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MIMO III: diversity-multiplexing
tradeoff and universal space-time
codes

In the previous chapter, we analyzed the performance benefits of MIMO
communication and discussed architectures that are designed to reap those
benefits. The focus was on the fast fading scenario. The story on slow fading
MIMO channels is more complex. While the communication capability of
a fast fading channel can be described by a single number, its capacity, that
of a slow fading channel has to be described by the outage probability curve
Pou(+), as a function of the target rate. This curve is in essence a tradeoff
between the data rate and error probability. Moreover, in addition to the
power and degree-of-freedom gains in the fast fading scenario, multiple
antennas provide a diversity gain in the slow fading scenario as well. A clear
characterization of the performance benefits of multiple antennas in slow
fading channels and the design of good space-time coding schemes that reap
those benefits are the subjects of this chapter.

The outage probability curve p,,(+) is the natural benchmark for evaluating
the performance of space-time codes. However, it is difficult to characterize
analytically the outage probability curves for MIMO channels. We develop
an approximation that captures the dual benefits of MIMO communication
in the high SNR regime: increased data rate (via an increase in the spatial
degrees of freedom or, equivalently, the multiplexing gain) and increased
reliability (via an increase in the diversity gain). The dual benefits are captured
as a fundamental tradeoff between these two types of gains.! We use the
optimal diversity—multiplexing tradeoff as a benchmark to compare the various
space-time schemes discussed previously in the book. The tradeoff curve also
suggests how optimal space-time coding schemes should look. A powerful
idea for the design of tradeoff-optimal schemes is universality, which we
discuss in the second part of the chapter.

We have studied an approach to space-time code design in Chapter 3. Codes
designed using that approach have small error probabilities, averaged over

! The careful reader will note that we saw an inkling of the tension between these two types of
gains in our study of the 2 x 2 MIMO Rayleigh fading channel in Chapter 3.
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the distribution of the fading channel gains. The drawback of the approach
is that the performance of the designed codes may be sensitive to the sup-
posed fading distribution. This is problematic, since, as we mentioned in
Chapter 2, accurate statistical modeling of wireless channels is difficult.
The outage formulation, however, suggests a different approach. The oper-
ational interpretation of the outage performance is based on the existence
of universal codes: codes that simultaneously achieve reliable communica-
tion over every MIMO channel that is not in outage. Such codes are robust
from an engineering point of view: they achieve the best possible outage
performance for every fading distribution. This result motivates a universal
code design criterion: instead of using the pairwise error probability aver-
aged over the fading distribution of the channel, we consider the worst-case
pairwise error probability over all channels that are not in outage. Somewhat
surprisingly, the universal code-design criterion is closely related to the prod-
uct distance, which is obtained by averaging over the Rayleigh distribution.
Thus, the product distance criterion, while seemingly tailored for the Rayleigh
distribution, is actually more fundamental. Using universal code design
ideas, we construct codes that achieve the optimal diversity—multiplexing
tradeoff.

Throughout this chapter, the receiver is assumed to have perfect knowledge
of the channel matrix while the transmitter has none.

9.1 Diversity-multiplexing tradeoff

9.1.1 Formulation

In this section, we use the outage formulation to characterize the performance
capability of slow fading MIMO channels in terms of a tradeoff between
diversity and multiplexing gains. This tradeoff is then used as a unified
framework to compare the various space-time coding schemes described in
this book.

When we analyzed the performance of communication schemes in the slow
fading scenario in Chapters 3 and 5, the emphasis was on the diversity
gain. In this light, a key measure of the performance capability of a slow
fading channel is the maximum diversity gain that can be extracted from it.
For example, a slow i.i.d. Rayleigh faded MIMO channel with n, transmit
and n, receive antennas has a maximum diversity gain of n,-n,: i.e., for a
fixed target rate R, the outage probability p,,(R) decays like 1/SNR™™ at
high SNR.

On the other hand, we know from Chapter 7 that the key performance
benefit of a fast fading MIMO channel is the spatial multiplexing capabil-
ity it provides through the additional degrees of freedom. For example, the
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capacity of an i.i.d. Rayleigh fading channel scales like n
n

min 102 SNR, where
min -= min(n,, n,) is the number of spatial degrees of freedom in the chan-
nel. This fast fading (ergodic) capacity is achieved by averaging over the
variation of the channel over time. In the slow fading scenario, no such aver-
aging is possible and one cannot communicate at this rate reliably. Instead,
the information rate allowed through the channel is a random variable fluc-
tuating around the fast fading capacity. Nevertheless, one would still expect
to be able to benefit from the increased degrees of freedom even in the
slow fading scenario. Yet the maximum diversity gain provides no such
indication; for example, both an n, x n, channel and an nn, x 1 channel
have the same maximum diversity gain and yet one would expect the for-
mer to allow better spatial multiplexing than the latter. One needs something
more than the maximum diversity gain to capture the spatial multiplexing
benefit.

Observe that to achieve the maximum diversity gain, one needs to com-
municate at a fixed rate R, which becomes vanishingly small compared to
the fast fading capacity at high SNR (which grows like n,;, log SNR). Thus,
one is actually sacrificing all the spatial multiplexing benefit of the MIMO
channel to maximize the reliability. To reclaim some of that benefit, one
would instead want to communicate at a rate R = r log SNR, which is a fraction
of the fast fading capacity. Thus, it makes sense to formulate the following
diversity—multiplexing tradeoff for a slow fading channel.

A diversity gain d*(r) is achieved at multiplexing gain r if
R = rlogSNR 9.1)
and
Pou(R) = SNR™, (92)

or more precisely,

log o, (rlogSNR)
glim log SR = —d"(r). 9.3)

The curve d*(-) is the diversity—-multiplexing tradeoff of the slow fading
channel.

The above tradeoff characterizes the slow fading performance limit of the
channel. Similarly, we can formulate a diversity—multiplexing tradeoff for
any space-time coding scheme, with outage probabilities replaced by error
probabilities.
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A space-time coding scheme is a family of codes, indexed by the signal-
to-noise ratio SNR. It attains a multiplexing gain » and a diversity gain d
if the data rate scales as

R = rlog SNR (9.4)

and the error probability scales as

D SNR™, 9.5)
1.e.,
log p, J 9.6)
m ———— =—d. .
SNR—o0 log SNR

The diversity—multiplexing tradeoff formulation may seem abstract at first
sight. We will now go through a few examples to develop a more concrete
feel. The tradeoff performance of specific coding schemes will be analyzed
and we will see how they perform compared to each other and to the opti-
mal diversity—multiplexing tradeoff of the channel. For concreteness, we use
the i.i.d. Rayleigh fading model. In Section 9.2, we will describe a general
approach to tradeoff-optimal space-time code based on universal coding ideas.

9.1.2 Scalar Rayleigh channel

PAM and QAM

Consider the scalar slow fading Rayleigh channel,

y[m] = hx[m] + w[m], (9.7)

with the additive noise i.i.d. €N (0, 1) and the power constraint equal to SNR.
Suppose i is CN(0, 1) and consider uncoded communication using PAM
with a data rate of R bits/s/Hz. We have done the error probability analysis
in Section 3.1.2 for R = 1; for general R, the analysis is similar. The average
error probability is governed by the minimum distance between the PAM
points. The constellation ranges from approximately —+/SNR to ++/SNR, and
since there are 2% constellation points, the minimum distance is approximately

&‘

N
D ~ : R, (9.8)

min 2R
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and the error probability at high SNR is approximately (cf. (3.28)),

s Dy, \_ 1 o ©9)
Pe™ 3 a+D2 | D SNR '

By setting the data rate R = rlog SNR, we get

1
N —, 9.10
Pe™ qpn (9.10)
yielding a diversity—multiplexing tradeoff of
1
d (1) = 1=2r, re|o0, 5| (9.11)

Note that in the approximate analysis of the error probability above, we
focus on the scaling of the error probability with the SNR and the data rate
but are somewhat careless with constant multipliers: they do not matter as far
as the diversity—multiplexing tradeoff is concerned.

We can repeat the analysis for QAM with data rate R. There are now 27/2
constellation points in each of the real and imaginary dimensions, and hence
the minimum distance is approximately

D~ YR (9.12)

min 2R/2 4

and the error probability at high SNR is approximately
Do N —— (9.13)

yielding a diversity—multiplexing tradeoff of

dqam(r) =1-r re [0, 1] (9]4)

The tradeoff curves are plotted in Figure 9.1.

Let us relate the two endpoints of a tradeoff curve to notions that we already
know. The value d,, := d(0) can be interpreted as the SNR exponent that
describes how fast the error probability can be decreased with the SNR for
a fixed data rate; this is the classical diversity gain of a scheme. It is 1 for
both PAM and QAM. The decrease in error probability is due to an increase
in D,;,. This is illustrated in Figure 9.2.

In a dual way, the value r,,,, for which d(r,,,) = 0 describes how fast the
data rate can be increased with the SNR for a fixed error probability. This
number can be interpreted as the number of (complex) degrees of freedom
that are exploited by the scheme. It is 1 for QAM but only 1/2 for PAM.
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Figure 9.1 Tradeoff curves for
the single antenna slow fading
Rayleigh channel.

Figure 9.2 Increasing the SNR
by 6dB decreases the error
probability by 1/4 for both
PAM and QAM due to a
doubling of the minimum
distance.
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This is consistent with our observation in Section 3.1.3 that PAM uses only
half the degrees of freedom of QAM. The increase in data rate is due to the
packing of more constellation points for a given D, ;,. This is illustrated in
Figure 9.3.

The two endpoints represent two extreme ways of using the increase in the
resource (SNR): increasing the reliability for a fixed data rate, or increasing
the data rate for a fixed reliability. More generally, we can simultaneously
increase the data rate (positive multiplexing gain r) and increase the reliability
(positive diversity gain d > 0) but there is a tradeoff between how much of
each type of gain we can get. The diversity—multiplexing curve describes
this tradeoff. Note that the classical diversity gain only describes the rate
of decay of the error probability for a fixed data rate, but does not provide
any information on how well a scheme exploits the available degrees of
freedom. For example, PAM and QAM have the same classical diversity
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Figure 9.3 Increasing the SNR
by 6dB increases the data rate
for QAM by 2 bits/s/Hz but
only increases the data rate of
PAM by 1 bit/s/Hz.

Optimal tradeoff

9.1 Diversity-multiplexing tradeoff
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gain, even though clearly QAM is more efficient in exploiting the available
degrees of freedom. The tradeoff curve, by treating error probability and data
rate in a symmetrical manner, provides a more complete picture. We see
that in terms of their tradeoff curves, QAM is indeed superior to PAM (see
Figure 9.1).

So far, we have considered the tradeoff between diversity and multiplexing
in the context of two specific schemes: uncoded PAM and QAM. What is the
fundamental diversity—multiplexing tradeoff of the scalar channel itself? For
the slow fading Rayleigh channel, the outage probability at a target data rate
R =rlogSNR is

P{log(1+ |h|*SNR) < rlog SNR}
SNR" — 1 )
SNR

Pout
=P {|h|2 <

1
N — 9.15
SNR'~” ©-15)
at high SNR. In the last step, we used the fact that for Rayleigh fading,
P{|h|? < €} ~ € for small €. Thus

d'(rn=1-r, rel0,1]. (9.16)

Hence, the uncoded QAM scheme trades off diversity and multiplexing gains
optimally.

The tradeoff between diversity and multiplexing gains can be viewed as
a coarser way of capturing the fundamental tradeoff between error proba-
bility and data rate over a fading channel at high SNR. Even very simple,
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low-complexity schemes can trade off optimally in this coarser context (the
uncoded QAM achieved the tradeoff for the Rayleigh slow fading channel).
To achieve the exact tradeoff between outage probability and data rate, we
need to code over long block lengths, at the expense of higher complexity.

9.1.3 Parallel Rayleigh channel

Consider the slow fading parallel channel with i.i.d. Rayleigh fading on each
sub-channel:

Ye[m] = hox,[m]+ w,[m], ¢=1,...,L. (9.17)

Here, the w, are i.i.d. €N (0, 1) additive noise and the transmit power per
sub-channel is constrained by SNR. We have seen that L Rayleigh faded sub-
channels provide a (classical) diversity gain equal to L (cf. Section 3.2 and
Section 5.4.4): this is an L-fold improvement over the basic single antenna
slow fading channel. In the parlance we introduced in the previous section, this
says that d*(0) = L. How about the diversity gain at any positive multiplexing
rate?

Suppose the target data rate is R = rlogSNR bits/s/Hz per sub-channel.
The optimal diversity d*(r) can be calculated from the rate of decay of the
outage probability with increasing SNR. For the i.i.d. Rayleigh fading parallel
channel, the outage probability at rate per sub-channel R = rlogSNR is (cf.
(5.83))

L
Pou =P IZlog(l + |h,|*SNR) < LrlogSNR} : (9.18)

=1

Outage typically occurs when each of the sub-channels cannot support the
rate R (Exercise 9.1): so we can write

1

Paw (B (10g(1 4| 'SNR) < rlog SNR))* ~ iy

(9.19)

So, the optimal diversity—multiplexing tradeoff for the parallel channel with
L diversity branches is

d*(rn=L(1—-r), re|0, 1], (9.20)

an L-fold gain over the scalar single antenna performance (cf. (9.16)) at every
multiplexing gain r; this performance is illustrated in Figure 9.4.

One particular scheme is to transmit the same QAM symbol over the L
sub-channels; the repetition converts the parallel channel into a scalar channel
with squared amplitude 3", |k, |?, but with the rate reduced by a factor of 1/L.
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Figure 9.4 The diversity—
multiplexing tradeoff of the
i.id. Rayleigh fading parallel
channel with L sub-channels
together with that of the
repetition scheme.

9.1 Diversity-multiplexing tradeoff
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The diversity—multiplexing tradeoff achieved by this scheme can be computed
to be

1
d,,(r) =L(1—Lr), re |:O, Z] , (9.21)
(Exercise 9.2). The classical diversity gain d,,(0) is L, the full diversity of

the parallel channel, but the number of degrees of freedom per sub-channel
is only 1/L, due to the repetition.

9.1.4 MISO Rayleigh channel

Consider the n, transmit and single receive antenna MISO channel with i.i.d.
Rayleigh coefficients:

y[m] = h*x[m] + w[m]. (9.22)

As usual, the additive noise w[m] is i.i.d. CN(0, 1) and there is an overall
transmit power constraint of SNR. We have seen that the Rayleigh fading
MISO channel with n, transmit antennas provides the (classical) diversity
gain of n, (cf. Section 3.3.2 and Section 5.4.3). By how much is the diversity
gain increased at a positive multiplexing rate of r?

We can answer this question by looking at the outage probability at target
data rate R = rlog SNR bits/s/Hz:

SNR
Pon =P {log (1 + ||h||2—> < rlogSNR} . (9.23)
nl

Now ||h||? is a x? random variable with 2n, degrees of freedom and we have
seen that P{||h|? < €} ~ €™ (cf. (3.44)). Thus, p,, decays as SNR™"*' ") with
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increasing SNR and the optimal diversity—multiplexing tradeoff for the i.i.d.
Rayleigh fading MISO channel is

d*(r)=n,(1—-r), re[0,1]. (9.24)

Thus the MISO channel provides an n.-fold increase in diversity at all
multiplexing gains.

In the case of n, =2, we know that the Alamouti scheme converts the
MISO channel into a scalar channel with the same outage behavior as the
original MISO channel. Hence, if we use QAM symbols in conjunction with
the Alamouti scheme, we achieve the diversity—multiplexing tradeoff of the
MISO channel. In contrast, the repetition scheme that transmits the same
QAM symbol from each of the two transmit antennas one at a time achieves
a diversity—multiplexing tradeoff curve of

1
d,ep(r) =2(1=2r), re |:O, §:| . (9.25)

The tradeoff curves of these schemes as well as that of the 2 x 1 MISO
channel are shown in Figure 9.5.

9.1.5 2 x 2 MIMO Rayleigh channel

Four schemes revisited

Figure 9.5 The diversity-
multiplexing tradeoff of the

2 x 1 ii.d. Rayleigh fading
MISO channel along with those
of two schemes.

In Section 3.3.3, we analyzed the (classical) diversity gains and degrees
of freedom utilized by four schemes for the 2 x 2 i.i.d. Rayleigh fading

Optimal tradeoff

4 Alamouti

Diversity gain d*(r)

Repetition

(1/2,0)

S

Spatial multiplexing gain = R/log SNR
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Figure 9.6 The
diversity-multiplexing tradeoff
of the 2 x 2 i.i.d. Rayleigh
fading MIMO channel along
with those of four schemes.

9.1 Diversity-multiplexing tradeoff

Table 9.1 A summary of the performance of the four schemes for the 2 x 2
channel.

Classical Degrees of D-M tradeoff
diversity gain freedom utilized
Repetition 4 1/2 4—8r, re0,1/2]
Alamouti 4 1 4—4r, re[0,1]
V-BLAST (ML) 2 2 2—r, rel0,2]
V-BLAST (nulling) 1 2 1—r/2, rel0,2]
Channel itself 4 2 4-3r, rel0,1]
2—r, rell,2]
0,4

Repetition

Alamouti
Optimal tradeoff
1

- 1

Diversity gain d*(r)

2,0
(172,0)

A

Spatial multiplexing gain »=R/log SNR

MIMO channel (with the results summarized in Summary 3.2). The diversity—
multiplexing tradeoffs of these schemes when used in conjunction with
uncoded QAM can be computed as well; they are summarized in Table 9.1
and plotted in Figure 9.6. The classical diversity gains and degrees of freedom
utilized correspond to the endpoints of these curves.

The repetition, Alamouti and V-BLAST with nulling schemes all convert
the MIMO channel into scalar channels for which the diversity—multiplexing
tradeoffs can be computed in a straightforward manner (Exercises 9.3,
9.4 and 9.5). The diversity—multiplexing tradeoff of V-BLAST with ML
decoding can be analyzed starting from the pairwise error probability between
two codewords x, and x, (with average transmit energy normalized to 1):

16

x4 —xpll* ,

P{x, — x3z|H} < N (9.26)
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(cf. 3.92). Each codeword is a pair of QAM symbols transmitted on the two
antennas, and hence the distance between the two closest codewords is that
between two adjacent constellation points in one of the QAM constellation,
i.e., X, and x, differ only in one of the two QAM symbols. With a total data
rate of R bits/s/Hz, each QAM symbol carries R/2 bits, and hence each of
the I and Q channels carries R/4 bits. The distance between two adjacent
constellation points is of the order of 1/2%/#. Thus, the worst-case pairwise
error probability is of the order

16-2F
T 16-SNR™7" (9.27)

where the data rate R = rlog SNR. This is the worst-case pairwise error prob-
ability, but Exercise 9.6 shows that the overall error probability is also of
the same order. Hence, the diversity—multiplexing tradeoff of V-BLAST with
ML decoding is

dir)=2-r r €0, 2]. (9.28)

As already remarked in Section 3.3.3, the (classical) diversity gain and the
degrees of freedom utilized are not always sufficient to say which scheme is
best. For example, the Alamouti scheme has a higher (classical) diversity gain
than V-BLAST but utilizes fewer degrees of freedom. The tradeoff curves,
in contrast, provide a clear basis for the comparison. We see that which
scheme is better depends on the target diversity gain (error probability) of the
operating point: for smaller target diversity gains, V-BLAST is better than
the Alamouti scheme, while the situation reverses for higher target diversity
gains.

Do any of the four schemes actually achieve the optimal tradeoff of the 2 x 2
channel? The tradeoff curve of the 2 x 2 i.i.d. Rayleigh fading MIMO channel
turns out to be piecewise linear joining the points (0, 4), (1, 1) and (2, 0)
(also shown in Figure 9.6). Thus, all of the schemes are tradeoff-suboptimal,
except for V-BLAST with ML, which is optimal but only for r > 1.

The endpoints of the optimal tradeoff curve are (0, 4) and (2, 0), con-
sistent with the fact that the 2 x 2 MIMO channel has a maximum diver-
sity gain of 4 and 2 degrees of freedom. More interestingly, unlike all
the tradeoff curves we have computed before, this curve is not a line but
piecewise linear, consisting of two linear segments. V-BLAST with ML
decoding sends two symbols per symbol time with (classical) diversity of
2 for each symbol, and achieves the gentle part, 2 — r, of this curve. But
what about the steep part, 4 — 37? Intuitively, there should be a scheme that
sends 4 symbols over 3 symbol times (with a rate of 4/3 symbols/s/Hz)
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and achieves the full diversity gain of 4. We will see such a scheme in
Section 9.2.4.

9.1.6 n, x n, MIMO i.i.d. Rayleigh channel

Optimal tradeoff

Consider the n, x n, MIMO channel with i.i.d. Rayleigh faded gains. The
optimal diversity gain at a data rate rlog SNR bits/s/Hz is the rate at which
the outage probability (cf. (8.81)) decays with SNR:

prime(rlogSNR) = min RIP’{log det(L, +HK H*) < rlogSNR}. (9.29)

K, Tr[K,]<S

While the optimal covariance matrix K, depends on the SNR and the data
rate, we argued in Section 8.4 that the choice of K, =SNR/n I, is often
used as a good approximation to the actual outage probability. In the coarser
scaling of the tradeoff curve formulation, that argument can be made precise:
the decay rate of the outage probability in (9.29) is the same as when the
covariance matrix is the scaled identity. (See Exercise 9.8.) Thus, for the
purpose of identifying the optimal diversity gain at a multiplexing rate r it
suffices to consider the expression in (8.85):

i SNR
P (rlogSNR) = P {log det (In, + —HH*) < rlog SNR} . (9.30)

n

By analyzing this expression, the diversity—multiplexing tradeoff of the n, x n,
ii.d. Rayleigh fading channel can be computed. It is the piecewise linear
curve joining the points

(k, (n,— k) (n, — k), k=0, .. 0y (9.31)

as shown in Figure 9.7.

The tradeoff curve summarizes succinctly the performance capability of
the slow fading MIMO channel. At one extreme where r — 0, the maximal
diversity gain n, - n, is achieved, at the expense of very low multiplexing gain.
At the other extreme where r — n_;,, the full degrees of freedom are attained.
However, the system is now operating very close to the fast fading capacity
and there is little protection against the randomness of the slow fading channel;
the diversity gain is approaching 0. The tradeoff curve bridges between the two
extremes and provides a more complete picture of the slow fading performance
capability than the two extreme points. For example, adding one transmit and
one receive antenna to the system increases the degrees of freedom min(n,, n,)
by 1; this corresponds to increasing the maximum possible multiplexing gain
by 1. The tradeoff curve gives a more refined picture of the system benefit: for
any diversity requirement d, the supported multiplexing gain is increased by 1.
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Figure 9.7
Diversity-multiplexing tradeoff,
d*(r) for the i.i.d. Rayleigh
fading channel.

Figure 9.8 Adding one
transmit and one receive
antenna increases spatial
multiplexing gain by 1 at each
diversity level.
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) — 0, nyny)

{, (n=1)(n—1))

S

2, (n=2)(n,=2))
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oo (min{ny, n:}, 0)

Diversity gain d*(r)

Spatial multiplexing gain r=R/log SNR

Diversity gain d *(r)

Spatial multiplexing gain r=R/log SNR

This is because the entire tradeoff curve is shifted by 1 to the right; see
Figure 9.8.

The optimal tradeoff curve is based on the outage probability, so in principle
arbitrarily large block lengths are required to achieve the optimal tradeoff
curve. However, it has been shown that, in fact, space-time codes of block
length [ = n,+n, — 1 achieve the curve. In Section 9.2.4, we will see a scheme
that achieves the tradeoff curve but requires arbitrarily large block lengths.
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Geometric interpretation

Bad H Good H

Figure 9.9 Geometric picture
for the 1 x 1 channel. Outage
occurs when |h] is close to 0.

Figure 9.10 Geometric picture
for the 1 x 2 channel. Outage
occurs when |h; |2+ |h,|? is
close to 0.

Typical bad H

€ Rank(H) <r

Figure 9.11 Geometric picture
for the n, x n, channel at
multiplexing gain r (r integer).
Outage occurs when the
channel matrix H is close to a
rank r matrix.

9.1 Diversity-multiplexing tradeoff

To provide more intuition let us consider the geometric picture behind the
optimal tradeoff for integer values of r. The outage probability is given by

Pou(r10g SNR)

SNR
P{logdet (I, +

n

HH*) < rlog SNR}

i SNR
P {Zlog <1+—/\[.2> < rlogSNR} , (9.32)
n

i=1 t

where A; are the (random) singular values of the matrix H. There are n,
possible modes for communication but the effectiveness of mode i depends
on how large the received signal strength SNRA?/n, is for that mode; we can
think of a mode as fully effective if SNRA? /n, is of order SNR and not effective
at all when SNRA?/n, is of order 1 or smaller.

At low multiplexing gains (r — 0), outage occurs when none of the modes
are effective at all; i.e., all the squared singular values are small, of the order
of 1/SNR. Geometrically, this event happens when the channel matrix H is
close to the zero matrix; see Figure 9.9 and 9.10. Since }-, A7 = 3", ;| ;| this
event occurs only when all of the n,n, squared magnitude channel gains, |A;; 2,
are small, each on the order of 1/SNR. As the channel gains are independent
and P{|h;;|* < 1/SNR} ~ 1/SNR, the probability of this event is on the order
of 1/SNR™™.

Now consider the case when 7 is a positive integer. The situation is more
complicated. For the outage event in (9.32) to occur, there are now many
possible combinations of values that the singular values, A;, can take on, with
modes taking on different shades of effectiveness. However, at high SNR, it
can be shown that the typical way for outage to occur is when precisely r of
the modes are fully effective and the rest completely ineffective. This means
the largest r singular values of H are of order 1, while the rest are of the
order 1/SNR or smaller; geometrically, H is close to a rank r matrix. What is
the probability of this event?

In the case of r =0, the outage event is when the channel matrix H is close
to a rank O matrix. The channel matrix lies in the nn,-dimensional space
C™>™, so for this to occur, there is a collapse in all nn, dimensions. This
leads to an outage probability of 1/SNR™"". At general multiplexing gain r
(r positive integer), outage occurs when H is close to V., the space of all rank
r matrices. This requires a collapse in the component of H “orthogonal” to
V.. Thus, one would expect the probability of this event to be approximately
1 /SNRd, where d is the number of such dimensions.? See Figure 9.11. It is

2 ¥, is not a linear space. So, strictly speaking, we cannot talk about the concept of orthogonal
dimensions. However, V, is a manifold, which means that the neighborhood of every point
looks like a Euclidean space of the same dimension. So the notion of orthogonal dimensions
(called the “co-dimension” of V) still makes sense.
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easy to compute d. A n, x n, matrix H of rank r is described by rn,+ (n, — r)r
parameters: rn, parameters to specify r linearly independent row vectors of H
and (n, — r)r parameters to specify the remaining n, — r rows in terms of linear
combinations of the first r row vectors. Hence V, is n,r 4 (n, — r)r-dimensional
and the number of dimensions orthogonal to V, in €™ is simply

nn, — (nr+ (n,—r)yr) = (n,—r)(n, —r).

This is precisely the SNR exponent of the outage probability in (9.32).

9.2 Universal code design for optimal diversity-multiplexing tradeoff

The operational interpretation of the outage formulation is based on the
existence of universal codes that can achieve arbitrarily small error whenever
the channel is not in outage. To achieve such performance, arbitrarily long
block lengths and powerful codes are required. In the high SNR regime, we
have seen in Chapter 3 that the typical error event is the event that the channel
is in a deep fade, where the deep-fade event depends on the channel as well
as the scheme. This leads to a natural high SNR relaxation of the universality
concept:

A scheme is approximately universal if it is in deep fade only when the
channel itself is in outage.

Being approximately universal is sufficient for a scheme to achieve the
diversity—multiplexing tradeoff of the channel. Moreover, one can explic-
itly construct approximately universal schemes of short block lengths. We
describe this approach towards optimal diversity—multiplexing tradeoff code
design in this section. We start with the scalar channel and progress
towards more complex models, culminating in the general n, x n, MIMO
channel.

9.2.1 QAM is approximately universal for scalar channels

In Section 9.1.2 we have seen that uncoded QAM achieves the optimal
diversity—multiplexing tradeoff of the scalar Rayleigh fading channel. One
can obtain a deeper understanding of why this is so via a typical error event
analysis. Conditional on the channel gain /, the probability of error of uncoded
QAM at data rate R is approximately

SNR
0o ( T|h|2dﬁm) , (9.33)
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where d_;, is the minimum distance between two normalized constellation
points, given by

d (9.34)

1
min "7 AR/ "

When +/SNR|A|d,;, > 1, i.e. the separation of the constellation points
at the receiver is much larger than the standard deviation of the additive
Gaussian noise, errors occur very rarely due to the very rapid drop off of
the Gaussian tail probability. Thus, as an order-of-magnitude approximation,
errors typically occur due to:

R

2
Deep-fad t:|hf < —. 9.35
eep-fade event : | 2| < NR (9.35)

This deep-fade event is analogous to that of BPSK in Section 3.1.2. On the
other hand, the channel outage condition is given by

log (1+|A[*SNR) < R, (9.36)
or equivalently
2k —1
h)? . 9.37
P < o 937)

At high SNR and high rate, the channel outage condition (9.37) and the deep-
fade event of QAM (9.35) coincide. Thus, typically errors occur for QAM
only when the channel is in outage. Since the optimal diversity—multiplexing
tradeoff is determined by the outage probability of the channel, this explains
why QAM achieves the optimal tradeoff. (A rigorous proof of the tradeoff
optimality of QAM based solely on this typical error event view is carried out
in Exercise 9.9, which is the generalization of Exercise 3.3 where we used
the typical error event to analyze classical diversity gain.)

In Section 9.1.2, the diversity—multiplexing tradeoff of QAM is computed
by averaging the error probability over the Rayleigh fading. It happens to be
equal to the optimal tradeoff. The present explanation based on relating the
deep-fade event of QAM and the outage condition is more insightful. For one
thing, this explanation is in terms of conditions on the channel gain 4 and has
nothing to do with the distribution of 4. This means that QAM achieves the
optimal diversity—multiplexing tradeoff not only under Rayleigh fading but in
fact under any channel statistics. This is the true meaning of universality. For
example, for a channel with the near-zero behavior of P{|h|*> < €} ~ €, the
optimal diversity—multiplexing tradeoff curve follows directly from (9.15):
d*(r) = k(1 — r). Uncoded QAM on this channel can achieve this tradeoff
as well.
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Note that the approximate universality of QAM depends only on a condition
on its normalized minimum distance:

1
2> —. (9.38)

min IR

Any other constellation with this property is also approximately universal
(Exercise 9.9).

Summary 9.1 Approximate universality
A scheme is approximately universal if it is in deep fade only when the
channel itself is in outage.

Being approximately universal is sufficient for a scheme to achieve the
diversity—multiplexing tradeoff of the channel.

9.2.2 Universal code design for parallel channels

In Section 3.2.2 we derived design criteria for codes that have a good cod-
ing gain while extracting the maximum diversity from the parallel channel.
The criterion was derived based on averaging the error probability over the
statistics of the fading channel. For example, the i.i.d. Rayleigh fading paral-
lel channel yielded the product distance criterion (cf. Summary 3.1). In this
section, we consider instead a universal design criterion based on considering
the performance of the code over the worst-case channel that is not in outage.
Somewhat surprisingly, this universal code design criterion reduces to the
product distance criterion at high SNR. Using this universal design criterion,
we can characterize codes that are approximately universal using the idea of
typical error event used in the last section.

Universal code design criterion

We begin with the parallel channel with L diversity branches, focusing on
just one time symbol (and dropping the time index):

Ve = hyx,+w, (9:39)

for £=1,..., L. Here, as before, the w, are i.i.d. CN (0, 1) noise. Suppose
the rate of communication is R bits/s/Hz per sub-channel. Each codeword
is a vector of length L. The ¢th component of any codeword is transmitted
over the ¢th sub-channel in (9.39). Here, a codeword consists of one symbol
for each of the L sub-channels; more generally, we can consider coding over
multiple symbols for each of the sub-channels as well as coding across the
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different sub-channels. The derivation of a code design criterion for the more
general case is done in Exercise 9.10.
The channels that are not in outage are those whose gains satisfy

L
> log(1+|h,|*SNR) > LR. (9.40)

=1

As before, SNR is the transmit power constraint per sub-channel.

For a fixed pair of codewords x,, Xy, the probability that x, is more
likely than x, when x, is transmitted, conditional on the channel gains h, is
(cf. (3.51))

SNR &
P{x, — x;/h} = 0 J 5 PBILAR AL B (9.41)

=1

where d, is the fth component of the normalized codeword difference
(cf. (3.52)):

1
d, = ——
7 JSNR

The worst-case pairwise error probability over the channels that are not in
outage is the Q(,/-) function evaluated at the solution to the optimization
problem

(Xa¢ — Xpe)- (9.42)

L
Z |hel?d, %, (9.43)

subject to the constraint (9.40). If we define Q, := SNR- |A,|*|d,|?, then the
optimization problem can be rewritten as

Z Q, (9.44)

Q|>0 ----- QL>0 2

subject to the constraint

- 0
Y log (1 + ﬁ) > LR. (9.45)
=1

This is analogous to the problem of minimizing the total power required to
support a target rate R bits/s/Hz per sub-channel over a parallel Gaussian
channel; the solution is just standard waterfilling, and the worst-case channel is

|h,|* = : L—1+, e=1,...,L. (9.46)
SNR \ A|d,|?
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Figure 9.12 A repetition code
for the 2-parallel channel with
rate R = 2 bits/s/Hz per
sub-channel.

MIMO Iil: diversity-multiplexing tradeoff and universal space-time codes

Here A is the Lagrange multiplier chosen such that the channel in (9.46)
satisfies (9.40) with equality. The worst-case pairwise error probability is

() o

where A satisfies
L 1 +
log <—>:| =LR. (9.48)
; [ Ald, |2

We look at some simple coding schemes to better understand the universal
design criterion, the argument of the Q (v/*/2) function in (9.47):

;(% - |d[|2>+, (9.49)

where A satisfies the constraint in (9.48).

1. No coding Here symbols from L independent constellations (say, QAM),
with 2% points each, are transmitted separately on each of the sub-channels.
This has very poor performance since all but one of the |d,|?
simultaneously zero. Thus the design criterion in (9.49) evaluates to zero.

2. Repetition coding Suppose the symbol is drawn from a QAM constellation
(with 2RE points) but the same symbol is repeated over each of the sub-
channels. For the 2-parallel channel with R = 2 bits/s/Hz per sub-channel,
the repetition code is illustrated in Figure 9.12. The smallest value of |d, |
is 4/9. Due to the repetition, for any pair of codewords, the differences in the

can be

sub-channels are equal. With the choice of the worst pairwise differences,
the universal criterion in (9.49) evaluates to 8/3 (see Exercise 9.12).

3. Permutation coding Consider the 2-parallel channel where the symbol on
each of the sub-channels is drawn from a separate QAM constellation. This

@ & B> J A K >
© 6 A Vv ®© 6 A v

@ W & A @ X & &

] @ o ° | @ o .
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Figure 9.13 A permutation
code for the 2-parallel channel
with rate R = 2 bits/s/Hz per
sub-channel.
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is similar to the repetition code (Figure 9.12), but we consider different
mappings of the QAM points in the sub-channels. In particular, we map
the points such that if two points are close to each other in one QAM
constellation, their images in the other QAM constellation are far apart.
One such choice is illustrated in Figure 9.13, for R = 2 bits/s/Hz per
sub-channel where two points that are nearest neighbors in one QAM
constellation have their images in the other QAM constellation separated
by at least double the minimum distance. With the choice of the worst
pairwise differences for this code, the universal design criterion in (9.49)
can be explicitly evaluated to be 44/9 (see Exercise 9.13).

This code involves a one-to-one map between the two QAM constel-
lations and can be parameterized by a permutation of the QAM points.
The repetition code is a special case of this class of codes: it corresponds
to the identity permutation.

Universal code design criterion at high SNR

Although the universal criterion (9.49) can be computed given the codewords,
the expression is quite complicated (Exercise 9.11) and is not amenable to
use as a criterion for code design. We can however find a simple bound
by relaxing the non-negativity constraint in the optimization problem (9.44).
This allows the water depth to go negative, resulting in the following lower
bound on (9.49):

L
L2%|d\d, -+ d, F = |d, | (9.50)
=1

When the rate of communication per sub-channel R is large, the water level in
the waterfilling problem (9.44) is deep at every sub-channel for good codes,
and this lower bound is tight. Moreover, for good codes the second term is
small compared to the first term, and so in this regime the universal criterion
is approximately

L2Rdd,y - d, |7~ (9.51)
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Thus, the universal code design problem is to choose the codewords maxi-
mizing the pairwise product distance; in this regime, the criterion coincides
with that of the i.i.d. Rayleigh parallel fading channel (cf. Section 3.2.2).

Property of an approximately universal code

We can use the universal code design criterion developed above to characterize
the property of a code that makes it approximately universal over the parallel
channel at high SNR. Following the approach in Section 9.2.1, we first define
a pairwise typical error event: this is when the argument of the Q(+/-/2) in
(9.41) is less than 1:

L
SNR- > |y |?|d,|* < 1. (9.52)

=1

For a code to be approximately universal, we want this event to occur only
when the channel is in outage; equivalently, this event should not occur
whenever the channel is not in outage. This translates to saying that the
worst-case code design criterion derived above should be greater than 1. At
high SNR, using (9.51), the condition becomes

1
dd, --d ¥~ —. 9.53
|d\d, 7> IR ( )

Moreover, this condition should hold for any pair of codewords. It is verified
in Exercise 9.14 that this is sufficient to guarantee that a coding scheme
achieves the optimal diversity—multiplexing tradeoff of the parallel channel.

We saw the permutation code in Figure 9.13 as an example of a code with
good universal design criterion value. This class of codes contains approxi-
mately universal codes. To see this, we first need to generalize the essential
structure in the permutation code example in Figure 9.13 to higher rates and
to more than two sub-channels. We consider codes of just a single block
length to carry out the following generalization.

We fix the constellation from which the codeword is chosen in each sub-
channel to be a QAM. Each of these QAM constellations contains the entire
information to be transmitted: so, the total number of points in the QAM
constellation is 2ER if R is the data rate per sub-channel. The overall code is
specified by the maps between the QAM points for each of the sub-channels.
Since the maps are one-to-one, they can be represented by permutations of
the QAM points. In particular, the code is specified by L — 1 permutations
m,, ..., for each message, say m, we identify one of the QAM points,
say g, in the QAM constellation for the first sub-channel. Then, to convey
the message m, the transmit codeword is

(4, m(q), - - . m(q)),
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Figure 9.14 A permutation
code for a parallel channel with
three sub-channels. The entire
information (4 bits) is
contained in each of the QAM
constellations.
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i.e., the QAM point transmitted over the £th sub-channel is 7,(g) with
defined to be the identity permutation. An example of a permutation code with
a rate of 4/3 bits/s/Hz per sub-channel for L =3 (so the QAM constellation
has 2* points) is illustrated in Figure 9.14.

Given the physical constraints (the operating SNR, the data rate, and the
number of sub-channels), the engineer can now choose appropriate permuta-
tions to maximize the universal code design criterion. Thus permutation codes
provide a framework within which specific codes can be designed based on
the requirements. This framework is quite rich: Exercise 9.15 shows that
even randomly chosen permutations are approximately universal with high
probability.

Bit-reversal scheme: an operational interpretation of the outage condition

We can use the concept of approximately universal codes to give an oper-
ational interpretation of the outage condition for the parallel channel. To be
able to focus on the essential issues, we restrict our attention to just two
sub-channels, so L = 2. If we communicate at a total rate 2R bits/s/Hz over
the parallel channel, the no-outage condition is

log(1+|A,|*SNR) +1log(1 + |h,|*SNR) > 2R. (9.54)

One way of interpreting this condition is as though the first sub-channel
provides log(1 + |A,|*SNR) bits of information and the second sub-channel
provides log(1 + |A,|*SNR) bits of information, and as long as the total num-
ber of bits provided exceeds the target rate, then reliable communication is
possible. In the high SNR regime, we exhibit below a permutation code that
makes the outage condition concrete.

Suppose we independently code over the I and Q channels of the two
sub-channels. So we can focus on only one of them, say, the I channel. We
wish to communicate R bits over two uses of the /-channel. Analogous to the
typical event analysis for the scalar channel, we can exactly recover all the R
information bits from the first I sub-channel alone if

22R

2 —
ml™> o (9.55)
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or
|1, [2SNR > 22% (9.56)

However, we do not need to use just the first I sub-channel to recover
all the information bits: the second I sub-channel also contains the same
information and can be used in the recovery process. Indeed, if we create x}
by treating the ordered R bits as the binary representation of the points x!,
then one would intuitively expect that if

|l [2SNR > 22F1, (9.57)

then one should be able to recover at least R, of the most significant bits of
information. Now, if we create x} by treating the reversal of the R bits as its
binary representation, then one should be able to recover at least R, of the
most significant bits, if

|7y ?SNR > 22%: (9.58)

But due to the reversal, the most significant bits in the representation in the
second I sub-channel are the least significant bits in the representation in the
first I sub-channel. Hence, as long as R, + R, > R, then we can recover all R
bits. This translates to the condition

log(| %, |*SNR) +log(|,|*SNR) > 2R, (9.59)

which is precisely the no-outage condition (9.54) at high SNR.

The bit-reversal scheme described here with some slight modifications can
be shown to be approximately universal (Exercise 9.16). A simple variant of
this scheme is also approximately universal (Exercise 9.17).

Summary 9.2 Universal codes for the parallel channel

A universal code design criterion between two codewords can be computed
by finding the channel not in outage that yields the worst-case pairwise
error probability.

At high SNR and high rate, the universal code design criterion becomes
proportional to the product distance:

\d,...d, 7" (9.60)

where L is the number of sub-channels and d, is the difference between
the ¢th components of the codewords.
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A code is approximately universal for the parallel channel if its product
distance is large enough: for a code at a data rate of R bits/s/Hz per
sub-channel, we require

1

2
|didy---d;|” > m-

(9.61)
Simple bit-reversal schemes are approximately universal for the 2-parallel
channel. Random permutation codes are approximately universal for the
L-parallel channel with high probability.

9.2.3 Universal code design for MISO channels

The outage event for the n, x 1 MISO channel (9.22) is

NR
log <1 + I ) <R. (9.62)

n

In the case when n, = 2, the Alamouti scheme converts the MISO channel
to a scalar channel with gain ||h|| and SNR reduced by a factor of 2. Hence,
the outage behavior is exactly the same as in the original MISO channel,
and the Alamouti scheme provides a universal conversion of the 2 x 1 MISO
channel to a scalar channel. Any approximately universal scheme for the
scalar channel, such as QAM, when used in conjunction with the Alamouti
scheme is also approximately optimal for the MISO channel and achieves its
diversity—multiplexing tradeoff.

In the general case when the number of transmit antennas is greater than
two, there is no equivalence of the Alamouti scheme. Here we explore two
approaches to constructing universal schemes for the general MISO channel.

MISO channel viewed as a parallel channel

Using one transmit antenna at a time converts the MISO channel into a parallel
channel. We have used this conversion in conjunction with repetition coding
to argue the classical diversity gain of the MISO channel (cf. Section 3.3.2).
Replacing the repetition code with an appropriate parallel channel code (such
as the bit-reversal scheme from Section 9.2.2), we will see that converting
the MISO channel into a parallel channel is actually tradeoff-optimal for the
ii.d. Rayleigh fading channel.

Suppose we want to communicate at rate R = rlogSNR bits/s/Hz on the
MISO channel. Using one transmit antenna at a time yields a parallel chan-
nel with n, diversity branches and the data rate of communication is R
bits/s/Hz per sub-channel. The optimal diversity gain for the i.i.d. Rayleigh
parallel fading channel is n,(1 —r) (cf. (9.20)); thus, using one antenna at a
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Figure 9.15 The error
probability of uncoded QAM
with the Alamouti scheme and
that of a permutation code
over one antenna at a time for
the Rayleigh fading MISO
channel with two transmit
antennas: the permutation
code is about 1.5dB worse
than the Alamouti scheme
over the plotted error
probability range.
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time in conjunction with a tradeoff-optimal parallel channel code achieves the
largest diversity gain over the i.i.d. Rayleigh fading MISO channel (cf. (9.24)).

To understand how much loss the conversion of the MISO channel into
a parallel channel entails with respect to the optimal outage performance,
we plot the error probabilities of two schemes with the same rate (R =2
bits/s/Hz): uncoded QAM over the Alamouti scheme and the permutation
code in Figure 9.13. This performance is plotted in Figure 9.15 where we see
that the conversion of the MISO channel into a parallel channel entails a loss
of about 1.5dB in SNR for the same error probability performance.

Universality of conversion to parallel channel

We have seen that the conversion of the MISO channel into a parallel channel
is tradeoff-optimal for the i.i.d. Rayleigh fading channel. Is this conversion
universal? In other words, will a tradeoff-optimal scheme for the parallel chan-
nel also be tradeoff-optimal for the MISO channel, under any channel statis-
tics? In general, the answer is no. To see this, consider the following MISO
channel model: suppose the channels from all but the first transmit antenna
are very poor. To make this example concrete, suppose h, =0, £=2,...,n,.
The tradeoff curve depends on the outage probability (which depends only
on the statistics of the first channel)

Pou = P {log (1+5NR|A, ) < R}. (9.63)
Using one transmit antenna at a time is a waste of degrees of freedom: since
the channels from all but the first antenna are zero, there is no point in
transmitting any signal on them. This loss in degrees of freedom is explicit
in the outage probability of the parallel channel formed by transmitting from
one antenna at a time:

pparallel —P {]Og (1 —|—SNR|hl |2) < l/llR} .

out

(9.64)
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Comparing (9.64) with (9.63), we see clearly that the conversion to the parallel
channel is not tradeoff-optimal for this channel model.

Essentially, using one antenna at a time equates temporal degrees of free-
dom with spatial ones. All temporal degrees of freedom are the same, but
the spatial ones need not be the same: in the extreme example above, the
spatial channels from all but the first transmit antenna are zero. Thus, it seems
reasonable that when all the spatial channels are symmetric then the parallel
channel conversion of the MIMO channel is justified. This sentiment is jus-
tified in Exercise 9.18, which shows that the parallel channel conversion is
approximately universal over a restricted class of MISO channels: those with
ii.d. spatial channel coefficients.

Universal code design criterion

Instead of converting to a parallel channel, one can design universal schemes
directly for the MISO channel. What is an appropriate code design criterion?
In the context of the i.i.d. Rayleigh fading channel, we derived the determinant
criterion for the codeword difference matrices in Section 3.3.2. What is the
corresponding criterion for universal MISO schemes? We can answer this
question by considering the worst-case pairwise error probability over all
MISO channels that are not in outage.

The pairwise error probability (of confusing the transmit codeword matrix
X, with X;) conditioned on a specific MISO channel realization is (cf. (3.82))

(9.65)

P{X, — X;/h} = 0 (w) |

/2

In Section 3.3.2 we averaged this quantity over the statistics of the MISO
channel (cf. (3.83)). Here we consider the worst-case over all channels not in
outage:

max
Rl2s mCR=D
h:[[h]|2> 2

o (IS —Xal) 060

V2

From a basic result in linear algebra, the worst-case pairwise error probability
in (9.66) can be explicitly written as (Exercise 9.19)

0 (1 / %/\%nl(ZR - 1)) , (9.67)

where A, is the smallest singular value of the normalized codeword difference
matrix

ﬁ(XA —X,). (9.68)
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Essentially, the worst-case channel aligns itself in the direction of the
weakest singular value of the codeword difference matrix. So, the universal
code design criterion for the MISO channel is to ensure that no singular value
is too small; equivalently

maximize the minimum singular value of the codeword difference matrices.

(9.69)

There is an intuitive explanation for this design criterion: a universal code
has to protect itself against the worst channel that is not in outage. The condi-
tion of no-outage only puts a constraint on the norm of the channel vector h
but not on its direction. So, the worst channel aligns itself to the “weakest
direction” of the codeword difference matrix to create the most havoc. The
corresponding worst-case pairwise error probability will be governed by the
smallest singular value of the codeword difference matrix. On the other hand,
the i.i.d. Rayleigh channel does not prefer any specific direction: thus the
design criterion tailored to its statistics requires that the average direction be
well protected and this translates to the determinant criterion. While the two
criteria are different, codes with large determinant tend to also have a large
value for the smallest singular value; the two criteria (based on worst-case
and average-case) are related in this aspect.

We can use the universal code design criterion to derive a property that
makes a code universally achieve the tradeoff curve (as we did for the parallel
channel in the previous section). We want the typical error event to occur
only when the channel is in outage. This corresponds to the argument of
0(y/(+)/2) in the worst-case error probability (9.67) to be greater than 1, i.e.,

)2 1 1
> ~ .
YT (2R—1)  n2R

(9.70)

for every pair of codewords. We can explicitly verify that the Alam-
outi scheme with independent uncoded QAMs on the two data streams
satisfies the approximate universality property in (9.70). This is done in
Exercise 9.20.

Summary 9.3 Universal codes for the MISO channel

The MISO channel can be converted into a parallel channel by using one
transmit antenna at a time. This conversion is approximately universal for
the class of MISO channels with i.i.d. fading coefficients.

The universal code design criterion is to maximize the minimum singular
value of the codeword difference matrices.
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9.2.4 Universal code design for MIMO channels

Universality of D-BLAST

We finally arrive at the multiple transmit and multiple receive antenna slow
fading channel:

ylm] = Hx[m]+ w[m]. (9.71)
The outage event of this channel is
logdet(I, + HK H*) <R, (9.72)

where K| is the optimizing covariance in (9.29).

In Section 8.5, we have seen that the D-BLAST architecture with the MMSE—
SIC receiver converts the MIMO channel into a parallel channel with n,
sub-channels. Suppose we pick the transmit strategy K, in the D-BLAST
architecture (the covariance matrix represents the combination of the power
allocated to the streams and coordinate system under which they are mixed
before transmitting, cf. (8.3)) to be the one in (9.72). The important property of
this conversion is the conservation expressed in (8.88): denoting the effective
SNR of the kth sub-channel of the parallel channel by SINR,,

logdet (I, +HK H*) =" log(1+SINR,). (9.73)
k=1

However, SINR,, ..., SINR,, across the sub-channels are correlated. On the
other hand, we saw codes (with just block length 1) that universally achieve

ne?

the tradeoff curve for any parallel channel (in Section 9.2.2). This means
that, using approximately universal parallel channel codes for each of the
interleaved streams, the D-BLAST architecture with the MMSE-SIC receiver
at arate of R = rlog SNR bits/s/Hz per stream has a diversity gain determined
by the decay rate of

P13 log(1+SINR,) < R} : (9.74)

k=1

with increasing SNR. With »n interleaved streams, each having block length 1
(i.e., N =1 in the notation of Section 8.5.2), the initialization loss in D-BLAST
reduces a data rate of R bits/s/Hz per stream into a data rate of nR/(n+n,— 1)
bits/s/Hz on the MIMO channel (Exercise 8.27). Suppose we use the D-
BLAST architecture in conjunction with a block length 1 universal parallel
channel code for each of n interleaved streams. If this code operates at a
multiplexing gain of » on the MIMO channel, the diversity gain obtained
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is, substituting for the rate in (9.74) and comparing with (9.73), the decay
rate of

r(n+n,—1)

P {log det (I, + HK H*) < p

log SNR} . (9.75)
Now comparing this with the actual decay behavior of the outage probability
(cf. (9.29)), we see that the D-BLAST/MMSE-SIC architecture with n inter-
leaved streams used to operate at a multiplexing gain of r over the MIMO
channel has a diversity gain equal to the decay rate of

o <r(n +n—1)
P
n

out

log SNR) . (9.76)

Thus, with a large number, n, of interleaved streams, the D-BLAST/MMSE~
SIC architecture achieves universally the tradeoff curve of the MIMO channel.
With a finite number of streams, it is strictly tradeoff-suboptimal. In fact, the
tradeoff performance can be improved by replacing the MMSE-SIC receiver
by joint ML decoding of all the streams. To see this concretely, let us
consider the 2 x 2 MIMO Rayleigh fading channel (so n, = n, = 2) with
just two interleaved streams (so n = 2). The transmit signal lasts 3 time

symbols:
0 xg) xﬁ? 9.77)
xgl) xff) 0| '

With the MMSE-SIC receiver, the diversity gain obtained at the multiplexing
rate of r is the optimal diversity gain at the multiplexing rate of 3r/2. This
scaled version of the optimal tradeoff curve is depicted in Figure 9.16. On the
other hand, with the ML receiver the performance is significantly improved,
also depicted in Figure 9.16. This achieves the optimal diversity performance
for multiplexing rates between 0 and 1, and in fact is the scheme that sends
4 symbols over 3 symbol times that we were seeking in Section 9.1.5! The per-
formance analysis of the D-BLAST architecture with the joint ML receiver
is rather intricate and is carried out in Exercise 9.21. Basically, MMSE-SIC
is suboptimal because it favors stream 1 over stream 2 while ML treats them
equally. This asymmetry is only a small edge effect when there are many
interleaved streams but does impact performance when there are only a small
number of streams.

Universal code design criterion

We have seen that the D-BLAST architecture is a universal one, but how do we
recognize when another space-time code also has good outage performance uni-
versally? To answer this question, we can derive a code design criterion based
on the worst-case MIMO channel that is not in outage. Consider space-time
code matrices with block length n,. The worst-case channel aligns itself in the
“weakest directions” afforded by a codeword pair difference matrix. With just
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Figure 9.16 Tradeoff
performance for the D-BLAST
architecture with the ML
receiver and with the
MMSE-SIC receiver.

9.2 Universal code design for optimal diversity-multiplexing tradeoff

d(}’) 4 T
. e ML receiver
—— MMSE-SIC receiver
1 - -
0 1
0 2 4 r
3 3

one receive antenna, the MISO channel is simply a row vector and it aligns
itself in the direction of the smallest singular value of the codeword differ-
ence matrix (cf. Section 9.2.3). Here, there are n,;, directions for the MIMO
channel and the corresponding design criterion is an extension of that for the
MISO channel: the universal code design criterion at high SNR is to maximize

MAy- A, (9.78)

Mmin

where A, ..., A, —are the smallest n,,, singular values of the normalized
codeword difference matrices (cf. (9.68)). The derivation is carried out in
Exercise 9.22. With n, < n_, this is just the determinant criterion, derived in
Chapter 3 by averaging the code performance over the i.i.d. Rayleigh statistics.

The exact code design criterion at an intermediate value of SNR is sim-

ilar to the expression for the universal code design for the parallel channel
(cf. (9.49)).

Property of an approximately universal code

Using exactly the same arguments as in Section 9.2.2, we can use the uni-
versal code design criterion developed above to characterize the property of
a code that makes it approximately universal over the MIMO channel (see
Exercise 9.23):

1
2R/nmin ’

Nmin

[A A, A |2/”min -

(9.79)

Mmin

As in the parallel channel (cf. Exercise 9.14), this condition is only an
order-of-magnitude one. A relaxed condition

|)‘1)\2/\

[#/mmin > ¢. ———— for some constant ¢ > 0,  (9.80)
n.. DR/
min

Mmin
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can also be used for approximate universality: it is sufficient to guarantee that
the code achieves the optimal diversity—multiplexing tradeoff. We can make
a couple of interesting observations immediately from this result.

e If a code satisfies the condition for approximate universality in (9.80) for
an n, X n, MIMO channel with n, > n,, i.e., the number of receive antennas
is equal to or larger than the number of transmit antennas, then it is also
approximately universal for an n, x [ MIMO channel with [ > n,.

® The singular values of the normalized codeword matrices are upper bounded
by 2./n, (Exercise 9.24). Thus, a code that satisfies (9.80) for an n, x n,
MIMO channel also satisfies the criterion in (9.80) for an n, x / MIMO
channel with / < n,. Thus is it also approximately universal for the n, x [
MIMO channel with / < n,.

We can conclude the following from the above two observations:

A code that satisfies (9.80) for an n, x n, MIMO channel is approximately
universal for an n, x n, MIMO channel for every value of the number of
receive antennas n,.

Exercise 9.25 shows a rotation code that satisfies (9.80) for the 2 x 2 MIMO
channel; so this code is approximately universal for every 2 x n, MIMO channel.

We have already observed that the D-BLAST architecture with approx-
imately universal parallel channel codes for the interleaved streams is
approximately universal for the MIMO channel. Alternatively, we can see its
approximate universality by explicitly verifying that it satisfies the condition
in (9.80) with n, = n,. Here, we will see this for the 2 x 2 channel with two
interleaved streams in the D-BLAST transmit codeword matrix (cf. (9.77)).
The normalized codeword difference matrix can be written as

0o 40 g%
D:[dm poae (9.81)
A A

where (d;f) , dﬁf)) is the normalized pairwise difference codeword for an approx-

imately universal parallel channel code and satisfies the condition in (9.53):

1dYd ] > (=1,2. (9.82)

4.2R’
Here R is the rate in bits/s/Hz in each of the streams. The product of the two
singular values of D is

A7A5 = det(DD¥)
1 1 2 2 2 1
= |dy P +1dy 5P +1dy P

1

7 gk

(9.83)
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where the last inequality follows from (9.82). A rate of R bits/s/Hz on
each of the streams corresponds to a rate of 2R/3 bits/s/Hz on the MIMO
channel. Thus, comparing (9.83) with (9.79), we have verified the approximate
universality of D-BLAST at a reduced rate due to the initialization loss. In
other words, the diversity gain obtained by the D-BLAST architecture in
(9.77) at a multiplexing rate of r over the MIMO channel is d*(3r/2).

Discussion 9.1 Universal codes in the downlink

Consider the downlink of a cellular system where the base-stations are
equipped with multiple transmit antennas. Suppose we want to broadcast
the same information to all the users in the cell in the downlink. We would
like our transmission scheme to not depend on the number of receive
antennas at the users: each user could have a different number of receive
antennas, depending on the model, age, and type of the mobile device.
Universal MIMO codes provide an attractive solution to this problem.
Suppose we broadcast the common information at rate R using a space-
time code that satisfies (9.79) for an n, x n, MIMO channel. Since this
code is approximately universal for every n, x n, MIMO channel, the
diversity seen by each user is simultaneously the best possible at rate R.
To summarize: the diversity gain obtained by each user is the best possible
with respect to both
e the number of receive antennas it has, and
o the statistics of the fading channel the user is currently experiencing.

Chapter 9 The main plot

For a slow fading channel at high SNR, the tradeoff between data rate
and error probability is captured by the tradeoff between multiplexing and
diversity gains. The optimal diversity gain d*(r) is the rate at which outage
probability decays with increasing SNR when the data rate is increasing as
rlog SNR. The classical diversity gain is the diversity gain at a fixed rate,
i.e., the multiplexing gain r = 0.

The optimal diversity gain d*(r) is determined by the outage probability
of the channel at a data rate of rlog SNR bits/s/Hz. The operational inter-
pretation is via the existence of a universal code that achieves reliable
communication simultaneously over all channels that are not in outage.

The universal code viewpoint provides a new code design criterion. Instead
of averaging over the channel statistics, we consider the performance of a
code over the worst-case channel that is not in outage.
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e For the parallel channel, the universal criterion is to maximize the product
of the codeword differences. Somewhat surprisingly, this is the same as
the criterion arrived at by averaging over the Rayleigh channel statistics.

e For the MISO channel, the universal criterion is to maximize the smallest
singular value of the codeword difference matrices.

e For the n, x n, MIMO channel, the universal criterion is to maximize the
product of the n,;, smallest singular values of the codeword difference
matrices. With n, > n,, this criterion is the same as that arrived at by
averaging over the i.i.d. Rayleigh statistics.

The MIMO channel can be transformed into a parallel channel via

D-BLAST. This transformation is universal: universal parallel channel

codes for each of the interleaved streams in D-BLAST serve as a uni-

versal code for the MIMO channel. The rate loss due to initialization in

D-BLAST can be reduced by increasing the number of interleaved streams.

For the MISO channel, however, the D-BLAST transformation with only

one stream, i.e., using the transmit antennas one at a time, is approximately

universal within the class of channels that have i.i.d. fading coefficients.

9.3 Bibliographical notes

The design of space-time codes has been a fertile area of research. There are books that
provide a comprehensive view of the subject: for example, see the books by Larsson, Sto-
ica and Ganesan [72], and Paulraj et al. [89]. Several works have recognized the tradeoff
between diversity and multiplexing gains. The formulation of the coarser scaling of error
probability and data rate and the corresponding characterization of their fundamental
tradeoff for the i.i.d. Rayleigh fading channel is the work of Zheng and Tse [156].

The notion of universal communication, i.e., communicating reliably over a class of
channel, was first formulated in the context of discrete memoryless channels by Black-
well eral. [10], Dobrushin [31] and Wolfowitz [146]. They showed the existence of
universal codes. The results were later extended to Gaussian channels by Root and
Varaiya [103]. Motivated by these information theoretic results, Wesel and his coau-
thors have studied the problem of universal code design in a sequence of works, start-
ing with his Ph.D. thesis [142]. The worst-case code design metric for the parallel
channel and a heuristic derivation of the product distance criterion were obtained in
[143]. This was extended to MIMO channels in [67]. The general concept of approxi-
mate universality in the high SNR regime was formulated by Tavildar and Viswanath
[118]; earlier, in the special case of the 2 x 2 MIMO channel, Yao and Wornell [152]
used the determinant condition (9.80) to show the tradeoff-optimality of their rotation-
based codes. The conditions derived for approximate universality, (cf. (9.38), (9.53),
(9.70) and (9.80)) are also necessarys; this is derived in Tavildar and Viswanath [118].

The design of tradeoff-optimal space-time codes is an active area of research, and
several approaches have been presented recently. They include: rotation-based codes
for the 2 x 2 channel, by Yao and Wornell [152] and Dayal and Varanasi [29]; lattice
space-time (LAST) codes, by El Gamal etal. [34]; permutation codes for the parallel
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channel derived from D-BLAST, by Tavildar and Viswanath [118]; Golden code, by
Belfiore etal. [5] for the 2 x 2 channel; codes based on cyclic divisional algebras,
by Elia etal. [35]. The tradeoff-optimality of most of these codes is demonstrated by
verifying the approximate universality conditions.

Exercise 9.1 Consider the L-parallel channel with i.i.d. Rayleigh coefficients. Show
that the optimal diversity gain at a multiplexing rate of r per sub-channel is L — Lr.

Exercise 9.2 Consider the repetition scheme where the same codeword is transmitted over
the L i.i.d. Rayleigh sub-channels of a parallel channel. Show that the largest diversity
gain this scheme can achieve at a multiplexing rate of r per sub-channel is L(1 — Lr).

Exercise 9.3 Consider the repetition scheme of transmitting the same codeword over
the n, transmit antennas, one at a time, of an i.i.d. Rayleigh fading n, x n, MIMO chan-
nel. Show that the maximum diversity gain this scheme can achieve, at a multiplexing
rate of r, is n.n. (1 —n,r).

Exercise 9.4 Consider using the Alamouti scheme over a 2 X n, i.i.d. Rayleigh fading
MIMO channel. The transmit codeword matrix spans two symbol times m = 1, 2 (cf.

Section 3.3.2):
{“1 ] } . (9.84)
Uy i

1. With this input to the MIMO channel in (9.71), show that we can write the output
over the two time symbols as (cf. (3.75))

yiil | | b hy ||w w[l]
[(y[Z]*)’} B [(h;)f —(hf)’} [MJ + [(w[z]*),} : (9.85)

Here we have denoted the two columns of H by h, and h,.

2. Observing that the two columns of the effective channel matrix in (9.85) are
orthogonal, show that we can extract simple sufficient statistics for the data symbols
uy, uy (cf. (3.76)):

ri=Hlu+w, i=12. (9.86)

Here ||HJ||> denotes ||h,||>+ ||h,||> and the additive noises w, and w, are i.i.d.
CN(0,1).

3. Conclude that the maximum diversity gain seen by either stream (u, or u,) at a
multiplexing rate of r per stream is 2n,(1 —r).

Exercise 9.5 Consider the V-BLAST architecture with a bank of decorrelators for the
n, x n, ii.d. Rayleigh fading MIMO channel with n, > n,. Show that the effective
channel seen by each stream is a scalar fading channel with distribution )(g(nrn[ iy
Conclude that the diversity gain with a multiplexing gain of r is (n, —n,+1) (1—r/n,).
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Exercise 9.6 Verify the claim in (9.28) by showing that the sum of the pairwise error
probabilities in (9.26), with x,, X each a pair of QAM symbols (the union bound on
the error probability) has a decay rate of 2 — r with increasing SNR.

Exercise 9.7 The result in Exercise 9.6 can be generalized. Show that the diversity
gain of transmitting uncoded QAMs (each at a rate of R = r/nlogSNR bits/s/Hz) on
the n transmit antennas of an i.i.d. Rayleigh fading MIMO channel with n receive
antennas is n—r.

Exercise 9.8 Consider the expression for pmim in (9.29) and for pi® in (9.30). Suppose
that the entries of the MIMO channel H have some joint distribution and are not
necessarily i.i.d. Rayleigh.

1. Show that

P4 (rlog SNR) > p™m™ (rlog SNR) > P{log det(L, +SNR HH") < rlogSNR}.
(9.87)

iid with

2. Show that the lower bound above decays at the same polynomial rate as pl,

increasing SNR.
3. Conclude that the polynomial decay rates of both p™im™ and p
SNR are the same.

iid

o With increasing

Exercise 9.9 Consider a scalar slow fading channel
ylm] = hx[m]+ w[m], (9.88)

with an optimal diversity—multiplexing tradeoff d*(-), i.e.,

10gpout(rlogSNR) _ *
SNR oo ~ logSNR —4"()- (089)

Let € > 0 and consider the following event on the channel gain A:
E, := {h:log(1 + |h|*SNR'™¢) < R}. (9.90)

1. Show, by conditioning on the event E, or otherwise, that the probability of error
p.(SNR) of QAM with rate R = r1log SNR bits/symbol satisfies

log p.(SNR)

SR log SNR =-da'(H1-e). ©91)

Hint: you should show that conditional on the E_ not happening, the probability
of error decays very fast and is negligible compared to the probability of error
conditional on E, happening.

2. Hence, conclude that QAM achieves the diversity—multiplexing tradeoff of any
scalar channel.

3. More generally, show that any constellation that satisfies the condition (9.38)
achieves the diversity—multiplexing tradeoff curve of the channel.

4. Even more generally, show that any constellation that satisfies the condition

> >co— for any constant ¢ > 0 (9.92)
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achieves the diversity—multiplexing tradeoff curve of the channel. This shows that
the condition (9.38) is really only an order-of-magnitude condition. A slightly
weaker version of this condition is also necessary for a code to be approximately
universal; see [118].

Exercise 9.10 Consider coding over a block length N for communication over the
parallel channel in (9.17). Derive the universal code design criterion, generalizing the
derivation in Section 9.2.2 over a block length of 1.

Exercise 9.11 In this exercise we will try to explicitly calculate the universal code

design criterion for the parallel fading channel; for given differences between a pair

of normalized codewords, the criterion is to maximize the expression in (9.49).

1. Suppose the codeword differences on all the sub-channels have the same magnitude,
ie., |d,|=---=|d.|. Show that in this case the worst case channel is the same over
all the sub-channels and the universal criterion in (9.49) simplifies considerably to

LR —1)|d,|. (9.93)

2. Suppose the codeword differences are ordered: |d,| <--- <|d,|.
(a) Argue that if the worst case channel 4, on the ¢th sub-channel is non-zero,
then it is also non-zero on all the sub-channels 1,...,¢—1.
(b) Consider the largest k such that

|d [ <27 |d, - dy P < |dy (9.94)

with |d; | defined as +oc. Argue that the worst-case channel is zero on all the
sub-channelsk+1, . .., L.Observe that k = L when all the codeword differences
have the same magnitude; this is in agreement with the result in part (1).
3. Use the results of the previous part (and the notation of k from (9.94)) to derive
an explicit expression for A in (9.49):

Md,--d ) =278, (9.95)

Conclude that the universal code design criterion is to maximize

k
(k(2RL|dld2'“dk|2)l/k_Z|dl£|2>' (9.96)

=1

Exercise 9.12 Consider the repetition code illustrated in Figure 9.12. This code is for
the 2-parallel channel with R = 2 bits/s/Hz per sub-channel. We would like to evaluate
the value of the universal design criterion, minimized over all pairs of codewords.
Show that this value is equal to 8/3. Hint: The smallest value is yielded by choosing
the pair of codewords as nearest neighbors in the QAM constellation. Since this is a
repetition code, the codeword differences are the same for both the channels; now use
(9.93) to evaluate the universal design criterion.

Exercise 9.13 Consider the permutation code illustrated in Figure 9.13 (with
R = 2bits/s/Hz per sub-channel). Show that the smallest value of the universal design
criterion, minimized over all choices of codeword pairs, is equal to 44/9.
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Exercise 9.14 In this exercise we will explore the implications of the condition for

approximate universality in (9.53).

1. Show that if a parallel channel scheme satisfies the condition (9.53), then it achieves
the diversity—multiplexing tradeoff of the parallel channel. Hint: Do Exercise 9.9 first.

2. Show that the diversity—multiplexing tradeoff can still be achieved even when the
scheme satisfies a more relaxed condition:

1
|ddy---d, """ > c- Bk for some constant ¢ > 0. (9.97)

Exercise 9.15 Consider the class of permutatation codes for the L-parallel channel

described in Section 9.2.2. The codeword is described as (¢, m,(q), . . . , 7,(g)) where ¢

belongs to a normalized QAM (so that each of the I and Q channels are peak constrained
by 21) with 2X% points; so, the rate of the code is R bits/s/Hz per sub-channel. In this
exercise we will see that this class contains approximately universal codes.

1. Consider random permutations with the uniform measure; since there are 25!
of them, each of the permutations occurs with probability 1/25%1. Show that the
average inverse product of the pairwise codeword differences, averaged over both
the codeword pairs and the random permutations, is upper bounded as follows:

1
Eﬂz sssss L |:2LR(2LR —1)

1
x <L"R".
qgn lay — 1|y (q)) — my(g) P -+ |7 (qy) — 7TL(6]2)|2:|
(9.98)
2. Conclude from the previous part that there exist permutations ,, . . . , 7, such that

1 1
Le(x )

o \gza [0 — @l lm(q) = m(q) P - [7.(q)) — 7. (q0)
< L*R"2'%, (9.99)

3. Now suppose we fix g; and consider the sum of the inverse product of all the
possible pairwise codeword differences:

O . 1
flan) = qun la, — @212y (q1) — T2 (q) 12 -+ - |7 (qy) — 7TL(‘12)|2.

(9.100)

Since f(g,) > 0, argue from (9.99) that at least half the QAM points g, must have
the property that

f(g,) <2LFRF2'R, (9.101)

Further, conclude that for such g, (they make up at least half of the total QAM
points) we must have for every ¢, # ¢, that

1
lay — P (q) = ma(@) P+ |7 (q) — 7 (90) P = DLLRLOLR (9.102)
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4. Finally, conclude that there exists a permutation code that is approximately uni-

versal for the parallel channel by arguing the following:

® Expurgating no more than half the number of QAM points only reduces the
total rate LR by no more than 1 bit/s/Hz and thus does not affect the multiplex-
ing gain.

® The product distance condition on the permutation codeword differences in
(9.102) does not quite satisfy the condition for approximate universality in (9.97).
Relax the condition in (9.97) to

1
|dd,---d,|”* > T for some constant ¢ > 0, (9.103)
and show that this is sufficient for a code to achieve the optimal diversity—
multiplexing tradeoff curve.

Exercise 9.16 Consider the bit-reversal scheme for the parallel channel described in
Section 9.2.2. Strictly speaking, the condition in (9.57) is not true for every integer
between 0 and 2% — 1. However, the set of integers for which this is not true is small
(i.e., expurgating them will not change the multiplexing rate of the scheme). Thus the
bit-reversal scheme with an appropriate expurgation of codewords is approximately
universal for the 2-parallel channel. A reading exercise is to study [118] where the
expurgated bit-reversal scheme is described in detail.

Exercise 9.17 Consider the bit-reversal scheme described in Section 9.2.2 but with
every alternate bit flipped after the reversal. Then for every pair of normalized code-
word differences, it can be shown that

|d,d,|* > (9.104)

1
64 -22R’
where the data rate is R bits/s/Hz per sub-channel. Argue now that the bit-reversal
scheme with alternate bit flipping is approximately universal for the 2-parallel channel.
A reading exercise is to study the proof of (9.104) in [118]. Hint: Compare (9.104)
with (9.53) and use the result derived in Exercise 9.14.

Exercise 9.18 Consider a MISO channel with the fading channels from the n, transmit

antennas, h, ..., hm’ i.i.d.
1. Show that
]P’{log (H—S:RimF) <rlogSNR} (9.105)
t =1
and
P {ilog(l +SNR| 7, |*) < n,rlog SNR} (9.106)
=1

have the same decay rate with increasing SNR.

2. Interpret (9.105) and (9.106) with the outage probabilities of the MISO channel
and that of a parallel channel obtained through an appropriate transformation of
the MISO channel, respectively. Argue that the conversion of the MISO channel
into a parallel channel discussed in Section 9.2.3 is approximately universal for
the class of i.i.d. fading coefficients.
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Exercise 9.19 Consider an n, x n, matrix D. Show that

min h*DD*h = A%, (9.107)

h:|h||=1

where A, is the smallest singular value of D.

Exercise 9.20 Consider the Alamouti transmit codeword (cf. (9.84)) with u,, u, inde-
pendent uncoded QAMs with 2% points in each.
1. For every codeword difference matrix

d, — d
108
2], o1

show that the two singular values are the same and equal to /|d, |> +|d,|?.

2. With the codeword difference matrix normalized as in (9.68) and each of the QAM
symbols u,, u, constrained in power of SNR/2 (i.e., both the I and Q channels are
peak constrained by +./SNR/2), show that if the codeword difference d, is not
zero, then it is

2

CARETE

t=1,2.

3. Conclude from the previous steps that the square of the smallest singular value
of the codeword difference matrix is lower bounded by 2/2%. Since the condition
for approximate universality in (9.70) is an order-of-magnitude one (the constant
factor next to the 2% term does not matter, see Exercises 9.9 and 9.14), we have
explicitly shown that the Alamouti scheme with uncoded QAMSs on the two streams
is approximately universal for the two transmit antenna MISO channel.

Exercise 9.21 Consider the D-BLAST architecture in (9.77) with just two interleaved
streams for the 2 x 2 i.i.d. Rayleigh fading MIMO channel. The two streams are
independently coded at rate R = rlog SNR bits/s/Hz each and composed of the pair
of codewords xif), xg) for £ =1, 2. The two streams are coded using an approx-
imately universal parallel channel code (say, the bit-reversal scheme described in
Section 9.2.2).

A union bound averaged over the Rayleigh MIMO channel can be used to show
that the diversity gain obtained by each stream with joint ML decoding is 4 —2r.

A reading exercise is to study the proof of this result in [118].

Exercise 9.22 [67] Consider transmitting codeword matrices of length at least n, on

the n, x n, MIMO slow fading channel at rate R bits/s/Hz (cf. (9.71)).

1. Show that the pairwise error probability between two codeword matrices X, and
X, conditioned on a specific realization of the MIMO channel H, is

/SNR
Q( 2||HD||2) , (9.109)

where D is the normalized codeword difference matrix (cf. (9.68)).
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2. Writing the SVDs H := U, WV7 and D := U,AV}, show that the pairwise error
probability in (9.109) can be written as

0 (,/ SI;RH\I'VTUZMP) . (9.110)

3. Suppose the singular values are increasingly ordered in A and decreasingly ordered
in W. For fixed ¥, A, U,, show that the channel eigendirections V} that minimize
the pairwise error probability in (9.110) are

vV, =0, (9.111)

4. Observe that the channel outage condition depends only on the singular values ¥
of H (cf. Exercise 9.8). Use the previous parts to conclude that the calculation
of the worst-case pairwise error probability for the MIMO channel reduces to the
optimization problem

. SNR £
min = > ¢, [*|A, )% (9.112)

LRRRRS "'min 2 =1

subject to the constraint
Mmin SNR
> log (1+—|¢l|2) >R. (9.113)
=1 n

Here we have written

W =diag{{y,..., ¢, }, and A:=diag{A,...,A,}.

5. Observe that the optimization problem in (9.112) and the constraint (9.113) are
very similar to the corresponding ones in the parallel channel (cf. (9.43) and (9.40),
respectively). Thus the universal code design criterion for the MIMO channel is
the same as that of a parallel channel (cf. (9.47)) with the following parameters:
® there are n,,;, sub-channels,
® the rate per sub-channel is R/n,,, bits/s/Hz,

¢ the parallel channel coefficients are ¢, ..., ¢, . the singular values of the
MIMO channel, and
® the codeword differences are the smallest singular values, A, . .. ,)\nmi“, of the

codeword difference matrix.

Exercise 9.23 Using the analogy between the worst-case pairwise error probability of a
MIMO channel and that of an appropriately defined parallel channel (cf. Exercise 9.22),
justify the condition for approximate universality for the MIMO channel in (9.79).

Exercise 9.24 Consider transmitting codeword matrices of length [ > n, on the n, X n,
MIMO slow fading channel. The total power constraint is SNR, so for any transmit
codeword matrix X, we have ||X||?> < ISNR. For a pair of codeword matrices X, and
X, let the normalized codeword difference matrix be D (normalized as in (9.68)).
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1. Show that D satisfies

2
D|> < — (IX, 1P+ IX5]?) < 4L 9.114
D]l —SNR(” AP+ 1X5]7) < (9.114)
2. Writing the singular values of D as A, . . ., ’\nu show that
YA <4l (9.115)

=1

Thus, each of the singular values is upper bounded by 2+/1, a constant that does
not increase with SNR.

Exercise 9.25 [152] Consider the following transmission scheme (spanning two sym-
bols) for the two transmit antenna MIMO channel. The entries of the transmit codeword
matrix X := [x;,] are defined as

["”} :=R(6,) [“1} , and ["21} .= R(0,) {”*} . (9.116)
X2 U X1 Uy

Here u,, u,, us, u, are independent QAMs of size 2%/? each (so the data rate of this
scheme is R bits/s/Hz). The rotation matrix R(0) is (cf. (3.46))

9.117
sin 6 cos 6 ( )

R(0) = |:c030 — sine]

With the choice of the angles 6,, 6, equal to 1/2tan"'2 and 1/2tan~!(1/2) radians
respectively, Theorem 2 of [152] shows that the determinant of every normalized
codeword difference matrix D satisfies

|detD|* >

: 118
= 10-2F ©.118)

Conclude that the code described in (9.116), with the appropriate choice of the angles
0,, 0, above, is approximately universal for every MIMO channel with two transmit
antennas.



