols and hence
transmits only on the I channel. Hence it may seem more natural to define the SNR in
terms of noise energy per real symbol, i.e., N0/2. However, later we will consider
modulation schemes that use complex symbols and hence transmit on both the I and Q
channels. In order to be consistent throughout, we choose to define SNR this way.
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For antipodal signaling (BPSK), x�m�=±a, a sufficient statistic is ��y�m��

and the error probability is

pe =Q

(
a

√
N0/2

)

=Q
(√

2SNR
)
� (3.13)

where SNR= a2/N0 is the received signal-to-noise ratio per symbol time, and
Q�·� is the complementary cumulative distribution function of an N�0�1� ran-
dom variable. This function decays exponentially with x2; more specifically,

Q�x� < e−x2/2� x > 0 (3.14)

and

Q�x� >
1√
2�x

(

1− 1
x2

)

e−x2/2� x > 1� (3.15)

Thus, the detection error probability decays exponentially in SNR in the
AWGN channel while it decays only inversely with the SNR in the fading
channel. To get an error probability of 10−3, an SNR of only about 7 dB
is needed in an AWGN channel (as compared to 27 dB in the non-coherent
fading channel). Note that 2

√
SNR is the separation between the two

constellation points as a multiple of the standard deviation of the Gaussian
noise; the above observation says that when this separation is much larger
than 1, the error probability is very small.
Compared to detection in the AWGN channel, the detection problem con-

sidered in the previous section has two differences: the channel gains h�m�

are random, and the receiver is assumed not to know them. Suppose now
that the channel gains are tracked at the receiver so that they are known at
the receiver (but still random). In practice, this is done either by sending a
known sequence (called a pilot or training sequence) or in a decision directed
manner, estimating the channel using symbols detected earlier. The accu-
racy of the tracking depends, of course, on how fast the channel varies. For
example, in a narrowband 30-kHz channel (such as that used in the North
American TDMA cellular standard IS-136) with a Doppler spread of 100Hz,
the coherence time Tc is roughly 80 symbols and in this case the channel can
be estimated with minimal overhead expended in the pilot.3 For our current
purpose, let us suppose that the channel estimates are perfect.
Knowing the channel gains, coherent detection of BPSK can now be per-

formed on a symbol by symbol basis. We can focus on one symbol time and
drop the time index

y = hx+w (3.16)

3 The channel estimation problem for a broadband channel with many taps in the impulse
response is more difficult; we will get to this in Section 3.5.
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Detection of x from y can be done in a way similar to that in the AWGN
case; the decision is now based on the sign of the real sufficient statistic

r �=���h/�h��∗y�= �h�x+ z� (3.17)

where z∼ N�0�N0/2�. If the transmitted symbol is x=±a, then, for a given
value of h, the error probability of detecting x is

Q

(
a�h�
√
N0/2

)

=Q
(√

2�h�2SNR
)

(3.18)

where SNR = a2/N0 is the average received signal-to-noise ratio per symbol
time. (Recall that we normalized the channel gain such that ���h�2� = 1.)
We average over the random gain h to find the overall error probability. For
Rayleigh fading when h∼ �� �0�1�, direct integration yields

pe = �
[
Q
(√

2�h�2SNR
)]

= 1
2



1−
√

SNR
1+ SNR



 � (3.19)

(See Exercise 3.1.) Figure 3.2 compares the error probabilities of coherent
BPSK and non-coherent orthogonal signaling over the Rayleigh fading chan-
nel, as well as BPSK over the AWGN channel. We see that while the error
probability for BPSK over the AWGN channel decays very fast with the
SNR, the error probabilities for the Rayleigh fading channel are much worse,

Figure 3.2 Performance of
coherent BPSK vs.
non-coherent orthogonal
signaling over Rayleigh fading
channel vs. BPSK over AWGN
schannel.
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whether the detection is coherent or non-coherent. At high SNR, Taylor series
expansion yields

√
SNR

1+ SNR
= 1− 1

2SNR
+O

(
1

SNR2

)

� (3.20)

Substituting into (3.19), we get the approximation

pe ≈
1

4SNR
� (3.21)

which decays inversely proportional to the SNR, just as in the non-coherent
orthogonal signaling scheme (cf. (3.11)). There is only a 3 dB difference in the
required SNRbetween the coherent and non-coherent schemes; in contrast, at an
error probability of 10−3, there is a 17 dB difference between the performance
on the AWGN channel and coherent detection on the Rayleigh fading channel.4

We see that themain reasonwhy detection in the fading channel has poor per-
formance is not because of the lack of knowledge of the channel at the receiver.
It is due to the fact that the channel gain is random and there is a significant
probability that the channel is in a “deep fade”. At high SNR, we can in fact be
more precise about what a “deep fade”means by inspecting (3.18). The quantity
�h�2SNR is the instantaneous received SNR. Under typical channel conditions,
i.e., �h�2SNR� 1, the conditional error probability is very small, since the tail of
the Q-function decays very rapidly. In this regime, the separation between the
constellation points is much larger than the standard deviation of the Gaussian
noise. On the other hand, when �h�2SNR is of the order of 1 or less, the separation
is of the sameorder as the standarddeviationof thenoise and theerror probability
becomes significant. The probability of this event is

���h�2SNR< 1� =
∫ 1/SNR

0
e−xdx (3.22)

= 1
SNR

+O

(
1

SNR2

)

� (3.23)

This probability has the same order of magnitude as the error probability itself
(cf. (3.21)). Thus, we can define a “deep fade” via an order-of-magnitude
approximation:

Deep fade event � �h�2 < 1
SNR

�

��deep fade�≈ 1
SNR

�

4 Communication engineers often compare schemes based on the difference in the required
SNR to attain the same error probability. This corresponds to the horizontal gap between the
error probability versus SNR curves of the two schemes.
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We conclude that high-SNR error events most often occur because the channel
is in deep fade and not as a result of the additive noise being large. In contrast,
in the AWGN channel the only possible error mechanism is for the additive
noise to be large. Thus, the error probability performance over the AWGN
channel is much better.
We have used the explicit error probability expression (3.19) to help iden-

tify the typical error event at high SNR. We can in fact turn the table around
and use it as a basis for an approximate analysis of the high-SNR performance
(Exercises 3.2 and 3.3). Even though the error probability pe can be directly
computed in this case, the approximate analysis provides much insight as to
how typical errors occur. Understanding typical error events in a communi-
cation system often suggests how to improve it. Moreover, the approximate
analysis gives some hints as to how robust the conclusion is to the Rayleigh
fading model. In fact, the only aspect of the Rayleigh fading model that is
important to the conclusion is the fact that ���h�2 < 
� is proportional to 
 for

 small. This holds whenever the pdf of �h�2 is positive and continuous at 0.

3.1.3 From BPSK to QPSK: exploiting the degrees of freedom

In Section 3.1.2, we have considered BPSK modulation, x�m� = ±a. This
uses only the real dimension (the I channel), while in practice both the I and
Q channels are used simultaneously in coherent communication, increasing
spectral efficiency. Indeed, an extra bit can be transmitted by instead using
QPSK (quadrature phase-shift-keying) modulation, i.e., the constellation is

�a�1+ j�� a�1− j�� a�−1+ j�� a�−1− j��� (3.24)

in effect, a BPSK symbol is transmitted on each of the I and Q channels
simultaneously. Since the noise is independent across the I and Q channels,
the bits can be detected separately and the bit error probability on the AWGN
channel (cf. (3.12)) is

Q

(√
2a2

N0

)

� (3.25)

the same as BPSK (cf. (3.13)). For BPSK, the SNR (as defined in (3.9)) is
given by

SNR= a2

N0

� (3.26)

while for QPSK,

SNR= 2a2

N0

� (3.27)



57 3.1 Detection in a Rayleigh fading channel

is twice that of BPSK since both the I and Q channels are used. Equiv-
alently, for a given SNR, the bit error probability of BPSK is Q�

√
2SNR�

(cf. (3.13)) and that of QPSK is Q�
√
SNR�. The error probability of QPSK

under Rayleigh fading can be similarly obtained by replacing SNR by SNR/2
in the corresponding expression (3.19) for BPSK to yield

pe =
1
2



1−
√

SNR
2+ SNR



≈ 1
2SNR

� (3.28)

at high SNR. For expositional simplicity, we will consider BPSK modulation
in many of the discussions in this chapter, but the results can be directly
mapped to QPSK modulation.
One important point worth noting is that it is much more energy-efficient

to use both the I and Q channels rather than just one of them. For example,
if we had to send the two bits carried by the QPSK symbol on the I channel
alone, then we would have to transmit a 4-PAM symbol. The constellation is
�−3b�−b�b�3b� and the average error probability on the AWGN channel is

3
2
Q

(√
2b2

N0

)

� (3.29)

To achieve approximately the same error probability as QPSK, the argument
inside the Q-function should be the same as that in (3.25) and hence b should
be the same as a, i.e., the same minimum separation between points in the two
constellations (Figure 3.3). But QPSK requires a transmit energy of 2a2 per
symbol, while 4-PAM requires a transmit energy of 5b2 per symbol. Hence,
for the same error probability, approximately 2.5 times more transmit energy
is needed: a 4 dB worse performance. Exercise 3.4 shows that this loss is even
more significant for larger constellations. The loss is due to the fact that it is
more energy efficient to pack, for a desired minimum distance separation, a

Figure 3.3 QPSK versus
4-PAM: for the same minimum
separation between
constellation points, the 4-PAM
constellation requires higher
transmit power.
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given number of constellation points in a higher-dimensional space than in a
lower-dimensional space. We have thus arrived at a general design principle
(cf. Discussion 2.1):

A good communication scheme exploits all the available degrees of free-
dom in the channel.

This important principle will recur throughout the book, and in fact will
be shown to be of a fundamental nature as we talk about channel capacity
in Chapter 5. Here, the choice is between using just the I channel and using
both the I and Q channels, but the same principle applies to many other
situations. As another example, the non-coherent orthogonal signaling scheme
discussed in Section 3.1.1 conveys one bit of information and uses one real
dimension per two symbol times (Figure 3.4). This scheme does not assume
any relationship between consecutive channel gains, but if we assume that
they do not change much from symbol to symbol, an alternative scheme
is differential BPSK, which conveys information in the relative phases of
consecutive transmitted symbols. That is, if the BPSK information symbol is
u�m� at time m (u�m�=±1), the transmitted symbol at time m is given by

x�m�= u�m�x�m−1�� (3.30)

Exercise 3.5 shows that differential BPSK can be demodulated non-coherently
at the expense of a 3-dB loss in performance compared to coherent BPSK
(at high SNR). But since non-coherent orthogonal modulation also has a
3-dB worse performance compared to coherent BPSK, this implies that dif-
ferential BPSK and non-coherent orthogonal modulation have the same error
probability performance. On the other hand, differential BPSK conveys one

Figure 3.4 Geometry of
orthogonal modulation.
Signaling is performed over
one real dimension, but two
(complex) symbol times are
used.

Im

2 a
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bit of information and uses one real dimension per single symbol time, and
therefore has twice the spectral efficiency of orthogonal modulation. Better
performance is achieved because differential BPSK uses more efficiently the
available degrees of freedom.

3.1.4 Diversity

The performance of the various schemes considered so far for fading channels
is summarized in Table 3.1. Some schemes are spectrally more efficient than
others, but from a practical point of view, they are all bad: the error proba-
bilities all decay very slowly, like 1/SNR. From Section 3.1.2, it can be seen
that the root cause of this poor performance is that reliable communication
depends on the strength of a single signal path. There is a significant proba-
bility that this path will be in a deep fade. When the path is in a deep fade,
any communication scheme will likely suffer from errors. A natural solution
to improve the performance is to ensure that the information symbols pass
through multiple signal paths, each of which fades independently, making
sure that reliable communication is possible as long as one of the paths is
strong. This technique is called diversity, and it can dramatically improve the
performance over fading channels.
There are many ways to obtain diversity. Diversity over time can be

obtained via coding and interleaving: information is coded and the coded sym-
bols are dispersed over time in different coherence periods so that different
parts of the codewords experience independent fades. Analogously, one can
also exploit diversity over frequency if the channel is frequency-selective.
In a channel with multiple transmit or receive antennas spaced sufficiently,
diversity can be obtained over space as well. In a cellular network, macro-
diversity can be exploited by the fact that the signal from a mobile can be
received at two base-stations. Since diversity is such an important resource,
a wireless system typically uses several types of diversity.
In the next few sections, we will discuss diversity techniques in time,

frequency and space. In each case, we start with a simple scheme based on
repetition coding: the same information symbol is transmitted over several
signal paths. While repetition coding achieves the maximal diversity gain,
it is usually quite wasteful of the degrees of freedom of the channel. More
sophisticated schemes can increase the data rate and achieve a coding gain
along with the diversity gain.
To keep the discussion simple we begin by focusing on the coherent

scenario: the receiver has perfect knowledge of the channel gains and can
coherently combine the received signals in the diversity paths. As discussed
in the previous section, this knowledge is learnt via training (pilot) symbols
and the accuracy depends on the coherence time of the channel and the
received power of the transmitted signal. We discuss the impact of channel
measurement error and non-coherent diversity combining in Section 3.5.
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Table 3.1 Performance of coherent and non-coherent schemes under Rayleigh
fading. The data rates are in bits/s/Hz, which is the same as bits per complex
symbol time. The performance of differential QPSK is derived in Exercise 3.5.
It is also 3-dB worse than coherent QPSK.

Scheme Bit error prob. (High SNR) Data rate (bits/s/Hz)

Coherent BPSK 1/(4SNR) 1
Coherent QPSK 1/(2SNR) 2
Coherent 4-PAM 5/(4SNR) 2
Coherent 16-QAM 5/(2SNR) 4

Non-coherent orth. mod. 1/(2SNR) 1/2
Differential BPSK 1/(2SNR) 1
Differential QPSK 1/SNR 2

3.2 Time diversity

Time diversity is achieved by averaging the fading of the channel over time.
Typically, the channel coherence time is of the order of tens to hundreds of
symbols, and therefore the channel is highly correlated across consecutive
symbols. To ensure that the coded symbols are transmitted through indepen-
dent or nearly independent fading gains, interleaving of codewords is required
(Figure 3.5). For simplicity, let us consider a flat fading channel. We transmit
a codeword x= �x1� � � � � xL�

t of length L symbols and the received signal is
given by

y� = h�x�+w�� �= 1� � � � �L� (3.31)

Assuming ideal interleaving so that consecutive symbols x� are transmitted
sufficiently far apart in time, we can assume that the h� are independent.
The parameter L is commonly called the number of diversity branches. The
additive noises w1� � � � �wL are i.i.d. �� �0�N0� random variables.

3.2.1 Repetition coding

The simplest code is a repetition code, in which x� = x1 for � = 1� � � � �L.
In vector form, the overall channel becomes

y= hx1+w� (3.32)

where y= �y1� � � � � yL�
t, h= �h1� � � � � hL�

t and w = �w1� � � � �wL�
t.
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Figure 3.5 The codewords are
transmitted over consecutive
symbols (top) and interleaved
(bottom). A deep fade will
wipe out the entire codeword
in the former case but only
one coded symbol from each
codeword in the latter. In the
latter case, each codeword can
still be recovered from the
other three unfaded symbols.
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Consider now coherent detection of x1, i.e., the channel gains are known
to the receiver. This is the canonical vector Gaussian detection problem in
Summary A.2 of Appendix A. The scalar

h∗

	h	y= 	h	x1+
h∗

	h	w (3.33)

is a sufficient statistic. Thus, we have an equivalent scalar detection problem
with noise �h∗/	h	�w∼ �� �0�N0�. The receiver structure is a matched filter
and is also called a maximal ratio combiner: it weighs the received signal in
each branch in proportion to the signal strength and also aligns the phases
of the signals in the summation to maximize the output SNR. This receiver
structure is also called coherent combining.
Consider BPSK modulation, with x1 = ±a. The error probability, condi-

tional on h, can be derived exactly as in (3.18):

Q
(√

2	h	2SNR
)

(3.34)

where as before SNR= a2/N0 is the average received signal-to-noise ratio per
(complex) symbol time, and 	h	2SNR is the received SNR for a given channel
vector h. We average over 	h	2 to find the overall error probability. Under
Rayleigh fading with each gain h� i.i.d. �� �0�1�,

	h	2 =
L∑

�=1

�h��2 (3.35)
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is a sum of the squares of 2L independent real Gaussian random variables,
each term �h��2 being the sum of the squares of the real and imaginary parts
of h�. It is Chi-square distributed with 2L degrees of freedom, and the density
is given by

f�x�= 1
�L−1�!x

L−1e−x� x ≥ 0� (3.36)

The average error probability can be explicitly computed to be (cf. Exer-
cise 3.6)

pe =
∫ 


0
Q
(√

2xSNR
)
f�x�dx

=
(
1−


2

)L L−1∑

�=0

(
L−1+�

�

)(
1+


2

)�

� (3.37)

where


 �=
√

SNR
1+ SNR

� (3.38)

The error probability as a function of the SNR for different numbers of diver-
sity branches L is plotted in Figure 3.6. Increasing L dramatically decreases
the error probability.
At high SNR, we can see the role of L analytically: consider the leading

term in the Taylor series expansion in 1/SNR to arrive at the approximations

1+


2
≈ 1� and

1−


2
≈ 1

4SNR
� (3.39)

Figure 3.6 Error probability as
a function of SNR for different
numbers of diversity
branches L.
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Furthermore,

L−1∑

�=0

(
L−1+�

�

)

=
(
2L−1

L

)

� (3.40)

Hence,

pe ≈
(
2L−1

L

)
1

�4SNR�L
(3.41)

at high SNR. In particular, the error probability decreases as the Lth power of
SNR, corresponding to a slope of −L in the error probability curve (in dB/dB
scale).
To understand this better, we examine the probability of the deep fade

event, as in our analysis in Section 3.1.2. The typical error event at high SNR
is when the overall channel gain is small. This happens with probability

��	h	2 < 1/SNR�� (3.42)

Figure 3.7 plots the distribution of 	h	2 for different values of L; clearly the
tail of the distribution near zero becomes lighter for larger L. For small x, the
probability density function of 	h	2 is approximately

f�x�≈ 1
�L−1�!x

L−1 (3.43)

and so

��	h	2 < 1/SNR�≈
∫ 1

SNR

0

1
�L−1�!x

L−1dx = 1
L!

1

SNRL
� (3.44)

Figure 3.7 The probability
density function of �h�2 for
different values of L. The
larger the L, the faster the
probability density function
drops off around 0.
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This analysis is too crude to get the correct constant before the 1/SNRL term
in (3.41), but does get the correct exponent L. Basically, an error occurs when
∑L

�=1 �h��2 is of the order of or smaller than 1/SNR, and this happens when
all the magnitudes of the gains �h��2 are small, of the order of 1/SNR. Since
the probability that each �h��2 is less than 1/SNR is approximately 1/SNR and
the gains are independent, the probability of the overall gain being small is
of the order 1/SNRL. Typically, L is called the diversity gain of the system.

3.2.2 Beyond repetition coding

The repetition code is the simplest possible code. Although it achieves a
diversity gain, it does not exploit the degrees of freedom available in the
channel effectively because it simply repeats the same symbol over the L

symbol times. By using more sophisticated codes, a coding gain can also be
obtained beyond the diversity gain. There are many possible codes that one
can use. We first focus on the example of a rotation code to explain some of
the issues in code design for fading channels.
Consider the case L= 2. A repetition code which repeats a BPSK symbol

u=±a twice obtains a diversity gain of 2 but would only transmit one bit of
information over the two symbol times. Transmitting two independent BPSK
symbols u1� u2 over the two times would use the available degrees of freedom
more efficiently, but of course offers no diversity gain: an error would be
made whenever one of the two channel gains h1� h2 is in deep fade. To get
both benefits, consider instead a scheme that transmits the vector

x = R
[
u1

u2

]

(3.45)

over the two symbol times, where

R �=
[
cos� − sin �
sin � cos�

]

(3.46)

is a rotation matrix (for some � ∈ �0�2��). This is a code with four codewords:

xA = R
[
a

a

]

� xB = R
[−a

a

]

� xC = R
[−a

−a

]

� xD = R
[

a

−a

]

�

(3.47)
they are shown in Figure 3.8(a).5 The received signal is given by

y� = h�x�+w�� �= 1�2� (3.48)

5 Here communication is over the (real) I channel since both x1 and x2 are real, but as in
Section 3.1.3, the spectral efficiency can be doubled by using both the I and the Q channels.
Since the two channels are orthogonal, one can apply the same code separately to the
symbols transmitted in the two channels to get the same performance gain.
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Figure 3.8 (a) Codewords of
rotation code. (b) Codewords
of repetition code.
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It is difficult to obtain an explicit expression for the exact error probability.
So, we will proceed by looking at the union bound. Due to the symmetry
of the code, without loss of generality we can assume xA is transmitted. The
union bound says that

pe ≤ ��xA → xB�+��xA → xC�+��xA → xD�� (3.49)

where ��xA → xB� is the pairwise error probability of confusing xA with
xB when xA is transmitted and when these are the only two hypotheses.
Conditioned on the channel gains h1 and h2, this is just the binary detection
problem in Summary A.2 of Appendix A, with

uA =
[
h1xA1
h2xA2

]

and uB =
[
h1xB1
h2xB2

]

� (3.50)

Hence,

��xA→xB�h1� h2�=Q

(
	uA−uB	
2
√
N0/2

)

=Q

(√
SNR��h1�2�d1�2+�h2�2�d2�2�

2

)

�

(3.51)

where SNR= a2/N0 and

d �= 1
a
�xA−xB�=

[
2 cos�
2 sin �

]

(3.52)

is the normalized difference between the codewords, normalized such that the
transmit energy is 1 per symbol time. We use the upper bound Q�x�≤ e−x2/2,
for x > 0, in (3.51) to get

��xA → xB�h1� h2�≤ exp
(−SNR��h1�2�d1�2+�h2�2�d2�2�

4

)

� (3.53)
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Averaging with respect to h1 and h2 under the independent Rayleigh fading
assumption, we get

��xA → xB� ≤ �h1�h2

[

exp
(−SNR��h1�2�d1�2+�h2�2�d2�2�

4

)]

=
(

1
1+ SNR�d1�2/4

)(
1

1+ SNR�d2�2/4
)

� (3.54)

Here we have used the fact that the moment generating function for a unit
mean exponential random variable X is ��esX� = 1/�1− s� for s < 1. While
it is possible to get an exact expression for the pairwise error probability,
this upper bound is more explicit; moreover, it is asymptotically tight at high
SNR (Exercise 3.7).
We first observe that if d1 = 0 or d2 = 0, then the diversity gain of the

code is only 1. If they are both non-zero, then at high SNR the above bound
on the pairwise error probability becomes

��xA → xB�≤
16

�d1d2�2
SNR−2� (3.55)

Call

�AB �= �d1d2�2� (3.56)

the squared product distance between xA and xB, when the average energy of
the code is normalized to be 1 per symbol time (cf. (3.52)). This determines
the pairwise error probability between the two codewords. Similarly, we
can define �ij to be the squared product distance between xi and xj , i� j =
A�B�C�D. Combining (3.55) with (3.49) yields a bound on the overall error
probability:

pe ≤ 16
(

1
�AB

+ 1
�AC

+ 1
�AD

)

SNR−2

≤ 48
minj=B�C�D �Aj

SNR−2� (3.57)

We see that as long as �ij > 0 for all i� j, we get a diversity gain of 2. The
minimum squared product distance minj=B�C�D �Aj then determines the coding
gain of the scheme beyond the diversity gain. This parameter depends on �,
and we can optimize over � to maximize the coding gain. Here

�AB = �AD = 4 sin2 2�� and �AC = 16cos2 2�� (3.58)
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The angle �∗ that maximizes the minimum squared product distance makes
�AB equal �AC , yielding �∗ = �1/2� tan−12 and min�ij = 16/5. The bound in
(3.57) now becomes

pe ≤ 15 SNR−2� (3.59)

To get more insight into why the product distance is important, we see from
(3.51) that the typical way for xA to be confused with xB is for the squared
Euclidean distance �h1�2�d1�2+�h2�2�d2�2 between the received codewords to
be of the order of 1/SNR. This event holds roughly when both �h1�2�d1�2
and �h2�2�d2�2 are of the order of 1/SNR, and this happens with probability
approximately

(
1

�d1�2SNR
)(

1
�d2�2SNR

)

= 1
�d1�2�d2�2

SNR−2� (3.60)

Thus, it is important that both �d1�2 and �d2�2 are large to ensure diversity
against fading in both components.
It is interesting to see how this code compares to the repetition scheme. To

keep the bit rate the same (2 bits over 2 real-valued symbols), the repetition
scheme would be using 4-PAM modulation �−3b�−b�b�3b�. The codewords
of the repetition scheme are shown in Figure 3.8(b). From (3.51), the pairwise
error probability between two adjacent codewords (say, xA and xB) is

��xA → xB�= �
[
Q
(√

SNR/2 · ��h1�2�d1�2+�h2�2�d2�2�
)]

� (3.61)

But now SNR= 5b2/N0 is the average SNR per symbol time for the 4-PAM
constellation,6 and d1 = d2 = 2/

√
5 are the normalized component differences

between the adjacent codewords. The minimum squared product distance for
the repetition code is therefore 16/25 and we can compare this to the minimum
squared product distance of 16/5 for the previous rotation code. Since the
error probability is proportional to SNR−2 in both cases, we conclude that
the rotation code has an improved coding gain over the repetition code in
terms of a saving in transmit power by a factor of

√
5 (3.5 dB) for the

same product distance. This improvement comes from increasing the overall
product distance, and this is in turn due to spreading the codewords in the
two-dimensional space rather than packing them on a single-dimensional line
as in the repetition code. This is the same reason that QPSK is more efficient
than BPSK (as we have discussed in Section 3.1.3).
We summarize and generalize the above development to any time diversity

code.

6 As we have seen earlier, the 4-PAM constellation requires five times more energy than
BPSK for the same separation between the constellation points.
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Summary 3.1 Time diversity code design criterion

Ideal time-interleaved channel

y� = h�x�+w�� �= 1� � � � �L� (3.62)

where h� are i.i.d. �� �0�1� Rayleigh faded channel gains.

x1� � � � �xM are the codewords of a time diversity code with block length
L, normalized such that

1
ML

M∑

i=1

	xi	2 = 1� (3.63)

Union bound on overall probability of error:

pe ≤
1
M

∑

i �=j

��xi → xj� (3.64)

Bound on pairwise error probability:

��xi → xj�≤
L∏

�=1

1
1+ SNR�xi�−xj��2/4

(3.65)

where xi� is the �th component of codeword xi, and SNR �= 1/N0.

Let Lij be the number of components on which the codewords xi and xj
differ. Diversity gain of the code is

min
i �=j

Lij� (3.66)

If Lij = L for all i �= j, then the code achieves the full diversity L of the
channel, and

pe ≤
4L

M

∑

i �=j

1
�ij

SNR−L ≤ 4L�M−1�
mini �=j �ij

SNR−L (3.67)

where

�ij �=
L∏

�=1

�xi�−xj��2 (3.68)

is the squared product distance between xi and xj .
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The rotation code discussed above is specifically designed to exploit time
diversity in fading channels. In the AWGN channel, however, rotation of
the constellation does not affect performance since the i.i.d. Gaussian noise
is invariant to rotations. On the other hand, codes that are designed for
the AWGN channel, such as linear block codes or convolutional codes, can
be used to extract time diversity in fading channels when combined with
interleaving. Their performance can be analyzed using the general framework
above. For example, the diversity gain of a binary linear block code where
the coded symbols are ideally interleaved is simply the minimum Hamming
distance between the codewords or equivalently the minimum weight of a
codeword; the diversity gain of a binary convolutional code is given by
the free distance of the code, which is the minimum weight of the coded
sequence of the convolutional code. The performance analysis of these codes
and various decoding techniques is further pursued in Exercise 3.11.
It should also be noted that the above code design criterion is derived assum-

ing i.i.d. Rayleigh fading across the symbols. This can be generalized to the
case when the coded symbols pass through correlated fades of the channel (see
Exercise 3.12). Generalization to the case when the fading is Rician is also pos-
sible and is studied in Exercise 3.18. Nevertheless these code design criteria
all depend on the specific channel statistics assumed.Motivated by information
theoretic considerations, we take a completely different approach in Chapter 9
where we seek a universal criterion which works for all channel statistics. We
will also be able to define what it means for a time-diversity code to be optimal.

Example 3.1 Time diversity in GSM
Global System for Mobile (GSM) is a digital cellular standard developed
in Europe in the 1980s. GSM is a frequency division duplex (FDD) system
and uses two 25-MHz bands, one for the uplink (mobiles to base-station)
and one for the downlink (base-station to mobiles). The original bands set
aside for GSM are the 890–915MHz band (uplink) and the 935–960MHz
band (downlink). The bands are further divided into 200-kHz sub-channels
and each sub-channel is shared by eight users in a time-division fashion
(time-division multiple access (TDMA)). The data of each user are sent
over time slots of length 577 microseconds (�s) and the time slots of the
eight users together form a frame of length 4.615ms (Figure 3.9).
Voice is the main application for GSM. Voice is coded by a speech

encoder into speech frames each of length 20ms. The bits in each speech
frame are encoded by a convolutional code of rate 1/2, with the two
generator polynomials D4+D3+1 and D4+D3+D+1. The number of
coded bits for each speech frame is 456. To achieve time diversity, these
coded bits are interleaved across eight consecutive time slots assigned to
that specific user: the 0th, 8th, . . . , 448th bits are put into the first time
slot, the 1st, 9th, . . . , 449th bits are put into the second time slot, etc.
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125 sub-channels

25 MHz

200 kHz

TS0 TS2 TS3 TS5 TS6 TS7TS4TS1

8 users per sub-channel

Figure 3.9 The 25-MHz band of a GSM system is divided into 200-kHz sub-channels, which are
further divided into time slots for eight different users.

Since one time slot occurs every 4.615ms for each user, this translates
into a delay of roughly 40ms, a delay judged tolerable for voice. The eight
time slots are shared between two 20-ms speech frames. The interleaving
structure is summarized in Figure 3.10.
The maximum possible time diversity gain is 8, but the actual gain that

can be obtained depends on how fast the channel varies, and that depends
primarily on the mobile speed. If the mobile speed is v, then the largest
possible Doppler spread (assuming full scattering in the environment) is
Ds = 2fcv/c, where fc is the carrier frequency and c is the speed of light.
(Recall the example in Section 2.1.4.) The coherence time is roughly
Tc = 1/�4Ds�= c/�8fcv� (cf. (2.44)). For the channel to fade more or less
independently across the different time slots for a user, the coherence time
should be less than 5ms. For fc = 900MHz, this translates into a mobile
speed of at least 30 km/h.

User 1’s time slots

User 1’s coded bitstream

Figure 3.10 How interleaving is done in GSM.
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For a walking speed of say 3 km/h, there may be too little time diversity.
In this case, GSM can go into a frequency hopping mode, where consec-
utive frames (each composed of the time slots of the eight users) can hop
from one 200-kHz sub-channel to another. With a typical delay spread of
about 1�s, the coherence bandwidth is 500 kHz (cf. Table 2.1). The total
bandwidth equal to 25MHz is thus much larger than the typical coherence
bandwidth of the channel and the consecutive frames can be expected to
fade independently. This provides the same effect as having time diversity.
Section 3.4 discusses other ways to exploit frequency diversity.

3.3 Antenna diversity

To exploit time diversity, interleaving and coding over several coherence
time periods is necessary. When there is a strict delay constraint and/or the
coherence time is large, this may not be possible. In this case other forms of
diversity have to be obtained. Antenna diversity, or spatial diversity, can be
obtained by placing multiple antennas at the transmitter and/or the receiver.
If the antennas are placed sufficiently far apart, the channel gains between
different antenna pairs fade more or less independently, and independent
signal paths are created. The required antenna separation depends on the local
scattering environment as well as on the carrier frequency. For a mobile which
is near the ground with many scatterers around, the channel decorrelates over
shorter spatial distances, and typical antenna separation of half to one carrier
wavelength is sufficient. For base-stations on high towers, larger antenna
separation of several to tens of wavelengths may be required. (A more careful
discussion of these issues is found in Chapter 7.)
We will look at both receive diversity, using multiple receive antennas

(single input multiple output or SIMO channels), and transmit diversity, using
multiple transmit antennas (multiple input single output or MISO channels).
Interesting coding problems arise in the latter and have led to recent excite-
ment in space-time codes. Channels with multiple transmit and multiple
receive antennas (so-called multiple input multiple output or MIMO chan-
nels) provide even more potential. In addition to providing diversity, MIMO
channels also provide additional degrees of freedom for communication. We
will touch on some of the issues here using a 2× 2 example; the full study
of MIMO communication will be the subject of Chapters 7 to 10.

3.3.1 Receive diversity

In a flat fading channel with 1 transmit antenna and L receive antennas
(Figure 3.11(a)), the channel model is as follows:

y��m�= h��m�x�m�+w��m� �= 1� � � � �L (3.69)
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Figure 3.11 (a) Receive
diversity; (b) transmit diversity;
(c) transmit and receive
diversity.

(c)(a) (b)

where the noise w��m�∼ �� �0�N0� and is independent across the antennas.
We would like to detect x�1� based on y1�1�� � � � � yL�1�. This is exactly the
same detection problem as in the use of a repetition code and interleaving
over time, with L diversity branches now over space instead of over time. If
the antennas are spaced sufficiently far apart, we can assume that the gains
h��1� are independent Rayleigh, and we get a diversity gain of L.
With receive diversity, there are actually two types of gain as we increase L.

This can be seen by looking at the expression (3.34) for the error probability
of BPSK conditional on the channel gains:

Q
(√

2	h	2SNR
)
� (3.70)

We can break up the total received SNR conditioned on the channel gains
into a product of two terms:

	h	2SNR= LSNR · 1
L
	h	2� (3.71)

The first term corresponds to a power gain (also called array gain): by having
multiple receive antennas and coherent combining at the receiver, the effective
total received signal power increases linearly with L: doubling L yields a
3-dB power gain.7 The second term reflects the diversity gain: by averaging
over multiple independent signal paths, the probability that the overall gain
is small is decreased. The diversity gain L is reflected in the SNR exponent
in (3.41); the power gain affects the constant before the 1/SNRL. Note that if
the channel gains h��1� are fully correlated across all branches, then we only
get a power gain but no diversity gain as we increase L. On the other hand,
even when all the h� are independent there is a diminishing marginal return
as L increases: due to the law of large numbers, the second term in (3.71),

1
L
	h	2 = 1

L

L∑

�=1

�h��1��2� (3.72)

7 Although mathematically the same situation holds in the time diversity repetition coding
case, the increase in received SNR there comes from increasing the total transmit energy
required to send a single bit; it is therefore not appropriate to call that a power gain.
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converges to 1 with increasing L (assuming each of the channel gains is
normalized to have unit variance). The power gain, on the other hand, suffers
from no such limitation: a 3-dB gain is obtained for every doubling of the
number of antennas.8

3.3.2 Transmit diversity: space-time codes

Now consider the case when there are L transmit antennas and 1 receive
antenna, the MISO channel (Figure 3.11(b)). This is common in the downlink
of a cellular system since it is often cheaper to have multiple antennas at the
base-station than to have multiple antennas at every handset. It is easy to get
a diversity gain of L: simply transmit the same symbol over the L different
antennas during L symbol times. At any one time, only one antenna is turned
on and the rest are silent. This is simply a repetition code, and, as we have
seen in the previous section, repetition codes are quite wasteful of degrees of
freedom. More generally, any time diversity code of block length L can be
used on this transmit diversity system: simply use one antenna at a time and
transmit the coded symbols of the time diversity code successively over the
different antennas. This provides a coding gain over the repetition code. One
can also design codes specifically for the transmit diversity system. There
have been a lot of research activities in this area under the rubric of space-time
coding and here we discuss the simplest, and yet one of the most elegant,
space-time code: the so-called Alamouti scheme. This is the transmit diversity
scheme proposed in several third-generation cellular standards. The Alamouti
scheme is designed for two transmit antennas; generalization to more than
two antennas is possible, to some extent.

Alamouti scheme
With flat fading, the two transmit, single receive channel is written as

y�m�= h1�m�x1�m�+h2�m�x2�m�+w�m�� (3.73)

where hi is the channel gain from transmit antenna i. The Alamouti scheme
transmits two complex symbols u1 and u2 over two symbol times: at time 1,
x1�1�= u1� x2�1�= u2; at time 2, x1�2�=−u∗

2� x2�2�= u∗
1. If we assume that

the channel remains constant over the two symbol times and set h1 = h1�1�=
h1�2�� h2 = h2�1�= h2�2�, then we can write in matrix form:

[
y�1� y�2�

]= [h1 h2

]
[
u1 −u∗

2

u2 u∗
1

]

+ [w�1� w�2�] � (3.74)

8 This will of course ultimately not hold since the received power cannot be larger than the
transmit power, but the number of antennas for our model to break down will have to be
humongous.
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We are interested in detecting u1� u2, so we rewrite this equation as

[
y�1�
y�2�∗

]

=
[
h1 h2

h∗
2 −h∗

1

][
u1

u2

]

+
[
w�1�
w�2�∗

]

� (3.75)

We observe that the columns of the square matrix are orthogonal. Hence, the
detection problem for u1� u2 decomposes into two separate, orthogonal, scalar
problems. We project y onto each of the two columns to obtain the sufficient
statistics

ri = 	h	ui+wi� i= 1�2� (3.76)

where h = �h1� h2�
t and wi ∼ �� �0�N0� and w1�w2 are independent. Thus,

the diversity gain is 2 for the detection of each symbol. Compared to the
repetition code, two symbols are now transmitted over two symbol times
instead of one symbol, but with half the power in each symbol (assuming that
the total transmit power is the same in both cases).
The Alamouti scheme works for any constellation for the symbols u1� u2,

but suppose now they are BPSK symbols, thus conveying a total of two bits
over two symbol times. In the repetition scheme, we need to use 4-PAM
symbols to achieve the same data rate. To achieve the same minimum distance
as the BPSK symbols in the Alamouti scheme, we need five times the energy
per symbol. Taking into account the factor of 2 energy saving since we are
only transmitting one symbol at a time in the repetition scheme, we see that
the repetition scheme requires a factor of 2.5 (4 dB) more power than the
Alamouti scheme. Again, the repetition scheme suffers from an inefficient
utilization of the available degrees of freedom in the channel: over the two
symbol times, bits are packed into only one dimension of the received signal
space, namely along the direction �h1� h2�

t. In contrast, the Alamouti scheme
spreads the information onto two dimensions – along the orthogonal directions
�h1� h

∗
2�

t and �h2�−h∗
1�

t.

The determinant criterion for space-time code design
In Section 3.2, we saw that a good code exploiting time diversity should
maximize the minimum product distance between codewords. Is there an
analogous notion for space-time codes? To answer this question, let us think
of a space-time code as a set of complex codewords �Xi�, where each Xi is an
L by N matrix. Here, L is the number of transmit antennas and N is the block
length of the code. For example, in the Alamouti scheme, each codeword is
of the form

[
u1 −u∗

2

u2 u∗
1

]

� (3.77)
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with L = 2 and N = 2. In contrast, each codeword in the repetition scheme
is of the form

[
u 0
0 u

]

� (3.78)

More generally, any block length L time diversity code with codewords
�xi� translates into a block length L transmit diversity code with codeword
matrices �Xi�, where

Xi = diag�xi1� � � � � xiL�� (3.79)

For convenience, we normalize the codewords so that the average energy
per symbol time is 1, hence SNR= 1/N0. Assuming that the channel remains
constant for N symbol times, we can write

yt = h∗X+wt� (3.80)

where

y �=





y�1�
���

y�N�




 � h �=






h∗
1
���

h∗
L




 � w �=






w�1�
���

w�N�




 � (3.81)

To bound the error probability, consider the pairwise error probability of
confusing XB with XA, when XA is transmitted. Conditioned on the fading
gains h, we have the familiar vector Gaussian detection problem (see Sum-
mary A.2): here we are deciding between the vectors h∗XA and h∗XB under
additive circular symmetric white Gaussian noise. A sufficient statistic is
��v∗y�, where v �= h∗�XA−XB�. The conditional pairwise error probability
is

��XA → XB �h�=Q

(
	h∗�XA−XB�	

2
√
N0/2

)

� (3.82)

Hence, the pairwise error probability averaged over the channel statistics is

��XA → XB�= �

[

Q

(√
SNR h∗�XA−XB��XA−XB�

∗h
2

)]

� (3.83)

The matrix �XA−XB��XA−XB�
∗ is Hermitian9 and is thus diagonalizable by

a unitary transformation, i.e., we can write �XA−XB��XA−XB�
∗ = U	U∗,

9 A complex square matrix X is Hermitian if X∗ = X.
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where U is unitary10 and 	 = diag��2
1� � � � � �

2
L�. Here �� are the singular

values of the codeword difference matrix XA−XB. Therefore, we can rewrite
the pairwise error probability as

��XA → XB�= �



Q





√
SNR

∑L
�=1 �h̃��2�2

�

2







 � (3.84)

where h̃ �= U∗h. In the Rayleigh fading model, the fading coefficients h�

are i.i.d. �� �0�1� and then h̃ has the same distribution as h (cf. (A.22) in
Appendix A). Thus we can bound the average pairwise error probability, as
in (3.54),

��XA → XB�≤
L∏

�=1

1

1+ SNR�2
�/4

� (3.85)

If all the �2
� are strictly positive for all the codeword differences, then the

maximal diversity gain of L is achieved. Since the number of positive eigen-
values �2

� equals the rank of the codeword difference matrix, this is possible
only if N ≥ L. If indeed all the �2

� are positive, then,

��XA → XB� ≤ 4L

SNRL
∏L

�=1 �
2
�

= 4L

SNRL det��XA−XB��XA−XB�
∗�
� (3.86)

and a diversity gain of L is achieved. The coding gain is determined by the
minimum of the determinant det��XA −XB��XA −XB�

∗� over all codeword
pairs. This is sometimes called the determinant criterion.
In the special case when the transmit diversity code comes from a time

diversity code, the space-time code matrices are diagonal (cf. (3.79)), and
�� = �d��2, the squared magnitude of the component difference between the
corresponding time diversity codewords. The determinant criterion then coin-
cides with the squared product distance criterion (3.68) we already derived
for time diversity codes.
We can compare the coding gains obtained by the Alamouti scheme with the

repetition scheme. That is, how much less power does the Alamouti scheme
consume to achieve the same error probability as the repetition scheme? For
the Alamouti scheme with BPSK symbols ui, the minimum determinant is 4.
For the repetition scheme with 4-PAM symbols, the minimum determinant
is 16/25. (Verify!) This translates into the Alamouti scheme having a coding

10 A complex square matrix U is unitary if U∗U= UU∗ = I.
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gain of roughly a factor of 6 over the repetition scheme, consistent with the
analysis above.
The Alamouti transmit diversity scheme has a particularly simple receiver

structure. Essentially, a linear receiver allows us to decouple the two symbols
sent over the two transmit antennas in two time slots. Effectively, both sym-
bols pass through non-interfering parallel channels, both of which afford a
diversity of order 2. In Exercise 3.16, we derive some properties that a code
construction must satisfy to mimic this behavior for more than two transmit
antennas.

3.3.3 MIMO: a 2×2 example

Degrees of freedom
Consider now a MIMO channel with two transmit and two receive antennas
(Figure 3.11(c)). Let hij be the Rayleigh distributed channel gain from transmit
antenna j to receive antenna i. Suppose both the transmit antennas and the
receive antennas are spaced sufficiently far apart that the fading gains, hij ,
can be assumed to be independent. There are four independently faded signal
paths between the transmitter and the receiver, suggesting that the maximum
diversity gain that can be achieved is 4. The same repetition scheme described
in the last section can achieve this performance: transmit the same symbol
over the two antennas in two consecutive symbol times (at each time, nothing
is sent over the other antenna). If the transmitted symbol is x, the received
symbols at the two receive antennas are

yi�1�= hi1x+wi�1�� i= 1�2 (3.87)

at time 1, and

yi�2�= hi2x+wi�2�� i= 1�2 (3.88)

at time 2. By performing maximal-ratio combining of the four received sym-
bols, an effective channel with gain

∑2
i=1

∑2
j=1 �hij�2 is created, yielding a

four-fold diversity gain.
However, just as in the case of the 2× 1 channel, the repetition scheme

utilizes the degrees of freedom in the channel poorly; it only transmits one
data symbol per two symbol times. In this regard, the Alamouti scheme
performs better by transmitting two data symbols over two symbol times.
Exercise 3.20 shows that the Alamouti scheme used over the 2× 2 channel
provides effectively two independent channels, analogous to (3.76), but with
the gain in each channel equal to

∑2
i=1

∑2
j=1 �hij�2. Thus, both the data symbols

see a diversity gain of 4, the same as that offered by the repetition scheme.
But does the Alamouti scheme utilize all the available degrees of freedom

in the 2×2 channel? How many degrees of freedom does the 2×2 channel
have anyway?
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In Section 2.2.3 we have defined the degrees of freedom of a channel as
the dimension of the received signal space. In a channel with two transmit
and a single receive antenna, this is equal to one for every symbol time. The
repetition scheme utilizes only half a degree of freedom per symbol time,
while the Alamouti scheme utilizes all of it.
With L receive, but a single transmit antenna, the received signal lies in an

L-dimensional vector space, but it does not span the full space. To see this
explicitly, consider the channel model from (3.69) (suppressing the symbol
time index m):

y= hx+w� (3.89)

where y �= �y1� � � � � yL�
t� h= �h1� � � � � hL�

t and w= �w1� � � � �wL�
t. The sig-

nal of interest, hx, lies in a one-dimensional space.11 Thus, we conclude that
the degrees of freedom of a multiple receive, single transmit antenna channel
is still 1 per symbol time.
But in a 2× 2 channel, there are potentially two degrees of freedom per

symbol time. To see this, we can write the channel as

y= h1x1+h2x2+w� (3.90)

where xj and hj are the transmitted symbol and the vector of channel gains
from transmit antenna j respectively, and y = �y1� y2�

t and w = �w1�w2�
t are

the vectors of received signals and �� �0�N0� noise respectively. As long as
h1 and h2 are linearly independent, the signal space dimension is 2: the signal
from transmit antenna j arrives in its own direction hj , and with two receive
antennas, the receiver can distinguish between the two signals. Compared to
a 2×1 channel, there is an additional degree of freedom coming from space.
Figure 3.12 summarizes the situation.

Figure 3.12 (a) In the 1× 2
channel, the signal space is
one-dimensional, spanned by
h. (b) In the 2× 2 channel,
the signal space is
two-dimensional, spanned by
h1 and h2.

h

x

(a)

x2

h2
x1

h1

(b)

11 This is why the scalar �h∗/	h	�y is a sufficient statistic to detect x (cf. (3.33)).
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Spatial multiplexing
Now we see that neither the repetition scheme nor the Alamouti scheme uti-
lizes all the degrees of freedom in a 2× 2 channel. A very simple scheme
that does is the following: transmit independent uncoded symbols over the
different antennas as well as over the different symbol times. This is an
example of a spatial multiplexing scheme: independent data streams are mul-
tiplexed in space. (It is also called V-BLAST in the literature.) To analyze
the performance of this scheme, we extend the derivation of the pairwise
error probability bound (3.85) from a single receive antenna to multiple
receive antennas. Exercise 3.19 shows that with nr receive antennas, the corre-
sponding bound on the probability of confusing codeword XB with codeword
XA is

��XA → XB�≤
[

L∏

�=1

1

1+ SNR�2
�/4

]nr

� (3.91)

where �� are the singular values of the codeword difference XA−XB. This
bound holds for space-time codes of general block lengths. Our specific
scheme does not code across time and is thus “space-only”. The block
length is 1, the codewords are two-dimensional vectors x1�x2 and the bound
simplifies to

��x1 → x2� ≤
[

1
1+ SNR	x1−x2	2/4

]2

≤ 16

SNR2 	x1−x2	4
� (3.92)

The exponent of the SNR factor is the diversity gain: the spatial multi-
plexing scheme achieves a diversity gain of 2. Since there is no coding
across the transmit antennas, it is clear that no transmit diversity can be
exploited; thus the diversity comes entirely from the dual receive antennas.
The factor 	x1−x2	4 plays a role analogous to the determinant det��XA−XB�

�XA−XB�
∗� in determining the coding gain (cf. (3.86)).

Compared to the Alamouti scheme, we see that V-BLAST has a smaller
diversity gain (2 compared to 4). On the other hand, the full use of the spatial
degrees of freedom should allow a more efficient packing of bits, resulting in
a better coding gain. To see this concretely, suppose we use BPSK symbols
in the spatial multiplexing scheme to deliver 2 bits/s/Hz. Assuming that the
average transmit energy per symbol time is normalized to be 1 as before, we
can use (3.92) to explicitly calculate a bound on the worst-case pairwise error
probability:

max
i �=j

��xi → xj�≤ 4 · SNR−2� (3.93)
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On the other hand, the corresponding bound for the Alamouti scheme using
4-PAM symbols to deliver the same 2 bits/s/Hz can be calculated from (3.86)
to be

max
i �=j

��xi → xj�≤ 1600 · SNR−4� (3.94)

We see that indeed the bound for the Alamouti scheme has a much poorer
constant before the factor that decays with SNR.
We can draw two lessons from the V-BLAST scheme. First, we see a

new role for multiple antennas: in addition to diversity, they can also provide
additional degrees of freedom for communication. This is in a sense a more
powerful view of multiple antennas, one that will be further explored in
Chapter 7. Second, the scheme also reveals limitations in our performance
analysis framework for space-time codes. In the earlier sections, our approach
has always been to seek schemes which extract the maximum diversity from
the channel and then compare them on the basis of the coding gain, which
is a function of how efficiently the schemes utilize the available degrees of
freedom. This approach falls short in comparing V-BLAST and the Alam-
outi scheme for the 2× 2 channel: V-BLAST has poorer diversity than the
Alamouti scheme but is more efficient in exploiting the spatial degrees of free-
dom, resulting in a better coding gain. A more powerful framework combining
the two performance measures into a unified metric is needed; this is one of
the main subjects of Chapter 9. There we will also address the issue of what
it means by an optimal scheme and whether it is possible to find a scheme
which achieves the full diversity and the full degrees of freedom of the channel.

Low-complexity detection: the decorrelator
One advantage of the Alamouti scheme is its low-complexity ML receiver: the
decoding decouples into two orthogonal single-symbol detection problems.ML
detection ofV-BLASTdoes not enjoy the same advantage: joint detection of the
two symbols is required. The complexity grows exponentially with the number
of antennas. A natural question to ask is: what performance can suboptimal
single-symbol detectors achieve? We will study MIMO receiver architectures
in depth in Chapters 7 and 9, but here we will give an example of a simple
detector, the decorrelator, and analyze its performance in the 2×2 channel.
To motivate the definition of this detector, let us rewrite the channel (3.90)

in matrix form:

y=Hx+w� (3.95)

where H= �h1�h2� is the channel matrix. The input x �= �x1� x2�
t is composed

of two independent symbols x1� x2. To decouple the detection of the two
symbols, one idea is to invert the effect of the channel:

ỹ=H−1y= x+H−1w = x+ w̃ (3.96)
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and detect each of the symbols separately. This is in general suboptimal
compared to joint ML detection, since the noise samples w̃1 and w̃2 are
correlated. How much performance do we lose?
Let us focus on the detection of the symbol x1 from transmit antenna 1.

By direct computation, the variance of the noise w̃1 is

�h22�2+�h21�2
�h11h22−h21h12�2

N0� (3.97)

Hence, we can rewrite the first component of the vector equation in (3.96) as

ỹ1 = x1+
√�h22�2+�h21�2
�h11h22−h21h12�

z1� (3.98)

where z1 ∼ �� �0�N0�, the scaled version of w̃1, is independent of x1. Equi-
valently, the scaled output can be written as

y′1 �= h11h22−h21h12√�h22�2+�h21�2
ỹ1

= ��∗
2h1�x1+ z1� (3.99)

where

hi �=
[
hi1

hi2

]

� �i �=
1

√�hi2�2+�hi1�2
[

h∗
i2

−h∗
i1

]

� i= 1�2� (3.100)

Geometrically, one can interpret hj as the “direction” of the signal from
transmit antenna j and �j as the direction orthogonal to hj . Equation (3.99)
says that when demodulating the symbol from antenna 1, channel inversion
eliminates the interference from transmit antenna 2 by projecting the received
signal y in the direction orthogonal to h2 (Figure 3.13). The signal part is
��∗

2h1�x1. The scalar gain �∗
2h1 is circular symmetric Gaussian, being the

projection of a two-dimensional i.i.d. circular symmetric Gaussian random
vector (h1) onto an independent unit vector (�2) (cf. (A.22) in Appendix A).
The scalar channel (3.99) is therefore Rayleigh faded like a 1×1 channel and
has only unit diversity. Note that if there were no interference from antenna 2,
the diversity gain would have been 2: the norm 	h1	2 of the entire vector h1

has to be small for poor reception of x1. However, here, the component of h1

perpendicular to h2 being small already wreacks havoc; this is the price paid
for nulling out the interference from antenna 2. In contrast, the ML detector,
by jointly detecting the two symbols, retains the diversity gain of 2.
We have discussed V-BLAST in the context of a point-to-point link with

two transmit antennas. But since there is no coding across the antennas,
we can equally think of the two transmit antennas as two distinct users
each with a single antenna. In the multiuser context, the receiver described
above is sometimes called the interference nuller, zero-forcing receiver or
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Figure 3.13 Demodulation of
x1: the received vector y is
projected onto the direction
�2 orthogonal to h2. The
effective channel for x1 is in
deep fade whenever the
projection of h1 onto �2 is
small.

h2

h1

y φ2

y1

y2

the decorrelator. It nulls out the effect of the other user (interferer) while
demodulating the symbol of one user. Using this receiver, we see that dual
receive antennas can perform one of two functions in a wireless system: they
can either provide a two-fold diversity gain in a point-to-point link when there
is no interference, or they can be used to null out the effect of an interfering
user but provide no diversity gain more than 1. But they cannot do both. This
is however not an intrinsic limitation of the channel but rather a limitation of
the decorrelator; by performing joint ML detection instead, the two users can
in fact be simultaneously supported with a two-fold diversity gain each.

Summary 3.2 2×2 MIMO schemes

The performance of the various schemes for the 2 × 2 channel is
summarized below.

Diversity gain
Degrees of freedom utilized
per symbol time

Repetition 4 1/2
Alamouti 4 1
V-BLAST (ML) 2 2
V-BLAST (nulling) 1 2

Channel itself 4 2
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3.4 Frequency diversity

3.4.1 Basic concept

So far we have focused on narrowband flat fading channels. These channels
are modeled by a single-tap filter, as most of the multipaths arrive during one
symbol time. In wideband channels, however, the transmitted signal arrives
over multiple symbol times and the multipaths can be resolved at the receiver.
The frequency response is no longer flat, i.e., the transmission bandwidth W

is greater than the coherence bandwidth Wc of the channel. This provides
another form of diversity: frequency.
We begin with the discrete-time baseband model of the wireless channel

in Section 2.2. Recalling (2.35) and (2.38), the sampled output y�m� can be
written as

y�m�=∑
�

h��m�x�m−��+w�m�� (3.101)

Here h��m� denotes the �th channel filter tap at time m. To understand the
concept of frequency diversity in the simplest setting, consider first the one-
shot communication situation when one symbol x�0� is sent at time 0, and no
symbols are transmitted after that. The receiver observes

y���= h����x�0�+w���� �= 0�1�2� � � � (3.102)

If we assume that the channel response has a finite number of taps L, then the
delayed replicas of the signal are providing L branches of diversity in detecting
x�0�, since the tap gains h���� are assumed to be independent. This diversity
is achieved by the ability of resolving the multipaths at the receiver due to the
wideband nature of the channel, and is thus called frequency diversity.
A simple communication scheme can be built on the above idea by sending an

information symbol everyL symbol times. Themaximal diversity gain ofL can
beachieved, but theproblemwith this scheme is that it is verywasteful ofdegrees
of freedom: only one symbol canbe transmitted every delay spread.This scheme
can actually be thought of as analogous to the repetition codes used for both
time and spatial diversity, where one information symbol is repeated L times.
In this setting, once one tries to transmit symbols more frequently, inter-symbol
interference (ISI) occurs: thedelayed replicas of previous symbols interferewith
the current symbol. The problem is then how to deal with the ISI while at the
same time exploiting the inherent frequency diversity in the channel. Broadly
speaking, there are three common approaches:

• Single-carrier systems with equalization By using linear and non-linear
processing at the receiver, ISI can be mitigated to some extent. Optimal
ML detection of the transmitted symbols can be implemented using the
Viterbi algorithm. However, the complexity of the Viterbi algorithm grows
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exponentially with the number of taps, and it is typically used only when the
number of significant taps is small. Alternatively, linear equalizers attempt
to detect the current symbol while linearly suppressing the interference
from the other symbols, and they have lower complexity.

• Direct-sequence spread-spectrum In this method, information symbols
are modulated by a pseudonoise sequence and transmitted over a band-
width W much larger than the data rate. Because the symbol rate is very
low, ISI is small, simplifying the receiver structure significantly. Although
this leads to an inefficient utilization of the total degrees of freedom in the
system from the perspective of one user, this scheme allows multiple users
to share the total degrees of freedom, with users appearing as pseudonoise
to each other.

• Multi-carrier systems Here, transmit precoding is performed to convert
the ISI channel into a set of non-interfering, orthogonal sub-carriers, each
experiencing narrowband flat fading. Diversity can be obtained by coding
across the symbols in different sub-carriers. This method is also called Dis-
crete Multi-Tone (DMT) or Orthogonal Frequency Division Multiplexing
(OFDM). Frequency-hop spread-spectrum can be viewed as a special case
where one carrier is used at a time.

For example, GSM is a single-carrier system, IS-95 CDMA and
IEEE 802.11b (a wireless LAN standard) are based on direct-sequence spread-
spectrum, and IEEE 802.11a is a multi-carrier system,
Below we study these three approaches in turn. An important conceptual

point is that, while frequency diversity is something intrinsic in a wideband
channel, the presence of ISI is not, as it depends on the modulation technique
used. For example, under OFDM, there is no ISI, but sub-carriers that are sep-
arated by more than the coherence bandwidth fade more or less independently
and hence frequency diversity is still present.
Narrowband systems typically operate in a relatively high SNR regime.

In contrast, the energy is spread across many degrees of freedom in many
wideband systems, and the impact of the channel uncertainty on the ability of
the receiver to extract the inherent diversity in frequency-selective channels
becomes more pronounced. This point will be discussed in Section 3.5, but
in the present section, we assume that the receiver has a perfect estimate of
the channel.

3.4.2 Single-carrier with ISI equalization

Single-carrier with ISI equalization is the classic approach to communication
over frequency-selective channels, and has been used in wireless as well as
wireline applications such as voiceband modems. Much work has been done
in this area but here we focus on the diversity aspects.
Starting at time 1, a sequence of uncoded independent symbols

x�1�� x�2�� � � � is transmitted over the frequency-selective channel (3.101).
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Assuming that the channel taps do not vary over these N symbol times, the
received symbol at time m is

y�m�=
L−1∑

�=0

h�x�m−��+w�m�� (3.103)

where x�m� = 0 for m < 1. For simplicity, we assume here that the taps h�

are i.i.d. Rayleigh with equal variance 1/L, but the discussion below holds
more generally (see Exercise 3.25).
We want to detect each of the transmitted symbols from the received signal.

The process of extracting the symbols from the received signal is called
equalization. In contrast to the simple scheme in the previous section where a
symbol is sent every L symbol times, here a symbol is sent every symbol time
and hence there is significant ISI. Can we still get the maximum diversity
gain of L?

Frequency-selective channel viewed as a MISO channel
To analyze this problem, it is insightful to transform the frequency-selective
channel into a flat fading MISO channel with L transmit antennas and a
single receive antenna and channel gains h0� � � � � hL−1. Consider the following
transmission scheme on the MISO channel: at time 1, the symbol x�1� is
transmitted on antenna 1 and the other antennas are silent. At time 2, x�1�
is transmitted at antenna 2, x�2� is transmitted on antenna 1 and the other
antennas remain silent. At time m, x�m− �� is transmitted on antenna �+1,
for �= 0� � � � �L−1. See Figure 3.14. The received symbol at time m in this
MISO channel is precisely the same as that in the frequency-selective channel
under consideration.
Once we transform the frequency-selective channel into a MISO channel,

we can exploit the machinery developed in Section 3.3.2. First, it is clear
that if we want to achieve full diversity on a symbol, say x�N�, we need to
observe the received symbols up to time N +L−1. Over these symbol times,
we can write the system in matrix form (as in (3.80)):

yt = h∗X+wt� (3.104)

where yt �= �y�1�� � � � � y�N +L−1���h∗ �= �h0� � � � � hL−1��w
t �= �w�1�� � � �

w�N +L−1�� and the L by N +L−1 space-time code matrix

X=










x�1� x�2� · · · x�N� · · x�N +L−1�
0 x�1� x�2� · · · x�N� · x�N +L−2�
0 0 x�1� x�2� · · · · ·
· · · · · · · · ·
0 0 · · x�1� x�2� · · x�N�










(3.105)

corresponds to the transmitted sequence x = �x�1�� � � � � x�N +L−1��t.
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Figure 3.14 The MISO
scenario equivalent to the
frequency- selective channel.
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Error probability analysis
Consider the maximum likelihood detection of the sequence x based on the
received vector y (MLSD). With MLSD, the pairwise error probability of
confusing xA with xB, when xA is transmitted is, as in (3.85),

��xA → xB�≤
L∏

�=1

1

1+ SNR�2
�/4

� (3.106)

where �2
� are the eigenvalues of the matrix �XA−XB��XA−XB�

∗ and SNR is
the total received SNR per received symbol (summing over all paths). This
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error probability decays like SNR−L whenever the difference matrix XA−XB

is of rank L.
By a union bound argument, the probability of detecting the particular

symbol x�N� incorrectly is bounded by

∑

xB�xB�N� �=xA�N�

��xA → xB�� (3.107)

summing over all the transmitted vectors xB which differ with xA in the N th
symbol.12 To get full diversity, the difference matrix XA −XB must be full
rank for every such vector xB (cf. (3.86)). Suppose m∗ is the symbol time
in which the vectors xA and xB first differ. Since they differ at least once
within the first N symbol times, m∗ ≤ N and the difference matrix is of the
form

XA−XB =










0 · 0 xA�m
∗�−xB�m

∗� · · · ·
0 · · 0 xA�m

∗�−xB�m
∗� · · ·

0 · · · 0 · · ·
· · · · · · · ·
0 · · · · 0 xA�m

∗�−xB�m
∗� ·









�

(3.108)

By inspection, all the rows in the difference matrix are linearly independent.
Thus XA−XB is of full rank (i.e., the rank is equal to L). We can summarize:

Uncoded transmission combined with maximum likelihood sequence det-
ection achieves full diversity on symbol x�N� using the observations up to
time N +L−1, i.e., a delay of L−1 symbol times.

Compared to the scheme in which a symbol is transmitted every L symbol
times, the same diversity gain of L is achieved and yet an independent symbol
can be transmitted every symbol time. This translates into a significant “coding
gain” (Exercise 3.26).
In the analysis here it was convenient to transform the frequency-selective

channel into a MISO channel. However, we can turn the transformation
around: if we transmit the space-time code of the form in (3.105) on a MISO
channel, then we have converted the MISO channel into a frequency-selective

12 Strictly speaking, the MLSD only minimizes the sequence error probability, not the symbol
error probability. However, this is the standard detector implemented for ISI equalization
via the Viterbi algorithm, to be discussed next. In any case, the symbol error probability
performance of the MLSD serves as an upper bound to the optimal symbol error
performance.
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channel. This is the delay diversity scheme and it was one of the first proposed
transmit diversity schemes for the MISO channel.

Implementing MLSD: the Viterbi algorithm
Given the received vector y of length n, MLSD requires solving the
optimization problem

max
x

��y�x�� (3.109)

A brute-force exhaustive search would require a complexity that grows
exponentially with the block length n. An efficient algorithm needs to exploit
the structure of the problem and moreover should be recursive in n so that
the problem does not have to be solved from scratch for every symbol time.
The solution is the ubiquitous Viterbi algorithm.
The key observation is that the memory in the frequency-selective channel

can be captured by a finite state machine. At time m, define the state (an
L-dimensional vector)

s�m� �=







x�m−L+1�
x�m−L+2�

·
x�m�





 (3.110)

An example of the finite state machine when the x�m� are BPSK symbols is
given in Figure 3.15. The number of states isML, whereM is the constellation
size for each symbol x�m�.

Figure 3.15 A finite state
machine when x[m] are ±1
BPSK symbols and L= 2.
There is a total of four states.
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x[m – 1] = –1

x[m] = –1
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state 2 state 1

–1

+1

+1
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–1

–1–1

x[m] = +1

+1

x[m – 1] = –1

x[m] = +1
x[m – 1] = +1
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The received symbol y�m� is given by

y�m�= h∗s�m�+w�m�� (3.111)

with h representing the frequency-selective channel, as in (3.104). The MLSD
problem (3.109) can be rewritten as

min
s�1�� � � � �s�n�

− log��y�1�� � � � � y�n� � s�1�� � � � � s�n��� (3.112)

subject to the transition constraints on the state sequence (i.e., the second com-
ponent of s�m� is the same as the first component of s�m+1�). Conditioned
on the state sequence s�1�� � � � � s�n�, the received symbols are independent
and the log-likelihood ratio breaks into a sum:

log��y�1�� � � � � y�n� � s�1�� � � � � s�n��=
n∑

m=1

log��y�m� � s�m��� (3.113)

The optimization problem in (3.112) can be represented as the problem of
finding the shortest path through an n-stage trellis, as shown in Figure 3.16.
Each state sequence �s�1�� � � � � s�n�� is visualized as a path through the trellis,
and given the received sequence y�1�� � � � � y�n�, the cost associated with the
mth transition is

cm�s�m�� �=− log��y�m� � s�m��� (3.114)

Figure 3.16 The trellis
representation of the channel.
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The solution is given recursively by the optimality principle of dynamic
programming. Let Vm�s� be the cost of the shortest path to a given state s at
stage m. Then Vm�s� for all states s can be computed recursively:

V1�s�= c1�s�
Vm�s�=min

u
�Vm−1�u�+ cm�s��� m > 1�

(3.115)

(3.116)

Here the minimization is over all possible states u, i.e., we only consider
the states that the finite state machine can be in at stage m−1 and, further,
can still end up at state s at stage m. The correctness of this recursion is based
on the following intuitive fact: if the shortest path to state s at stage m goes
through the state u∗ at stage m−1, then the part of the path up to stage m−1
must itself be the shortest path to state u∗. See Figure 3.17. Thus, to compute
the shortest path up to stage m, it suffices to augment only the shortest paths
up to stage m−1, and these have already been computed.
Once Vm�s� is computed for all states s, the shortest path to stage m is

simply the minimum of these values over all states s. Thus, the optimization
problem (3.112) is solved. Moreover, the solution is recursive in n.
The complexity of the Viterbi algorithm is linear in the number of stages n.

Thus, the cost is constant per symbol, a vast improvement over brute-force
exhaustive search. However, its complexity is also proportional to the size
of the state space, which is ML, where M is the constellation size of each
symbol. Thus, while MLSD can be done for channels with a small number
of taps, it becomes impractical when L becomes large.
The computational complexity of MLSD leads to an interest in seeking

suboptimal equalizers which yield comparable performance. Some candi-
dates are linear equalizers (such as the zero-forcing and minimum mean
square error (MMSE) equalizers, which involve simple linear operations
on the received symbols followed by simple hard decoders), and their
decision-feedback versions (DFE), where previously detected symbols are
removed from the received signal before linear equalization is performed.
We will discuss these equalizers further in Discussion 8.1, where we exploit

Figure 3.17 The dynamic
programming principle. If the
first m−1 segments of the
shortest path to state s at
stage m were not the shortest
path to state u∗ at stage m−1,
then one could have found an
even shorter path to state s.

s

m – 1 m

shorter path

u∗
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a correspondence between the MIMO channel and the frequency-selective
channel.

3.4.3 Direct-sequence spread-spectrum

A common communication system that employs a wide bandwidth is the
direct-sequence (DS) spread-spectrum system. Its basic components are shown
in Figure 3.18. Information is encoded and modulated by a pseudonoise (PN)
sequence and transmitted over a bandwidth W . In contrast to the system
we analyzed in the last section where an independent symbol is sent at
each symbol time, the data rate R bits/s in a spread-spectrum system is
typically much smaller than the transmission bandwidth W Hz. The ratio
W/R is sometimes called the processing gain of the system. For example,
IS-95 (CDMA) is a direct-sequence spread-spectrum system. The bandwidth
is 1.2288MHz and a typical data rate (voice) is 9.6 kbits/s, so the processing
gain is 128. Thus, very few bits are transmitted per degree of freedom per
user. In spread-spectrum jargon, each sample period is called a chip, and
another way of describing a spread-spectrum system is that the chip rate is
much larger than the data rate.
Because the symbol rate per user is very low in a spread-spectrum system,

ISI is typically negligible and equalization is not required. Instead, as we
will discuss next, a much simpler receiver called the Rake receiver can be
used to extract frequency diversity. In the cellular setting, multiple spread-
spectrum users would share the large bandwidth so that the aggregate bit
rate can be high even though the rate of each user is low. The large pro-
cessing gain of a user serves to mitigate the interference from other users,
which appears as random noise. In addition to providing frequency diversity
against multipath fading and allowing multiple access, spread-spectrum sys-
tems serve other purposes, such as anti-jamming from intentional interferers,
and achieving message privacy in the presence of other listeners. We will dis-
cuss the multiple access aspects of spread-spectrum systems in Chapter 4. For
now, we focus on how DS spread-spectrum systems can achieve frequency
diversity.

The Rake receiver
Suppose we transmit one of two n-chips long pseudonoise sequences xA or xB.
Consider the problem of binary detection over a wideband multipath channel.
In this context, a binary symbol is transmitted over n chips. The received
signal is given by

y�m�=∑
�

h��m�x�m−��+w�m�� (3.117)

We assume that h��m� is non-zero only for �= 0� � � � �L−1, i.e., the channel
has L taps. One can think of L/W as the delay spread Td. Also, we assume
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that h��m� does not vary with m during the transmission of the sequence,Figure 3.18 Basic elements of a
direct sequence spread-
spectrum system.

i.e., the channel is considered time-invariant. This holds if n� TcW , where
Tc is the coherence time of the channel. We also assume that there is negli-
gible interference between consecutive symbols, so that we can consider the
binary detection problem in isolation for each symbol. This assumption is
valid if n� L, which is quite common in a spread-spectrum system with high
processing gain. Otherwise, ISI between consecutive symbols becomes signif-
icant, and an equalizer would be needed to mitigate the ISI. Note however we
assume that simultaneously n� TdW and n� TcW , which is possible only if
Td � Tc. In a typical cellular system, Td is of the order of microseconds and
Tc of the order of tens of milliseconds, so this assumption is quite reasonable.
(Recall from Chapter 2, Table 2.2 that a channel satisfying this condition is
called an underspread channel.)
With the above assumptions, the output is just a convolution of the input

with the LTI channel plus noise

y�m�= �h∗x��m�+w�m�� m= 1� � � � � n+L (3.118)

where h� is the �th tap of the time-invariant channel filter response, with
h� = 0 for � < 0 and � > L− 1. Assuming the channel h is known to the
receiver, two sufficient statistics, rA and rB, can be obtained by projecting
the received vector y �= �y�1�� � � � � y�n+L��t onto the n+L dimensional
vectors vA and vB, where vA �= ��h∗xA��1�� � � � � �h∗xA��n+L��t and vB �=
��h∗xB��1�� � � � � �h∗xB��n+L��t, i.e.,

rA �= v∗Ay� rB �= v∗By� (3.119)

The computation of rA and rB can be implemented by first matched filtering
the received signal to xA and to xB. The outputs of the matched filters are
passed through a filter matched to the channel response h and then sampled
at time n+L (Figure 3.19). This is called the Rake receiver. What the Rake
actually does is taking inner products of the received signal with shifted
versions at the candidate transmitted sequences. Each output is then weighted
by the channel tap gains at the appropriate delays and summed. The signal
path associated with a particular delay is sometimes called a finger of the
Rake receiver.
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Figure 3.19 The Rake receiver.
Here, h̃ is the filter matched to
h, i.e., h̃� = h∗−� . Each tap of h̃
represents a finger of the Rake.
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As discussed earlier, we are continuing with the assumption that the channel
gains h� are known at the receiver. In practice, these gains have to be estimated
and tracked from either a pilot signal or in a decision-directed mode using
the previously detected symbols. (The channel estimation problem will be
discussed in Section 3.5.2.) Also, due to hardware limitations, the actual
number of fingers used in a Rake receiver may be less than the total number
of taps L in the range of the delay spread. In this case, there is also a tracking
mechanism in which the Rake receiver continuously searches for the strong
paths (taps) to assign the limited number of fingers to.

Performance analysis
Let us now analyze the performance of the Rake receiver. To simplify our
notation, we specialize to antipodal modulation (i.e., xA = −xB = u); the
analysis for other modulation schemes is similar. One key aspect of spread-
spectrum systems is that the transmitted signal �±u� has a pseudonoise char-
acteristic. The defining characteristic of a pseudonoise sequence is that its
shifted versions are nearly orthogonal to each other. More precisely, if we
write u= �u�1�� � � � � u�n��, and

u��� �= �0� � � � �0� u�1�� � � � � u�n��0� � � � �0�t (3.120)

as the n+L dimensional version of u shifted by � chips (hence there are
� zeros preceding u and L− � zeros following u above), the pseudonoise
property means that for every �= 0� � � � �L−1,

��u����∗�u��′��� �
n∑

i=1

�u�i��2� � �= �′� (3.121)

To simplify the analysis, we assume full orthogonality: �u����∗�u��′�� = 0 if
� �= �′.
We will now show that the performance of the Rake is the same as that

in the diversity model with L branches for repetition coding described in
Section 3.2. We can see this by looking at a set of sufficient statistics for the



94 Point-to-point communication

detection problem different from the ones we used earlier. First, we rewrite
the channel model in vector form

y=
L−1∑

�=0

h�x
���+w� (3.122)

where w �= �w�1�� � � � �w�n+L��t and x��� =±u���, the version of the trans-
mitted sequence (either u or −u) shifted by � chips. The received signal
(without the noise) therefore lies in the span of the L vectors �u���/	u	��. By
the pseudonoise assumption, all these vectors are orthogonal to each other.
A set of L sufficient statistics �r����� can be obtained by projecting y onto
each of these vectors

r��� = h�x+w���� �= 0� � � � �L−1� (3.123)

where x=±	u	. Further, the orthogonality of u��� implies that w��� are i.i.d.
�� �0�N0�. Comparing with (3.32), this is exactly the same as the L-branch
diversity model for the case of repetition code interleaved over time. Thus, we
see that the Rake receiver in this case is nothing more than a maximal ratio
combiner of the signals from the L diversity branches. The error probability
is given by

pe = �



Q





√
√
√
2	u	2

L∑

�=1

�h��2/N0







 � (3.124)

If we assume a Rayleigh fading model such that the tap gains h� are i.i.d.
�� �0�1/L�, i.e., the energy is spread equally among all the L taps (normaliz-
ing such that the ��

∑
� �h��2�= 1), then the error probability can be explicitly

computed (as in (3.37)):

pe =
(
1−


2

)L L−1∑

�=0

(
L−1+�

�

)(
1+


2

)�

� (3.125)

where


 �=
√

SNR
1+ SNR

(3.126)

and SNR �= 	u	2/�N0L� can be interpreted as the average signal-to-noise ratio
per diversity branch. Noting that 	u	2 is the average total energy received
per bit of information, we can define �b �= 	u	2. Hence, the SNR per branch
is 1/L ·�b/N0. Observe that the factor of 1/L accounts for the splitting of
energy due to spreading: the larger the spread bandwidth W , the larger L is,
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and the more diversity one gets, but there is less energy in each branch.13

As L→
,
∑L

�=1 �h��2 converges to 1 with probability 1 by the law of large
numbers, and from (3.124) we see that

pe →Q
(√

2�b/N0

)
� (3.127)

i.e., the performance of the AWGN channel with the same �b/N0 is asymp-
totically achieved.
The above analysis assumes an equal amount of energy in each tap. In a

typical multipath delay profile, there is more energy in the taps with shorter
delays. The analysis can be extended to the cases when the h� have unequal
variances as well. (See Section 14.5.3 in [96]).

3.4.4 Orthogonal frequency division multiplexing

Both the single-carrier system with ISI equalization and the DS spread-
spectrum system with Rake reception are based on a time-domain view of the
channel. But we know that if the channel is linear time-invariant, sinusoids
are eigenfunctions and they get transformed in a particularly simple way.
ISI occurs in a single-carrier system because the transmitted signals are not
sinusoids. This suggests that if the channel is underspread (i.e., the coherence
time is much larger than the delay spread) and is therefore approximately
time-invariant for a sufficiently long time-scale, then transformation into
the frequency domain can be a fruitful approach to communication over
frequency-selective channels. This is the basic idea behind OFDM.
We begin with the discrete-time baseband model

y�m�=∑
�

h��m�x�m−��+w�m�� (3.128)

For simplicity, we first assume that for each �, the �th tap is not changing
with m and hence the channel is linear time-invariant. Again assuming a
finite number of non-zero taps L �= TdW , we can rewrite the channel model
in (3.128) as

y�m�=
L−1∑

�=0

h�x�m−��+w�m�� (3.129)

Sinusoids are eigenfunctions of LTI systems, but they are of infinite dura-
tion. If we transmit over only a finite duration, say Nc symbols, then the
sinusoids are no longer eigenfunctions. One way to restore the eigenfunction

13 This is assuming a very rich scattering environment, leading to many paths, all of equal
energy. In reality, however, there are just a few paths that are strong enough to matter.
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property is by adding a cyclic prefix to the symbols. For every block of
symbols of length Nc, denoted by

d= �d�0�� d�1�� � � � � d�Nc−1��t�

we create an Nc+L−1 input block as

x= �d�Nc−L+1�� d�Nc−L+2�� � � � � d�Nc−1�� d�0�� d�1�� � � � � d�Nc−1��t�
(3.130)

i.e., we add a prefix of length L− 1 consisting of data symbols rotated
cyclically (Figure 3.20). With this input to the channel (3.129), consider the
output

y�m�=
L−1∑

�=0

h�x�m−��+w�m�� m= 1� � � � �Nc+L−1�

The ISI extends over the first L− 1 symbols and the receiver ignores it by
considering only the output over the time interval m ∈ �L�Nc+L− 1�. Due
to the additional cyclic prefix, the output over this time interval (of length
Nc) is

y�m�=
L−1∑

�=0

h�d��m−L−�� modulo Nc�+w�m�� (3.131)

See Figure 3.21.
Denoting the output of length Nc by

y= �y�L�� � � � � y�Nc+L−1��t�

Figure 3.20 The cyclic prefix
operation.
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Figure 3.21 Convolution
between the channel �h� and
the input �x� formed from the
data symbols �d� by adding a
cyclic prefix. The output is
obtained by multiplying the
corresponding values of x and
h on the circle, and outputs at
different times are obtained by
rotating the x-values with
respect to the h-values. The
current configuration yields the
output y [L].
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and the channel by a vector of length Nc

h= �h0� h1� � � � � hL−1�0� � � � �0�
t� (3.132)

(3.131) can be written as

y= h⊗d+w� (3.133)

Here we denoted

w = �w�L�� � � � �w�Nc+L−1��t� (3.134)

as a vector of i.i.d. �� �0�N0� random variables. We also used the notation
of ⊗ to denote the cyclic convolution in (3.131). Recall that the discrete
Fourier transform (DFT) of d is defined to be

d̃n �=
1√
Nc

Nc−1∑

m=0

d�m� exp
(−j2�nm

Nc

)

� n= 0� � � � �N −1� (3.135)

Taking the discrete Fourier transform (DFT) of both sides of (3.133) and
using the identity

DFT�h⊗d�n =
√
NcDFT�h�n ·DFT�d�n� n= 0� � � � �Nc−1� (3.136)

we can rewrite (3.133) as

ỹn = h̃nd̃n+ w̃n� n= 0� � � � �Nc−1� (3.137)

Here we have denoted w̃0� � � � � w̃Nc−1 as the Nc-point DFT of the noise vector
w�1�� � � � �w�Nc�. The vector �h̃0� � � � � h̃Nc−1�

t is defined as the DFT of the
L-tap channel h, multiplied by

√
Nc,

h̃n =
L−1∑

�=0

h� exp
(−j2�n�

Nc

)

� (3.138)



98 Point-to-point communication

Note that the nth component h̃n is equal to the frequency response of the
channel (see (2.20)) at f = nW/Nc.
We can redo everything in terms of matrices, a viewpoint which will prove

particularly useful in Chapter 7 when we will draw a connection between the
frequency-selective channel and the MIMO channel. The circular convolution
operation u= h⊗d can be viewed as a linear transformation

u= Cd� (3.139)

where

C �=







h0 0 · 0 hL−1 hL−2 · h1

h1 h0 0 · 0 hL−1 · h2

· · · · · · · ·
0 · 0 hL−1 hL−2 · h1 h0





 (3.140)

is a circulant matrix, i.e., the rows are cyclic shifts of each other. On the other
hand, the DFT of d can be represented as an Nc-length vector Ud, where U
is the unitary matrix with its �k�n�th entry equal to

1√
Nc

exp
(−j2�kn

Nc

)

� k�n= 0� � � � �Nc−1� (3.141)

This can be viewed as a coordinate change, expressing d in the basis defined
by the rows of U. Equation (3.136) is equivalent to

Uu=	Ud� (3.142)

where 	 is the diagonal matrix with diagonal entries
√
Nc times the DFT of

h, i.e.,

	nn = h̃n �=
(√

NcUh
)

n
� n= 0� � � � �Nc−1�

Comparing (3.139) and (3.142), we come to the conclusion that

C= U−1	U� (3.143)

Equation (3.143) is the matrix version of the key DFT property (3.136).
In geometric terms, this means that the circular convolution operation is
diagonalized in the coordinate system defined by the rows of U, and the
eigenvalues of C are the DFT coefficients of the channel h. Equation (3.133)
can thus be written as

y= Cd+w = U−1	Ud+w� (3.144)
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transmission and reception
schemes.

to convert the channel to a set of non-interfering channels with no ISI.
In particular, the actual data symbols (denoted by the length Nc vector d̃)
in the frequency domain are rotated through the IDFT (inverse DFT) matrix
U−1 to arrive at the vector d. At the receiver, the output vector of length
Nc (obtained by ignoring the first L symbols) is rotated through the DFT
matrix U to obtain the vector ỹ. The final output vector ỹ and the actual data
vector d̃ are related through

ỹn = h̃nd̃n+ w̃n� n= 0� � � � �Nc−1� (3.145)

We have denoted w̃ �= Uw as the DFT of the random vector w and we see
that since w is isotropic, w̃ has the same distribution as w, i.e., a vector of
i.i.d. �� �0�N0� random variables (cf. (A.26) in Appendix A).
These operations are illustrated in Figure 3.22, which affords the following

interpretation. The data symbols modulate Nc tones or sub-carriers, which
occupy the bandwidth W and are uniformly separated by W/Nc. The data
symbols on the sub-carriers are then converted (through the IDFT) to time
domain. The procedure of introducing the cyclic prefix before transmission
allows for the removal of ISI. The receiver ignores the part of the output signal
containing the cyclic prefix (along with the ISI terms) and converts the length
Nc symbols back to the frequency domain through a DFT. The data symbols
on the sub-carriers are maintained to be orthogonal as they propagate through
the channel and hence go through narrowband parallel sub-channels. This
interpretation justifies the name of OFDM for this communication scheme.
Finally, we remark that DFT and IDFT can be very efficiently implemented
(using Fast Fourier Transform) whenever Nc is a power of 2.

OFDM block length
The OFDM scheme converts communication over a multipath channel into
communication over simpler parallel narrowband sub-channels. However, this
simplicity is achieved at a cost of underutilizing two resources, resulting in
a loss of performance. First, the cyclic prefix occupies an amount of time
which cannot be used to communicate data. This loss amounts to a fraction
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L/�Nc +L� of the total time. The second loss is in the power transmitted.
A fraction L/�Nc+L� of the average power is allocated to the cyclic prefix and
cannot be used towards communicating data. Thus, to minimize the overhead
(in both time and power) due to the cyclic prefix we prefer to have Nc as
large as possible. The time-varying nature of the wireless channel, however,
constrains the largest value Nc can reasonably take.
We started the discussion in this section by considering a simple channel

model (3.129) that did not vary with time. If the channel is slowly time-
varying (as discussed in Section 2.2.1, this is a reasonable assumption) then
the coherence time Tc is much larger than the delay spread Td (the under-
spread scenario). For underspread channels, the block length of the OFDM
communication scheme Nc can be chosen significantly larger than the multi-
path length L= TdW , but still much smaller than the coherence block length
TcW . Under these conditions, the channel model of linear time invariance
approximates a slowly time-varying channel over the block length Nc, while
keeping the overhead small.
The constraint on the OFDM block length can also be understood in the

frequency domain. A block length of Nc corresponds to an inter-sub-carrier
spacing equal to W/Nc. In a wireless channel, the Doppler spread introduces
uncertainty in the frequency of the received signal; from Table 2.1 we see
that the Doppler spread is inversely proportional to the coherence time of the
channel: Ds = 1/4Tc. For the inter-sub-carrier spacing to be much larger than
the Doppler spread, the OFDM block length Nc should be constrained to be
much smaller than TcW . This is the same constraint as above.
Apart from an underutilization of time due to the presence of the cyclic

prefix, we also mentioned the additional power due to the cyclic prefix.
OFDM schemes that put a zero signal instead of the cyclic prefix have been
proposed to reduce this loss. However, due to the abrupt transition in the
signal, such schemes introduce harmonics that are difficult to filter in the
overall signal. Further, the cyclic prefix can be used for timing and frequency
acquisition in wireless applications, and this capability would be lost if a zero
signal replaced the cyclic prefix.

Frequency diversity
Let us revert to the non-overlapping narrowband channel representation of
the ISI channel in (3.145). The correlation between the channel frequency
coefficients h̃0� � � � � h̃Nc−1 depends on the coherence bandwidth of the chan-
nel. From our discussion in Section 2.3, we have learned that the coherence
bandwidth is inversely proportional to the multipath spread. In particular, we
have from (2.47) that

Wc =
1
2Td

= W

2L
�
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where we use our notation for L as denoting the length of the ISI. Since each
sub-carrier is W/Nc wide, we expect approximately

NcWc

W
= Nc

2L

as the number of neighboring sub-carriers whose channel coefficients are
heavily correlated (Exercise 3.28). One way to exploit the frequency diver-
sity is to consider ideal interleaving across the sub-carriers (analogous
to the time-interleaving done in Section 3.2) and consider the model
of (3.31)

y� = h�x�+w�� �= 1� � � � �L�

The difference is that now � represents the sub-carriers while it is used to
denote time in (3.31). However, with the ideal frequency interleaving assump-
tion we retain the same independent assumption on the channel coefficients.
Thus, the discussion of Section 3.2 on schemes harnessing diversity is directly
applicable here. In particular, an L-fold diversity gain (proportional to the
number of ISI symbols L) can be obtained. Since the communication scheme
is over sub-carriers, the form of diversity is due to the frequency-selective
channel and is termed frequency diversity (as compared to the time diversity
discussed in Section 3.2 which arises due to the time variations of the channel).

Summary 3.3 Communication over frequency-selective
channels

We have studied three approaches to extract frequency diversity in
a frequency-selective channel (with L taps). We summarize their key
attributes and compare their implementational complexity.

1 Single-carrier with ISI equalization
Using maximum likelihood sequence detection (MLSD), full diversity of
L can be achieved for uncoded transmission sent at symbol rate.

MLSD can be performed by the Viterbi algorithm. The complexity is con-
stant per symbol time but grows exponentially with the number of taps L.

The complexity is entirely at the receiver.

2 Direct-sequence spread-spectrum
Information is spread, via a pseudonoise sequence, across a bandwidth
much larger than the data rate. ISI is typically negligible.

The signal received along the L nearly orthogonal diversity paths is
maximal-ratio combined using the Rake receiver. Full diversity is achieved.
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Compared to MLSD, complexity of the Rake receiver is much lower. ISI
is avoided because of the very low spectral efficiency per user, but the
spectrum is typically shared between many interfering users. Complexity
is thus shifted to the problem of interference management.

3 Orthogonal frequency division multiplexing
Information is modulated on non-interfering sub-carriers in the frequency
domain.

The transformation between the time and frequency domains is done by
means of adding/subtracting a cyclic prefix and IDFT/DFT operations.
This incurs an overhead in terms of time and power.

Frequency diversity is attained by coding over independently faded sub-
carriers. This coding problem is identical to that for time diversity.

Complexity is shared between the transmitter and the receiver in perform-
ing the IDFT and DFT operations; the complexity of these operations
is insensitive to the number of taps, scales moderately with the number
of sub-carriers Nc and is very manageable with current implementation
technology.

Complexity of diversity coding across sub-carriers can be traded off with
the amount of diversity desired.

3.5 Impact of channel uncertainty

In the past few sections we assumed perfect channel knowledge so that
coherent combining can be performed at the receiver. In fast varying channels,
it may not be easy to estimate accurately the phases and magnitudes of the
tap gains before they change. In this case, one has to understand the impact of
estimation errors on performance. In some situations, non-coherent detection,
which does not require an estimate of the channel, may be the preferred route.
In Section 3.1.1, we have already come across a simple non-coherent detector
for fading channels without diversity. In this section, we will extend this to
channels with diversity.
When we compared coherent and non-coherent detection for channels with-

out diversity, the difference was seen to be relatively small (cf. Figure 3.2).
An important question is what happens to that difference as the number of
diversity paths L increases. The answer depends on the specific diversity
scenario. We first focus on the situation where channel uncertainty has the
most impact: DS spread-spectrum over channels with frequency diversity.
Once we understand this case, it is easy to extend the insights to other
scenarios.
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3.5.1 Non-coherent detection for DS spread-spectrum

We considered this scenario in Section 3.4.3, except now the receiver has
no knowledge of the channel gains h�. As we saw in Section 3.1.1, no
information can be communicated in the phase of the transmitted signal in
conjunction with non-coherent detection (in particular, antipodal signaling
cannot be used). Instead, we consider binary orthogonal modulation,14 i.e., xA
and xB are orthogonal and 	xA	 = 	xB	.

Recall that the central pseudonoise property of the transmitted sequences
in DS spread-spectrum is that the shifted versions are nearly orthogonal. For
simplicity of analysis, we continue with the assumption that shifted versions
of the transmitted sequence are exactly orthogonal; this holds for both xA and
xB here. We make the further assumption that versions of the two sequences
with different shifts are also orthogonal to each other, i.e., �x���A �∗�x��

′�
B � = 0

for � �= �′ (the so-called zero cross-correlation property). This approximately
holds in many spread-spectrum systems. For example, in the uplink of IS-95,
the transmitted sequence is obtained by multiplying the selected codeword of
an orthogonal code by a (common) pseudonoise ±1 sequence, so that the low
cross-correlation property carries over from the auto-correlation property of
the pseudonoise sequence.
Proceeding as in the analysis of coherent detection, we start with the

channel model in vector form (3.122) and observe that the projection of y
onto the 2L orthogonal vectors �x���A /	xA	�x���B /	xB	�� yields 2L sufficient
statistics:

r
���
A = h�x1+w

���
A � �= 0� � � � �L−1�

r
���
B = h�x2+w

���
B � �= 0� � � � �L−1�

where w
���
A and w

���
B are i.i.d. �� �0�N0�, and

(
x1
x2

)

=






(
	xA	
0

)

ifxAis transmitted�

(
0

	xB	

)

ifxBis transmitted�

(3.146)

This is essentially a generalization of the non-coherent detection problem in
Section 3.1.1 from 1 branch to L branches. Just as in the 1 branch case, a

14 Typically M-ary orthogonal modulation is used. For example, the uplink of IS-95 employs
non-coherent detection of 64-ary orthogonal modulation.
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square-law type detector is the optimal non-coherent detector: decide in favor
of xA if

L−1∑

�=0

�r���A �2 ≥
L−1∑

�=0

�r���B �2� (3.147)

otherwise decide in favor of xB. The performance can be analyzed as in the
1 branch case: the error probability has the same form as in (3.125), but with

 given by


= 1/L ·�b/N0

2+1/L ·�b/N0

� (3.148)

where �b �= 	xA	2. (See Exercise 3.31.) As a basis of comparison, the perfor-
mance of coherent detection of binary orthogonal modulation can be analyzed
as for the antipodal case; it is again given by (3.125) but with 
 given by
(Exercise 3.33):


=
√

1/L ·�b/N0

2+1/L ·�b/N0

� (3.149)

It is interesting to compare the performance of coherent and non-coherent
detection as a function of the number of diversity branches. This is shown in
Figures 3.23 and 3.24. For L = 1, the gap between the performance of both
schemes is small, but they are bad anyway, as there is a lack of diversity. This
point has already been made in Section 3.1. As L increases, the performance
of coherent combining improves monotonically and approaches the perfor-
mance of an AWGN channel. In contrast, the performance of non-coherent
detection first improves with L but then degrades as L is increased further.

Figure 3.23 Comparison of
error probability under
coherent detection (——) and
non-coherent detection (- - -),
as a function of the number of
taps L. Here �b/N0 = 10 dB.
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Figure 3.24 Comparison of
error probability under
coherent detection (——) and
non-coherent detection (- - -),
as a function of the number of
taps L. Here �b/N0 = 15dB.
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The initial improvement comes from a diversity gain. There is however a
law of diminishing return on the diversity gain. At the same time, when L

becomes too large, the SNR per branch becomes very poor and non-coherent
combining cannot effectively exploit the available diversity. This leads to an
ultimate degradation in performance. In fact, it can be shown that as L→

the error probability approaches 1/2.

3.5.2 Channel estimation

The significant performance difference between coherent and non-coherent
combining when the number of branches is large suggests the importance
of channel knowledge in wideband systems. We assumed perfect channel
knowledge when we analyzed the performance of the coherent Rake receiver,
but in practice, the channel taps have to be estimated and tracked. It is
therefore important to understand the impact of channel measurement errors
on the performance of the coherent combiner. We now turn to the issue of
channel estimation.
In data detection, the transmitted sequence is one of several possible

sequences (representing the data symbol). In channel estimation, the trans-
mitted sequence is assumed to be known at the receiver. In a pilot-based
scheme, a known sequence (called a pilot, sounding tone, or training sequence)
is transmitted and this is used to estimate the channel.15 In a decision-
feedback scheme, the previously detected symbols are used instead to update
the channel estimates. If we assume that the detection is error free, then
the development below applies to both pilot-based and decision-directed
schemes.

15 The downlink of IS-95 uses a pilot, which is assigned its own pseudonoise sequence and
transmitted superimposed on the data.
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Focus on one symbol duration, and suppose the transmitted sequence is a
known pseudonoise sequence u. We return to the channel model in vector
form (cf. (3.122))

y=
L−1∑

�=0

h�u
���+w� (3.150)

We see that since the shifted versions of u are orthogonal to each other
and the taps are assumed to be independent of each other, projecting y
onto u���/	u���	 will yield a sufficient statistic to estimate h� (see
Summary A.3)

r��� �= �u����∗y= h�	u���	+w��� =√
�h�+w���� (3.151)

where � �= 	u���	2. This is implemented by filtering the received signal by a
filter matched to u and sampling at the appropriate chip time. This operation
is the same as the first stage of the Rake receiver, and the channel estimator
can in fact be combined with the Rake receiver if done in a decision-directed
mode. (See Figure 3.19.)
Typically, channel estimation is obtained by averaging K such measure-

ments over a coherence time period in which the channel is constant:

r
���
k �=√

�h�+w
���
k � k= 1� � � � �K� (3.152)

Assuming that h� ∼ �� �0�1/L�, the minimum mean square estimate of h�

given these measurements is (cf. (A.84) in Summary A.3)

ĥ� =
√
�

K�+LN0

K∑

k=1

r
���
k � (3.153)

The mean square error associated with this estimate is (cf. (A.85) in
Summary A.3)

1
L
· 1
1+K�/�LN0�

� (3.154)

the same for all branches.
The key parameter affecting the estimation error is

SNRest �=
K�

LN0

� (3.155)

When SNRest � 1, the mean square estimation error is much smaller than the
variance of h� (equal to 1/L) and the impact of the channel estimation error
on the performance of the coherent Rake receiver is not significant; perfect
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channel knowledge is a reasonable assumption in this regime. On the other
hand, when SNRest � 1, the mean square error is close to 1/L, the variance
of h�. In this regime, we hardly have any information about the channel
gains and the performance of the coherent combiner cannot be expected to be
better than the non-coherent combiner, which we know has poor performance
whenever L is large.
How should we interpret the parameter SNRest? Since the channel is constant

over the coherence time Tc, we can interpret K� as the total received energy
over the channel coherence time Tc. We can rewrite SNRest as

SNRest =
PTc

LN0

(3.156)

where P is the received power of the signal from which channel measurements
are obtained. Hence, SNRest can be interpreted as the signal-to-noise ratio
available to estimate the channel per coherence time per tap. Thus, channel
uncertainty has a significant impact on the performance of the Rake receiver
whenever this quantity is significantly below 0 dB.
If the measurements are done in a decision-feedback mode, P is the received

power of the data stream itself. If the measurements are done from a pilot,
then P is the received power of the pilot. On the downlink of a CDMA
system, one can have a pilot common to all users, and the power allocated to
the pilot can be larger than the power of the signals for the individual users.
This results in a larger SNRest, and thus makes coherent combining easier.
On the uplink, however, it is not possible to have a common pilot, and the
channel estimation will have to be done with a weaker pilot allotted to the
individual user. With a lower received power from the individual users, SNRest
can be considerably smaller.

3.5.3 Other diversity scenarios

There are two reasons why wideband DS spread-spectrum systems are
significantly impacted by channel uncertainty:

• the amount of energy per resolvable path decreases inversely with increas-
ing number of paths, making their gains harder to estimate when there are
many paths;

• the number of diversity paths depends both on the bandwidth and the delay
spread and, given these parameters, the designer has no control over this
number.

What about in other diversity scenarios?
In antenna diversity with L receive antennas, the received energy per

antenna is the same regardless of the number of antennas, so the channel
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measurement problem is the same as with a single receive antenna and does
not become harder. The situation is similar in the time diversity scenario. In
antenna diversity with L transmit antennas, the received energy per diversity
path does decrease with the number of antennas used, but certainly we can
restrict the number L to be the number of different channels that can be
reliably learnt by the receiver.
How about in OFDM systems with frequency diversity? Here, the designer

has control over how many sub-carriers to spread the signal energy over.
Thus, while the number of available diversity branches L may increase with
the bandwidth, the signal energy can be restricted to a fixed number of sub-
carriers L′ <L over any one OFDM time block. Such communication can be
restricted to concentrated time-frequency blocks and Figure 3.25 visualizes
one such scheme (for L′ = 2), where the choice of the L′ sub-carriers is
different for different OFDM blocks and is hopped over the entire bandwidth.
Since the energy in each OFDM block is concentrated within a fixed number
of sub-carriers at any one time, coherent reception is possible. On the other
hand, the maximum diversity gain of L can still be achieved by coding
across the sub-carriers within one OFDM block as well as across different
blocks.
One possible drawback is that since the total power is only concentrated

within a subset of sub-carriers, the total degrees of freedom available in the
system are not utilized. This is certainly the case in the context of point-to-
point communication; in a system with other users sharing the same band-
width, however, the other degrees of freedom can be utilized by the other
users and need not go wasted. In fact, one key advantage of OFDM over DS
spread-spectrum is the ability to maintain orthogonality across multiple users
in a multiple access scenario. We will return to this point in Chapter 4.

Figure 3.25 An illustration of a
scheme that uses only a fixed
part of the bandwidth at every
time. Here, one small square
denotes a single sub-carrier
within one OFDM block. The
time-axis indexes the different
OFDM blocks; the
frequency-axis indexes the
different sub-carriers. Time
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Chapter 3 The main plot

Baseline
We first looked at detection on a narrowband slow fading Rayleigh channel.
Under both coherent and non-coherent detection, the error probability
behaves like

pe ≈ SNR−1 (3.157)

at high SNR. In contrast, the error probability decreases exponentially with
the SNR in the AWGN channel. The typical error event for the fading
channel is due to the channel being in deep fade rather than the Gaussian
noise being large.

Diversity
Diversity was presented as an effective approach to improve performance
drastically by providing redundancy across independently faded branches.
Three modes of diversity were considered:
• time – the interleaving of coded symbols over different coherence time
periods;

• space – the use of multiple transmit and/or receive antennas;
• frequency – the use of a bandwidth greater than the coherence bandwidth
of the channel.

In all cases, a simple scheme that repeats the information symbol across the
multiple branches achieves full diversity. With L i.i.d. Rayleigh branches
of diversity, the error probability behaves like

pe ≈ c · SNR−L (3.158)

at high SNR.

Examples of repetition schemes:
• repeating the same symbol over different coherence periods;
• repeating the same symbol over different transmit antennas one at a
time;

• repeating the same symbol across OFDM sub-carriers in different coher-
ence bands;

• transmitting a symbol once every delay spread in a frequency-selective
channel so that multiple delayed replicas of the symbol are received
without interference.

Code design and degrees of freedom
More sophisticated schemes cannot achieve higher diversity gain but can
provide a coding gain by improving the constant c in (3.158). This is
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achieved by utilizing the available degrees of freedom better than in the
repetition schemes.

Examples:
• rotation and permutation codes for time diversity and for frequency
diversity in OFDM;

• Alamouti scheme for transmit diversity;
• uncoded transmission at symbol rate in a frequency-selective channel
with ISI equalization.

Criteria to design schemes with good coding gain were derived for the
different scenarios by using the union bound (based on pairwise error
probabilities) on the actual error probability:
• product distance between codewords for time diversity;
• determinant criterion for space-time codes.

Channel uncertainty
The impact of channel uncertainty is significant in scenarios where there
are many diversity branches but only a small fraction of signal energy is
received along each branch. Direct-sequence spread-spectrum is a prime
example.

The gap between coherent and non-coherent schemes is very significant
in this regime. Non-coherent schemes do not work well as they cannot
combine the signals along each branch effectively.

Accurate channel estimation is crucial. Given the amount of transmit
power devoted to channel estimation, the efficacy of detection performance
depends on the key parameter SNRest, the received SNR per coherence time
per diversity branch. If SNRest � 0dB, then detection performance is near
coherent. If SNRest � 0dB, then effective combining is impossible.

Impact of channel uncertainty can be ameliorated in some schemes where
the transmit energy can be focused on smaller number of diversity branches.
Effectively SNRest is increased. OFDM is an example.

3.6 Bibliographical notes

Reliable communication over fading channels has been studied since the 1960s.
Improving the performance via diversity is also an old topic. Standard digital commu-
nication texts contain many formulas for the performance of coherent and non-coherent
diversity combiners, which we have used liberally in this chapter (see Chapter 14 of
Proakis [96], for example).

Early works recognizing the importance of the product distance criterion for improv-
ing the coding gain under Rayleigh fading are Wilson and Leung [144] and Divsalar
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and Simon [30], in the context of trellis-coded modulation. The rotation example is
taken from Boutros and Viterbo [13]. Transmit antenna diversity was studied exten-
sively in the late 1990s code design criteria were derived by Tarokh et al. [115] and
by Guey et al. [55]; in particular, the determinant criterion is obtained in Tarokh et al.
[115]. The delay diversity scheme was introduced by Seshadri and Winters [107].
The Alamouti scheme was introduced by Alamouti [3] and generalized to orthog-
onal designs by Tarokh et al. [117]. The diversity analysis of the decorrelator was
performed by Winters et al. [145], in the context of a space-division multiple access
system with multiple receive antennas.

The topic of equalization has been studied extensively and is covered comprehen-
sively in standard textbooks on communication theory; for example, see the book by
Barry et al. [4]. The Viterbi algorithm was introduced in [139]. The diversity analysis
of MLSD is adopted from Grokop and Tse [54].

The OFDM approach to communicate over a wideband channel was first used in mil-
itary systems in the 1950s and discussed in early papers in the 1960s by Chang [18] and
Saltzberg [104].Circular convolution and the DFT are classical undergraduate material
in digital signal processing (Chapter 8, and Section 8.7.5, in particular, of [87]).

The spread-spectrum approach to harness frequency diversity has been well sum-
marized by Viterbi [140]. The Rake receiver was designed by Price and Green [95].
The impact of channel uncertainty on the performance has been studied by various
authors, including Médard and Gallager [85], Telatar and Tse [120] and Subramanian
and Hajek [113].

3.7 Exercises

Exercise 3.1 Verify (3.19) and the high SNR approximation (3.21). Hint: Write the
expression as a double integral and interchange the order of integration.

Exercise 3.2 In Section 3.1.2 we studied the performance of antipodal signaling under
coherent detection over a Rayleigh fading channel. In particular, we saw that the error
probability pe decreases like 1/SNR. In this question, we study a deeper characterization
of the behavior of pe with increasing SNR.
1. A precise way of saying that pe decays like 1/SNR with increasing SNR is the

following:

lim
SNR→


pe · SNR= c�

where c is a constant. Identify the value of c for the Rayleigh fading channel.
2. Now we want to test how robust the above result is with respect to the fading

distribution. Let h be the channel gain, and suppose �h�2 has an arbitrary continuous
pdf f satisfying f�0� > 0. Does this give enough information to compute the high
SNR error probability like in the previous part? If so, compute it. If not, specify
what other information you need. Hint: You may need to interchange limit and
integration in your calculations. You can assume that this can be done without
worrying about making your argument rigorous.

3. Suppose now we have L independent branches of diversity with gains h1� � � � � hL,
and �h��2 having an arbitrary distribution as in the previous part. Is there enough
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information for you to find the high SNR performance of repetition coding and
coherent combining? If so, compute it. If not, what other information do you need?

4. Using the result in the previous part or otherwise, compute the high SNR perfor-
mance under Rician fading. How does the parameter � affect the performance?

Exercise 3.3 This exercise shows how the high SNR slope of the probability of error
(3.19) versus SNR curve can be obtained using a typical error event analysis, without
the need for directly carrying out the integration.

Fix 
 > 0 and define the 
-typical error events �
 and �−
, where

�
 �= �h � �h�2 < 1/SNR1−
�� (3.159)

1. By conditioning on the event �
, show that at high SNR

lim
SNR→


logpe

log SNR
≤−�1− 
�� (3.160)

2. By conditioning on the event �−
, show that

lim
SNR→


logpe

log SNR
≥−�1+ 
�� (3.161)

3. Hence conclude that

lim
SNR→


logpe

log SNR
=−1� (3.162)

This says that the asymptotic slope of the error probability versus SNR plot
(in dB/dB scale) is −1.

Exercise 3.4 In Section 3.1.2, we saw that there is a 4-dB energy loss when using
4-PAM on only the I channel rather than using QPSK on both the I and the Q channels,
although both modulations convey two bits of information. Compute the corresponding
loss when one wants to transmit k bits of information using 2k-PAM rather than
2k-QAM. You can assume k to be even. How does the loss depend on k?

Exercise 3.5 Consider the use of the differential BPSK scheme proposed in
Section 3.1.3 for the Rayleigh flat fading channel.
1. Find a natural non-coherent scheme to detect u�m� based on y�m− 1� and y�m�,

assuming the channel is constant across the two symbol times. Your scheme does
not have to be the ML detector.

2. Analyze the performance of your detector at high SNR. You may need to make
some approximations. How does the high SNR performance of your detector
compare to that of the coherent detector?

3. Repeat your analysis for differential QPSK.

Exercise 3.6 In this exercise we further study coherent detection in Rayleigh fading.
1. Verify Eq. (3.37).
2. Analyze the error probability performance of coherent detection of binary orthogo-

nal signaling with L branches of diversity, under an i.i.d. Rayleigh fading assump-
tion (i.e., verify Eq. (3.149)).
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Exercise 3.7 In this exercise, we study the performance of the rotated code in
Section 3.2.2.
1. Give an explicit expression for the exact pairwise error probability ��xA → xB� in

(3.49). Hint: The techniques from Exercise 3.1 will be useful here.
2. This pairwise error probability was upper bounded in (3.54). Show that the product

of SNR and the difference between the upper bound and the actual pairwise error
probability goes to zero with increasing SNR. In other words, the upper bound in
(3.54) is tight up to the leading term in 1/SNR.

Exercise 3.8 In the text, we mainly use real symbols to simplify the notation. In
practice, complex constellations are used (i.e., symbols are sent along both the I and
Q components). The simplest complex constellation is QPSK: the constellation is
�a�1+ j�� a�1− j�� a�−1− j�� a�−1+ j��.
1. Compute the error probability of QPSK detection for a Rayleigh fading channel

with repetition coding over L branches of diversity. How does the performance
compare to a scheme which uses only real symbols?

2. In Section 3.2.2, we developed a diversity scheme based on rotation of real symbols
(thus using only the I channel). One can develop an analogous scheme for QPSK
complex symbols, using a 2×2 complex unitary matrix instead. Find an analogous
pairwise code-design criterion as in the real case.

3. Real orthonormal matrices are special cases of complex unitary matrices. Within
the class of real orthonormal matrices, find the optimal rotation to maximize your
criterion.

4. Find the optimal unitary matrix to maximize your criterion. (This may be difficult!)

Exercise 3.9 In Section 3.2.2, we rotate two BPSK symbols to demonstrate the possible
improvement over repetition coding in a time diversity channel with two diversity
paths. Continuing with the same model, now consider transmitting at a higher rate
using a 2n-PAM constellation for each symbol. Consider rotating the resulting 2D
constellation by a rotation matrix of the form in (3.46). Using the performance criterion
of the minimum squared product distance, construct the optimal rotation matrix.

Exercise 3.10 In Section 3.2.2, we looked at the example of the rotation code to
achieve time diversity (with the number of branches, L, equal to 2). In the text, we use
real symbols and in Exercise 3.8 we extend to complex symbols. In the latter scenario,
another coding scheme is the permutation code. Shown in Figure 3.26 are two 16-
QAM constellations. Each codeword in the permutation code for L = 2 is obtained
by picking a pair of points, one from each constellation, which are represented by the
same icon. The codeword is transmitted over two (complex) symbol times.
1. Why do you think this is called a permutation code?
2. What is the data rate of this code?
3. Compute the diversity gain and the minimum product distance for this code.
4. How does the performance of this code compare to the rotation code in Exercise 3.8,

part (3), in terms of the transmit power required?

Exercise 3.11 In the text, we considered the use of rotation codes to obtain time
diversity. Rotation codes are designed specifically for fading channels. Alternatively,
one can use standard AWGN codes like binary linear block codes. This question looks
at the diversity performance of such codes.
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Figure 3.26 A permutation
code.
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Consider a perfectly interleaved Rayleigh fading channel:

y� = h�x�+w�� �= 1� � � � �L

where h� and w� are i.i.d. �� �0�1� and �� �0�N0� random variables respectively.
A �L�k� binary linear block code is specified by a k by L generator matrix G whose
entries are 0 or 1. k information bits form a k-dimensional binary-valued vector b
which is mapped into the binary codeword c=Gtb of length L, which is then mapped
into L BPSK symbols and transmitted over the fading channel.16 The receiver is
assumed to have a perfect estimate of the channel gains h�.
1. Compute a bound on the error probability of ML decoding in terms of the SNR

and parameters of the code. Hence, compute the diversity gain in terms of code
parameter(s).

2. Use your result in (1) to compute the diversity gain of the (3, 2) code with generator
matrix:

G=
[
1 0 1
0 1 1

]

� (3.163)

How does the performance of this code compare to the rate 1/2 repetition code?
3. The ML decoding is also called soft decision decoding as it takes the entire

received vector y and finds the transmitted codeword closest in Euclidean distance
to it. Alternatively, a suboptimal but lower-complexity decoder uses hard decision
decoding, which for each � first makes a hard decision ĉ� on the �th transmitted
coded symbol based only on the corresponding received symbol y�, and then finds
the codeword that is closest in Hamming distance to ĉ. Compute the diversity gain
of this scheme in terms of basic parameters of the code. How does it compare to
the diversity gain achieved by soft decision decoding? Compute the diversity gain
of the code in part (2) under hard decision decoding.

4. Suppose now you still do hard decision decoding except that you are allowed to
also declare an “erasure” on some of the transmitted symbols (i.e., you can refuse
to make a hard decision on some of the symbols). Can you design a scheme that

16 Addition and multiplication are done in the binary field.
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yields a better diversity gain than the scheme in part (3)? Can you do as well as
soft decision decoding? Justify your answers. Try your scheme out on the example
in part (2). Hint: the trick is to figure out when to declare an erasure. You may
want to start thinking of the problems in terms of the example in part (2). The
typical error event view in Exercise 3.3 may also be useful here.

Exercise 3.12 In our study of diversity models (cf. (3.31)), we have modeled the
L branches to have independent fading coefficients. Here we explore the impact of
correlation between the L diversity branches. In the time diversity scenario, consider
the correlated model: h1� � � � � hL are jointly circular symmetric complex Gaussian
with zero mean and covariance Kh (�� �0�Kh� in our notation).
1. Redo the diversity calculations for repetition coding (Section 3.2.1) for this cor-

related channel model by calculating the rate of decay of error probability with
SNR. What is the dependence of the asymptotic (in SNR) behavior of the typical
error event on the correlation Kh? You can answer this by characterizing the rate
of decay of (3.42) at high SNR (as a function of Kh).

2. We arrived at the product distance code design criterion to harvest coding gain
along with time diversity in Section 3.2.2. What is the analogous criterion for
correlated channels? Hint: Jointly complex Gaussian random vectors are related
to i.i.d. complex Gaussian vectors via a linear transformation that depends on the
covariance matrix.

3. For transmit diversity with independent fading across the transmit antennas,
we have arrived at the generalized product distance code design criterion in
Section 3.3.2. Calculate the code design criterion for the correlated fading channel
here (the channel h in (3.80) is now �� �0�Kh�).

Exercise 3.13 The optimal coherent receiver for repetition coding with L branches of
diversity is a maximal ratio combiner. For implementation reasons, a simpler receiver
one often builds is a selection combiner. It does detection based on the received signal
along the branch with the strongest gain only, and ignores the rest. For the i.i.d.
Rayleigh fading model, analyze the high SNR performance of this scheme. How much
of the inherent diversity gain can this scheme get? Quantify the performance loss from
optimal combining. Hint: You may find the techniques developed in Exercise 3.2
useful for this problem.

Exercise 3.14 It is suggested that full diversity gain can be achieved over a Rayleigh
faded MISO channel by simply transmitting the same symbol at each of the transmit
antennas simultaneously. Is this correct?

Exercise 3.15 An L×1 MISO channel can be converted into a time diversity channel
with L diversity branches by simply transmitting over one antenna at a time.
1. In this way, any code designed for a time diversity channel with L diversity branches

can be used for a MISO (multiple input single output) channel with L transmit
antennas. If the code achieves k-fold diversity in the time diversity channel, how
much diversity can it obtain in the MISO channel? What is the relationship between
the minimum product distance metric of the code when viewed as a time diversity
code and its minimum determinant metric when viewed as a transmit diversity
code?
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2. Using this transformation, the rotation code can be used as a transmit diversity
scheme. Compare the performance of this code and the Alamouti scheme in a 2×1
Rayleigh fading channel, using BPSK symbols. Which one is better? How about
using QPSK symbols?

3. Use the permutation code (cf. Figure 3.26) from Exercise 3.10 on the 2×1 Rayleigh
fading channel and compare (via a numerical simulation) its performance with
the Alamouti scheme using QPSK symbols (so the rate is the same in both the
schemes).

Exercise 3.16 In this exercise, we derive some properties a code construction must
satisfy to mimic the Alamouti scheme behavior for more than two transmit anten-
nas. Consider communication over n time slots on the L transmit antenna channel
(cf. (3.80)):

yt = h∗X+wt� (3.164)

Here X is the L×n space-time code. Over n time slots, we want to communicate L

independent constellation symbols, d1� � � � � dL; the space-time code X is a determin-
istic function of these symbols.
1. Consider the following property for every channel realization h and space-time

codeword X

�h∗X�t = Ad� (3.165)

Here we have written d = �d1� � � � � dL�
t and A = �a1� � � � �aL�, a matrix with

orthogonal columns. The vector d depends solely on the codeword X and the
matrix A depends solely on the channel h. Show that, if the space-time codeword
X satisfies the property in (3.165), the joint receiver to detect d separates into
individual linear receivers, each separately detecting d1� � � � � dL.

2. We would like the effective channel (after the linear receiver) to provide each
symbol dm (m= 1� � � � �L) with full diversity. Show that, if we impose the condition
that

	am	 = 	h	� m= 1� � � � L� (3.166)

then each data symbol dm has full diversity.
3. Show that a space-time code X satisfying (3.165) (the linear receiver property) and

(3.166) (the full diversity property) must be of the form

XX∗ = 	d	2IL� (3.167)

i.e., the columns of X must be orthogonal. Such an X is called an orthogonal
design. Indeed, we observe that the codeword X in the Alamouti scheme (cf. (3.77))
is an orthogonal design with L= n= 2.

Exercise 3.17 This exercise is a sequel to Exercise 3.16. It turns out that if we
require n= L, then for L > 2 there are no orthogonal designs. (This result is proved
in Theorem 5.4.2 in [117].) If we settle for n > L then orthogonal designs exist for
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L > 2. In particular, Theorem 5.5.2 of [117] constructs orthogonal designs for all
L and n ≥ 2L. This does not preclude the existence of orthogonal designs with rate
larger than 0.5. A reading exercise is to study [117] where orthogonal designs with
rate larger than 0.5 are constructed.

Exercise 3.18 The pairwise error probability analysis for the i.i.d. Rayleigh fading
channel has led us to the product distance (for time diversity) and generalized product
distance (for transmit diversity) code design criteria. Extend this analysis for the i.i.d.
Rician fading channel.
1. Does the diversity order change for repetition coding over a time diversity channel

with the L branches i.i.d. Rician distributed?
2. What is the new code design criterion, analogous to product distance, based on the

pairwise error probability analysis?

Exercise 3.19 In this exercise we study the performance of space-time codes (the
subject of Section 3.3.2) in the presence of multiple receive antennas.
1. Derive, as an extension of (3.83), the pairwise error probability for space-time

codes with nr receive antennas.
2. Assuming that the channel matrix has i.i.d. Rayleigh components, derive, as an

extension of (3.86), a simple upper bound for the pairwise error probability.
3. Conclude that the code design criterion remains unchanged with multiple receive

antennas.

Exercise 3.20 We have studied the performance of the Alamouti scheme in a channel
with two transmit and one receive antenna. Suppose now we have an additional receive
antenna. Derive the ML detector for the symbols based on the received signals at both
receive antennas. Show that the scheme effectively provides two independent scalar
channels. What is the gain of each of the channels?

Exercise 3.21 In this exercise we study some expressions for error probabilities that
arise in Section 3.3.3.
1. Verify Eqs. (3.93) and (3.94). In which SNR range is (3.93) smaller than (3.94)?
2. Repeat the derivation of (3.93) and (3.94) for a general target rate of R bits/s/Hz

(suppose that R is an integer). How does the SNR range in which the spatial
multiplexing scheme performs better depend on R?

Exercise 3.22 In Section 3.3.3, the performance comparison between the spatial
multiplexing scheme and the Alamouti scheme is done for PAM symbols. Extend the
comparison to QAM symbols with the target data rate R bits/s/Hz (suppose that R≥ 4
is an even integer).

Exercise 3.23 In the text, we have developed code design criteria for pure time
diversity and pure spatial diversity scenarios. In some wireless systems, one can get
both time and spatial diversity simultaneously, and we want to develop a code design
criterion for that. More specifically, consider a channel with L transmit antennas and
1 receive antenna. The channel remains constant over blocks of k symbol times, but
changes to an independent realization every k symbols (as a result of interleaving,
say). The channel is assumed to be independent across antennas. All channel gains
are Rayleigh distributed.
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1. What is the maximal diversity gain that can be achieved by coding over n

such blocks?
2. Develop a pairwise code design criterion over this channel. Show how this criterion

reduces to the special cases we have derived for pure time and pure spatial diversity.

Exercise 3.24 A mobile having a single receive antenna sees a Rayleigh flat fading
channel

y�m�= h�m�x�m�+w�m��

where w�m� ∼ �� �0�N0� and i.i.d. and �h�m�� is a complex circular symmetric
stationary Gaussian process with a given correlation function R�m� which is mono-
tonically decreasing with m. (Recall that R�m� is defined to be ��h�0�h�m�∗�.)
1. Suppose now we want to put an extra antenna on the mobile at a separation d.

Can you determine, from the information given so far, the joint distribution of the
fading gains the two antennas see at a particular symbol time? If so, compute it. If
not, specify any additional information you have to assume and then compute it.

2. We transmit uncoded BPSK symbols from the base-station to the mobile with dual
antennas. Give an expression for the average error probability for the ML detector.

3. Give a back-of-the-envelope approximation to the high SNR error probability, mak-
ing explicit the effect of the correlation of the channel gains across antennas. What
is the diversity gain from having two antennas in the correlated case? How does the
error probability compare to the case when the fading gains are assumed to be inde-
pendent across antennas? What is the effect of increasing the antenna separation d?

Exercise 3.25 Show that full diversity can still be obtained with the maximum likeli-
hood sequence equalizer in Section 3.4.2 even when the channel taps h� have different
variances (but are still independent). You can use a heuristic argument based on typical
error analysis.

Exercise 3.26 Consider the maximum likelihood sequence detection described in
Section 3.4.2. We computed the achieved diversity gain but did not compute an explicit
bound on the error probability on detecting each of the symbol x�m�. Below you can
assume that BPSK modulation is used for the symbols.
1. SupposeN =L. Find a boundon the error probability of theMLSD incorrectly detect-

ingx�0�.Hint: finding theworst-case pairwise error probability does not requiremuch
calculation, but you should be a little careful in applying the union bound.

2. Use your result to estimate the coding gain over the scheme that completely avoids
ISI by sending a symbol every L symbol times. How does the coding gain depend
on L?

3. Extend your analysis to general block length N ≥ L and the detection of x�m� for
m≤ N −L.

Exercise 3.27 Consider the equalization problem described in Section 3.4.2. We
studied the performance of MLSD. In this exercise, we will look at the performance
of a linear equalizer. For simplicity, suppose N = L= 2.
1. Over the two symbol times (time 0 and time 1), one can think of the ISI channel as

a 2×2 MIMO channel between the input and output symbols. Identify the channel
matrix H.

2. The MIMO point of view suggests using, as an alternative to MLSD, the zero-
forcing (decorrelating) receiver to detect x�0� based on completely inverting the
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channel. How much diversity gain can this equalizer achieve? How does it compare
to the performance of MLSD?

Exercise 3.28 ConsideramultipathchannelwithL i.i.d.Rayleighfaded taps.Let h̃n be the
complexgain of thenth carrier in theOFDMmodulation at a particular time.Compute the
joint statistics of the gains and lend evidence to the statement that the gains of the carriers
separated by more than the coherence bandwidths are approximately independent.

Exercise 3.29 Argue that for typical wireless channels, the delay spread is much less
than the coherence time. What are the implications of this observation on: (1) an
OFDM system; (2) a direct-sequence spread-spectrum system with Rake combining?
(There may be multiple implications in each case.)

Exercise 3.30 Communication takes place at passband over a bandwidth W around
a carrier frequency of fc. Suppose the baseband equivalent discrete-time model has
a finite number of taps. We use OFDM modulation. Let h̃n�i� be the complex gain
for the nth carrier and the ith OFDM symbol. We typically assume there are a large
number of reflectors so that the tap gains of the discrete-time model can be modeled as
Gaussian distributed, but suppose we do not make this assumption here. Only relying
on natural assumptions on fc and W , argue the following. State your assumptions on
fc and W and make your argument as clear as possible.
1. At a fixed symbol time i, the h̃n�i� are identically distributed across the carriers.
2. More generally, the processes �h̃n�i��n have the same statistics for different n.

Exercise 3.31 Show that the square-law combiner (given by (3.147)) is the optimal
non-coherent ML detector for a channel with i.i.d. Rayleigh faded branches, and
analyze the non-coherent error probability performance (i.e., verify (3.148)).

Exercise 3.32 Consider the problem of Rake combining under channel measurement
uncertainty, discussed in Section 3.4.3. Assume a channel with L i.i.d. Rayleigh faded
branches. Suppose the channel estimation is as given in Eqs. (3.152) and (3.153).
We communicate using binary orthogonal signaling. The receive is coherent with the
channel estimates used in place of the true channel gains h�. It is not easy to compute
explicitly the error probability of this detector, but through either an approximate
analysis, numerical computation or simulation, get an idea of its performance as a
function of L. In particular, give evidence supporting the intuitive statement that, when
L� K�/N0, the performance of this detector is very poor.

Exercise 3.33 We have studied coherent performance of antipodal signaling of the
Rake receiver in Section 3.4.3. Now consider binary orthogonal modulation: we either
transmit xA or xB, which are both orthogonal and their shifts are also orthogonal with
each other. Calculate the error probability with the coherent Rake (i.e., verify (3.149)).


