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Abstract— This work develops control design technology for
active shape control of reflective surfaces using large spatially
distributed actuator arrays. The potential applications are in as-
tronomy, adaptive optic, beam control, space-based imaging, and
other optics and imaging applications. In a very large lightweight
active reflector, surface shape (figure) might be controlled by
an array of actuators and sensors that counts millions of cells.
The control technology discussed in this paper is scalable to
these large array dimensions. This paper develops a classically-
motivated design methodology for distributed localized control
laws of very large actuator/sensor arrays. The methodology uses
standard PI-compensation, plus lags and/or notch-filters, to deal
with temporal dynamics in each actuator channel. It achieves
scalability to very large array sizes by imposing spatially localized
fixed-form constraints on the control law structure. In this setup,
the entire spatial-temporal design model can be transformed, via
Laplace transforms in time and 2-D discrete Fourier transforms
in space, to produce a family of dynamic systems whose closed
loop characteristics can be subjected to standard classical control-
engineering specifications, including stability, performance, and
robustness. These specifications can be satisfied for all members
of the family by solving linear programs to find parameters of
the fixed-form structure. The veracity of this methodology is
illustrated with a design example loosely resembling an actively
controlled reflector whose local deformations are controlled by a
hexagonal array of actuator/sensor cells.

Index Terms— active reflector control, multidimensional sys-
tem, distributed systems, control design

I. INTRODUCTION

THIS work develops control design technology for active
shape control of reflective surfaces using large spatially

distributed actuator arrays. The potential applications are in
astronomy, adaptive optics, and space areas. Reflectors with
actuators that help to attain and hold a given shape are usually
known as ‘active’ reflectors. These require setpoint control.
Unlike that, ‘adaptive’ mirrors are continuosely changing their
shape to counter atmospheric disturbances. This requires servo
control. Practical design of low-bandwidth servo control is the
same as setpoint control design and these are not distinguished
in this paper.

In a large reflector, surface shape (figure) is controlled by
an array of actuators and sensors that might count millions of
cells. The control technology discussed in this paper is scalable
to these large array dimensions. One application area where
large active mirror surfaces would be required is for space
born instruments: optical, infrared, or radio frequency. Very
large lightweight space reflectors must have low areal density,

Honeywell Laboratoriess, Minneapolis, MN 55418
Honeywell Laboratories, Fremont, CA 94539; gorinevsky@ieee.org,

dimitry. gorinevsky@honeywell.com

and they must be deployable to limit launch volume. They
are subject to initial deployment errors and figure distortions,
such as caused by thermal disturbances. Thus, there is a need
and many on-going efforts to develop active reflectors as
“smart structures”. The mirror surface shape (figure) of such
reflectors is controlled by an array of actuator/sensor cells that
measure and compensate distortions. Large reflectors with fine
granularity may need millions of such cells.

A concept for active space reflectors described in [6] en-
visions special membranes attached to the reflector surface
with integrated actuators, sensors, and computing elements.
Plastic micro-electro-mechanical system (MEMS) actuators
embedded in the membrane would be distributed on a regular
hexagonal grid. Each cell of the grid would have a collocated
local deformation sensor and a computing element controlling
the actuator. The figure control approach would perform most
of the computations for each actuator locally, using infor-
mation from near neighbors only. The architecture requires
neighbor-to-neighbor communication only and is scalable to
extremely large numbers of cells, irrespective of the specific
design of actuators, cell grid patterns, sensors, and comput-
ing/communication platforms.

In addition to active primary reflectors, the distributed
localized control technology discussed in this paper is also
applicable to deformable mirrors elsewhere in the optical
path. Deformable mirrors in active or adaptive optics systems
are used for conjugating wavefront to correct disturbances
caused by mis-figured primary mirrors or by atmospheric
turbulence. Current deformable mirrors use piezoelectric or
electrostatic actuators with up to 100,000 elements. There is
also a significant effort to develop deformable mirrors based
on MEMS technology. Such mirrors will be relatively small,
and they may have millions of actuators to enable mega-pixel
resolution images.

Deformable mirrors in adaptive optics systems are usually
controlled with a centralized computer using sparse matrix in-
version techniques. Decentralized localized control approaches
will significantly improve computational performance, and
for MEMS technology, they could be implemented on the
same silicon substrate as the actuator. A description of an
experimenal MEMS adaptive optics system with distributed
local computing can be found in [12].

While localized control architectures can be easily under-
stood and explained, the design of scalable distributed control
laws for such architectures is a more difficult engineering
task. It is not covered by existing control technologies. The
purpose of this work is to develop and demonstrate design
methods for this task, applicable to two-dimensional (2-D)
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arrays, and based on explicit engineering specifications. The
usual requirements of performance, robustness, and actuator
range are considered with an emphasis on spatial frequency
domain properties of the control loop. The systematic control
design and analysis approach in this paper involves system
performance parameters and can be used as an integral part
of system trade studies when designing large-scale actively
controlled reflectors. The models and parts of the control
design problem formulation in this paper are related to these
in [10], [7], where some more references to the telescope
applications can be found. The design and analysis approach
herein is however different.

Mathematical approaches to analysis and design of feedback
control of large distributed systems with regular array structure
are proposed and explored in a number of publications. The
most relevant to the topic of this paper are [1], [2], [3], [4],
[10], where further references can be found. Most of the
cited work is concerned with formal mathematical feedback
control design in the spirit of the modern-control era. In
this work, we approach the design problem from a more
classical and practical perspective. Temporal loops are taken
to be simple PI-structures, augmented with high-frequency
compensation to handle resonant flexible dynamics. These
controller structures are appropriate for many, if not most,
practical situations. We achieve scalability to large array sizes
by imposing distributed local control as a fixed-form constraint
on the spatial control structure. Linear programs (LPs) are then
used to find parameters for the fixed-form structure that satisfy
explicit engineering specifications. Conceptually, this approach
follows the work in [5]. It extends that work to two spatial
dimensions, it adds additional considerations of dynamical
bandwidth, and it also expands the list of engineering specifi-
cations. In particular, this paper explicitly adds modeling error
robustness to the specifications and incorporates these into the
LP optimization framework .

An approach closely related to ours is spatial loop-shaping
(or tuning) of distributed controllers, as discussed in [8],
[9]. This approach was successfully applied to industrial
process control (paper machine) applications with hundreds
of actuators. Like the approach in this paper, spatial loop-
shaping accommodates many important engineering specifica-
tions for control design. The localized controllers in [8], [9]
are obtained by truncating non-localized controllers. Herein,
optimized localized controllers are synthesized directly.

II. SYSTEM MODELS FOR TWO-DIMENSIONAL ARRAYS

As described above, the systems under consideration in this
paper consist of large arrays of actuators and sensors, arranged
so that they can collectively deform a surface in order to
achieve desired nominal shapes, or to correct shape imperfec-
tions, and/or to counter dynamic disturbances. Mathematical
models for these systems are described below.

We assume that each actuator, when displaced individually,
creates a static (steady state) surface deformation called an
actuator influence function, designated by hk(x−xk, y− yk).
Here the index k references a specific actuator, hk is the
actuator’s surface deformation caused by a unit displacement,

x, y are spatial coordinates of the surface, and xk, yk describe
the actuator’s location. We further assume that the surface
deformation mechanism is linear, so that total deformations
are sums of deformations created by individual actuators, i.e.

d(x, y) =
N∑

k=1

hk(x − xk, y − yk) uk, (1)

where d(x, y) is the total surface deformation, N is the
total number of actuators, and uk are individual actuator
displacements.

Of course, the actuator influence functions hk(x − xk, y −
yk) in (1) depend on the membrane material, thickness,
attachement to actuators, and its other physical properties.
Bending stiffness and tension of the membrane mean that the
deformation of one cell influences the deformation of another.
This paper describes the influence empirically by functions
hk(x−xk, y−yk) without getting into the mechanical design
detail.

Each actuator has an associated sensor that measures either
the precise deformation of the surface at location xk, yk or
its weighted spatial average in a neighborhood of xk, yk.
The latter situation is generally preferred because it helps to
alleviate spatial-aliasing phenomena in the sensing system.
In either case, the sensed outputs can be written as (l =
1, 2, . . . , N )

dl = d (xl, yl) =
N∑

k=1

hk(xl − xk, yl − yk) uk, (2)

where d and hk correspond either directly to their counterparts
in Eqn (1), or they correspond to weighted spatial averages, as
defined by the sensors’ design. We will use the same symbols
for both cases. Of course, Eqn (2) can be expressed in the
more compact vector-matrix notation,

d = H u (3)

with N -vector d = {dl}, N -vector u = {uk}, and N × N -
matrix H = {hk(xl − xk, yl − yk)}. The detailed structure of
matrix H is determined by the specific ordering scheme used
to index individual cells in the array.

Equation (3) defines steady state deformations measured by
all sensors due to known displacements of all actuators. Such
a steady-state model is commonly used in design of adaptive
optics systems and assumes that the actuator authority is
sufficient to overpower the dynamics of the deformed surface.
This assumption might become less valid for very large scale
actuator arrays, where each actuator is less powerful. In that
case, the deformations d in (3) do not appear instantaneously.
Rather, they experience dynamic evolutions in response to
actuator displacement commands. Such dynamics are associ-
ated with the surface itself (e.g., distributed mass and stiffness
producing damped resonances), with the response of actuators
to commands (e.g., spring-mass and/or RLC circuit lags), and
with dynamic elements deliberately introduced in the control
law (e.g., integral action).

For purposes of this paper, we will assume that dynamic
responses of surface deformation can be characterized by
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temporal frequency responses such as those shown in Fig-
ure 1A. They consist of flat (steady state) responses at low
frequencies, followed by a series of resonances at higher
frequencies corresponding to actuator dynamics and resonance
modes of the surface. These characteristics represent a broad
class of surface control problems. In particular, detailed partial
differential equation models and their finite element approxi-
mations exhibit them naturally.
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Fig. 1. Surface Deformation Dynamics. A) Typical Temporal Frequency
Response of hmn; B) Response with Lag Compensation To Suppress Reso-
nances; C) Response with Lag Compensation and Integral Action

Key parameters of these responses are their DC gains
hlk, their resonance frequencies ω0, ω1 . . ., and their damping
ratios ς0, ς1 . . . specifying the height of resonance peaks.
While much academic research has been done to attempt high
bandwidth control of such resonant systems (e.g., crossover
frequencies ωc > ω0), more pragmatic control design practice
calls for crossover below ω0. Lag compensation and/or notch-
filter compensation is used to suppress resonance peaks (as
illustrated in Figure 1B), and integral action is used to raise
low frequency loop gains (Figure 1C). A ‘rule of thumb’ for
maximum achievable crossover frequencies with this design
practice is ωc ≈ 0.5ς0ω0.

Following such pragmatic design, we will assume that
temporal control compensation consists of identical lag- and/or
notch-filters in each sensor channel plus integral action,
modified by small amounts of ‘integrator leakage’. These
assumptions yield the following approximate spatial-temporal
deformation model, valid for all temporal frequencies ω <
0.5ς0ω0:

du

dt
= −Au + ucmd

d = Hu + d0 (4)

In this model, the N × N -matrix A represents integrator
leakage. Its nominal value will be A = 0, corresponding to
pure integral action. However, some deformation matrices H
will require A to be non-zero in order to construct averages
of u over spatial neighborhoods to maintain stability in the
presence of small gains in certain spatial directions of H .
This will be discussed in more detail later. Also, the term
d0 represents external disturbances creating undesired surface
deformations to be compensated via active control.

On first inspection, the model in Eqn (4) is an ordinary
multivariable dynamic system for which standard multivariable
analysis/design techniques ought to provide adequate tools. In
one way or another, these standard techniques are based on
the principle of inversion, e.g., let

ucmd = −αHx(d − r), (5)

where scalar α is the desired temporal closed-loop bandwidth,
Hx is an ‘inverse’ of matrix H (either full or approximate)
and N -vector r is the desired (commanded) reference shape
for the surface deformation.

Upon substituting this control law into (4), the closed- loop
system becomes

du

dt
= −[A + α HxH]u + α Hx(r − d0)

d = Hu + d0 (6)

So, choosing Hx = H−1 and setting A = 0 produces very
nice closed-loop behavior:

du

dt
= −α(u − H−1(r − d0))

d = Hu + d0 (7)

Actuator displacements reach the steady state values H−1(r−
d0) with uniform temporal speeds-of-response (time constant
1/α), and surface deformations at all cells reach their desired
steady state values d = H(H−1(r−d0))+d0 = r in similarly
nice fashion.

Of course, circumstances are never ideal. Real H-matrices
are always uncertain. Often they are not even nominally
invertible, or they are so ill-conditioned that their full inverses
produce excessive actuator displacements, H−1(r − d0). So,
invariably, some form of approximate inverse must be used,
possibly based on singular value decompositions, on regu-
larization, or on modal decompositions. Unfortunately, these
various approximations are increasingly difficult to calculate
as array dimensions get very large (e.g., N ≈ 106). Moreover,
they are centralized, requiring all sensed signals to be com-
municated to a central processor and requiring its computed
control commands to be communicated back to all actuators
in hard-real-time. Today’s software packages, communication
architectures, and hardware elements have difficulty with such
demands.

For these various reasons, it proves useful to take advantage
of additional structure inherent in many large actuator/sensor
arrays, namely

1) identical influence functions for each cell,
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2) regular cell spacing along the coordinate axes, and
3) localized influence functions that cause significant non-

zero deformations only in small neighborhoods, relative
to the total extent of the array.

Actuator/sensor arrays with these features are called spatially
invariant. They can be approximated as infinite in extent,
and spatial transform methods can be applied to them in
order to simplify plant description, control design, and control
implementation [1], [3], [4], [5]. The needed concepts are
briefly summarized below.

On an assumed infinite 2-D spatial domain, the continuous
deformation function from Eqn (1) can be rewritten as

d(x, y) =
∞∑

m=−∞

∞∑
n=−∞

h(x − m ∆x, y − n∆y) umn (8)

where we have taken advantage of the actuators’ common in-
fluence function h(x, y) and their regular spacing at locations
m∆x, n∆y along the coordinate axes. The single index k has
been replaced by a double index m, n to reference individual
cells on the uniform 2-D grid.

Equation (8) is a two-dimensional convolution of the con-
tinuous function h(x, y) with the discrete sequence umn.
Assuming that the function is integrable and the sequence
summable, this convolution can be replaced by a product of
transforms. Namely,

d̃(ξ, λ) = h̃(ξ, λ)u∗(v, w)
∣∣∣
v=exp(jξ∆x), w=exp(jλ∆y)

(9)

where d̃(ξ, λ) and h̃(ξ, λ) denote the continuous (Fourier)
transforms of their respective functions, e.g., and û∗(v, w)
denotes the discrete z transform of the sequence umn. In both
cases, the variables ξ, λ represent spatial frequencies (e.g.,
radians/meter) along the spatial coordinates, so Eqn (9) can
be interpreted as a description of the frequency content of the
function d(x, y) on the spatial domain.

While Eqn (8) and its transform (9) are the primary objects
of interest for assessing effective control of surface deforma-
tions, the actual measurements available for control are limited
to a spatially sampled version of these equations. The sampled
equation corresponding to (2) is as follows

dop =
∞∑

m=−∞

∞∑
n=−∞

h((o − m)∆x, (p − n)∆y) umn (10)

where dop = d(o∆x, p∆y) and −∞ < o, p < ∞. Correspond-
ing discrete transform:

d∗(v, w) = h∗(v, w) u∗(v, w) (11)

On an assumed infinite 2-D spatial domain, the controller
structure implementing an integration with leakage in Eqn (4)
takes the form(

du

dt

)
mn

= ucmd;mn −
∞∑

o=−∞

∞∑
p=−∞

a(m−o) (n−p) uop (12)

Combining the spatial transforms (11) with a transform
a∗(v, w) computed for the kernel amn in the temporal con-
troller structure (12) yields spatial-temporal transfer functions

for the plant

s u∗(v, w) = −a∗(v, w) u∗(v, w) + u∗
cmd(v, w)

d∗(v, w) = h∗(v, w) u∗(v, w) + d∗0(v, w)

=
h∗(v, w)

s + a∗(v, w)
u∗

cmd(v, w) + d∗0(v, w),(13)

where the complex variable s is the usual temporal (Laplace)
transform for differentiation. Note that Eqn (13) describes a
family of first order dynamic systems whose variables and
parameters are indexed by the spatial frequencies v, w. In other
words, each frequency component of surface deformation is
governed by its own simple first order dynamic system!

Design methods for transform models (13) and (20) begin
by adding the following fixed-form control law to (12):

(ucmd)mn = −
∞∑

o=−∞

∞∑
p=−∞

k(m−o) (n−p) (dop − rop) (14)

where kmn is a discrete control influence function and rop is
the commanded reference shape. In what follows, we will use
the frequency transform k∗(v, w) of the kernel kmn.

Control law (14) has been successfully applied in numerous
practical 1-D control processes such as paper machines [8],
[9]. It uses the control influence function to feed back local
deformation errors dop − rop from each actuator/sensor cell as
well as other errors from a neighborhood around that cell. As
long as kmn is sufficiently localized (i.e., only a few layers
of neighboring cells have non-zero gains), implementations of
(14) can be spatially distributed and can therefore be scaled-up
to very large array dimensions.

The observation enabling the design and analysis in this
work is that whenever the kernels {hmn}, {kmn}, and {amn},
are symmetric (e.g., hmn = h−m−n, ∀ m,n), their transforms
h∗, a∗ and k∗ are real-valued for spatial frequencies on the
unit circle. This follows from the definition of (two-sided)
discrete transforms. It is further assumed that h∗, a∗ and k∗

are indeed real-valued on the unit circle. Without a loss of the
generality, it will be assumed that the gain h∗ is positive at the
frequencies where the system is controllable. The gain might
be zero at some frequencies.

III. MODEL UNCERTAINTIES

We now have two different models of actuator/sensor arrays
for surface deformation control. The first model is given by
Eqn (4). It properly accommodates finite spatial domains, arbi-
trary cell locations, and different actuator influence functions
across the array, as seen particularly near domain boundaries.
This generality is purchased at the expense of the curse of
dimensionality. The model’s applications, for both analysis and
control design, are restricted to modest array sizes.

The second model in give by Eqn (13). This model exploits
spatial invariance and an (assumed) infinite spatial domain
to approximate Eqn (4) as a family of first-order dynamic
systems. As demonstrated later, this simplification enables
analysis and design for arbitrarily large array sizes.

In the spirit of modern robust control, however, both models
must be seen as nominal descriptions only, and a deliberate
effort must be made to characterize their inherent uncertainties,
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in the presence of which eventual control designs are expected
to be robust.

For distributed actuator/sensor arrays, uncertainties are asso-
ciated primarily with the sampled actuator influence functions
in Eqn (2), i.e., hk(xl − xk, yl − yk). Even if these functions
are nominally identical for each cell of the array, their actual
shapes will differ from cell to cell because each cell is a
separate physical instantiation. Hence, it is reasonable to let
each function consist of the nominal shape modified by small
perturbations. We will take the perturbations to be members
of the following uncertainty set:

h̃k(xl − xk, yl − yk) = [1 + δk(·, ·)] hk(·, ·) (15)

−∆ ≤ δk(·, ·) ≤ ∆ ∀ k, l

Typical values of the uncertainty set’s magnitude bound are
∆ ≈ 0.05 − 0.2.

Substituting Eqn (15) into (4) gives the following perturbed
model:

d = (H + δH) u + d0, (16)

where again H = {hk(xl − xk, yl − yk)} and δH =
{δk(·, ·)hk(·, ·)}, with detailed structure depending on the
ordering scheme used to index the cells.

By choosing a specific member from the uncertainty set,
namely δk(xl − xk, yl − yk) = ∆, −∞ < k, l < ∞, it is easy
to see that the additive perturbations in (16) are bounded by

σmax(δH) ≤ ∆ · σmax(H) (17)

where σmax(M) is the usual maximum singular value of
matrix M.

Various Monte Carlo experiments have been performed on
models of the form (16) with identical nominal influence
functions, regular cell spacing, and modest overall dimensions
(e.g., spatially invariant systems with dimension N < ∞).
Using randomly selected perturbations from the uncertainty
set, statistically independent and uniformly distributed for each
cell, we searched for particularly ‘bad’ perturbations (in a
sense of the singular value σmax(δH) in (16) being large).
These experiments indicate that the ‘bad’ perturbations tend
to be similar for all cells and to take their values at extremes of
the uncertainty set, δ ≈ ±∆. Indeed, when the perturbations
are restricted to be identical for all cells and to take values at
extremes, then bad ones emerge in the experiments much more
frequently. These numerical results suggest that perturbations
for spatially invariant systems may be treated as spatially
invariant themselves, and that they can be assumed to take
only extreme values. Under these conditions, the uncertainty
set in Eqn (15) can be simplified to

h̃(m∆x, n∆y) = h̃mn = hmn + δmn hmn, (18)

δmn = ±∆, −∞ < m,n < ∞,

where again, the original index k has been replaced by the
double index m,n, referencing cells on a uniform 2-D grid.

Following standard temporal dynamic system theory, let
the norm of an influence function be defined as the supre-
mum over spatial frequencies of its transform, i.e., ‖h‖ =
supξ,λ |h∗(v, w)|v=exp(jξ∆x), w=exp(jλ∆y). Then, by selecting

the perturbation δmn = ∆, ∀ m,n, it is easy to see that the
additive perturbations in Eqn (18) are bounded by

‖{δmnhmn}‖ ≤ ∆ ‖h‖ (19)

Also, it is evident that for this selected perturbation its
peak magnitude occurs at the same frequencies as the peak
of h∗(v, w). Moreover, other perturbations can be constructed
that have the same norm, but have their peak at different
frequencies. For example, if the peak of h∗(v, w) happens
to occur at ξ = λ = 0 (spatial DC), then the modulation
δmn = ∆(−1)m+n, ∀ m,n moves the peak to the half-
Nyquist frequencies. Other modulations can be chosen to move
peaks to other frequencies, although not all frequencies are
available because modulation alternatives are discrete. The net
consequence is that the uncertainty set for spatially invariant
systems, Eqn (18), can be replaced with little conservatism by
a simpler set of additive perturbations with constant magni-
tude across all spatial frequencies. With this substitution, the
perturbed form of Model (13) becomes

d∗(v, w) =
h∗(v, w) + ε

s + a∗(v, w)
u∗

cmd(v, w) + d0(v, w) (20)

|ε| ≤ ∆ ‖h‖ , ∀ v, w

As a final observation, note that for spatially invariant arrays
with very large size N , both σmax(H) and ‖h‖ are operator
norms of the same convolution operation. Hence, Eqn (17)
and Eqn (19) express the same bound on uncertainties. And,
since perturbations exist for (19) that have their peaks at many
spatial frequencies, we must also expect that perturbations
exist for (17) that have their maximum singular value along
many singular-vector directions of matrix H , and specifically
along its weakest direction corresponding to σmin(H).

IV. CONTROL DESIGN USING TRANSFORM MODELS

Combining (20) and (14) gives the following closed loop
transfer functions:

Closed loop errors (sampled deformations):

e∗ = (r∗ − d∗) =
s + a∗

s + a∗ + (h∗ + ε) k∗ (r∗ − d∗0) (21)

Closed loop actuator displacements:

u∗ =
k∗

s + a∗ + (h∗ + ε) k∗ (r∗ − d∗0) (22)

Closed loop errors (continuous deformations):

d̃ = h̃u∗ + d̃0

ẽ = r̃ − d̃ = r̃ − d̃0 − h̃k∗

s + a∗ + h∗k∗ (r∗ − d∗0) (23)

For notational simplicity, the dependence of variables and
parameters on spatial frequencies v, w has been suppressed in
these equations.

Equations (21)–(23) exhibit several basic features of closed-
loop deformation control. For example, Eqn (21) shows that all
spatially sampled deformation errors can be reduced to zero in
temporal steady state (i.e., when s = 0) as long as a∗ = 0 (i.e.,
for pure integral action). However, for these same conditions,
Eqn (22) shows that the displacements of actuators u∗ will be
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proportional to 1/(h∗+ε). Therefore, if h∗+ε turns out to be
zero or very small at some combination of spatial frequencies,
these displacements will be excessive. Non-zero integrator
leakage terms a∗ > 0 are necessary at such frequencies to
alleviate this problem. This corresponds to the high-frequency
roll-off required of the control loop in classical control, only
this roll-off occurs in the spatial frequency.

Also, Eqn (23) shows that even when spatially sampled de-
formations from (21) are zero in steady state, their continuous
counterparts are not necessarily zero. In fact, for wide-band
references and disturbances, (r̃− d̃0) = (r∗−d∗0) = 1, we get
ẽ = 1 − h̃/h∗. This error expresses the (necessarily) limited
ability of the system’s continuous actuator influence functions
to interpolate between spatial samples. However, it turns out
that some influence functions do a better job of interpolating
than others. Hence, the shape of these functions is an important
design consideration for the basic deformation mechanism of
the actuator/sensor array. Note that matrix models (4) and
(16) provide no similar direct way to look at the inter-sample
behavior of deformations.

Given that the control law has been selected to be the fixed-
form structure in (14) , our control design problem reduces to
choosing the structure’s parameters, k∗, a∗, such that selected
closed-loop design objectives are satisfied. We will concentrate
on the following objectives:

Objective (1): Robust stability: This requires characteristic
equations to remain non-zero, i.e.,

|s + a∗ + (h∗ + ε)k∗| ≥ p∗0 (24)

Objective (2): Robust small deformation errors: This re-
quires transfer functions in Eqn (21) to remain below specified
error bounds, i.e.,∣∣∣∣ s + a∗

s + a∗ + (h∗ + ε) k∗

∣∣∣∣ ≤ W1(s, p∗1), (25)

where W1(s, p∗1) corresponds to the usual frequency-weighted
error bound from standard control design practice. This bound
typically calls for small errors at low temporal frequencies,
and it permits large errors (≈ unity) at frequencies beyond
the temporal bandwidth. To keep controllers simple, detailed
shapes are generally selected to match ‘natural’ shapes of the
temporal loop. For instance, letting W1(s, p∗1) =

∣∣∣ s+a∗
s+p∗

1

∣∣∣ leads
to the following robust performance specification:∣∣∣∣ 1

s + a∗ + (h∗ + ε) k∗

∣∣∣∣ ≤
∣∣∣∣ 1
s + p∗1

∣∣∣∣ (26)

Note that this choice of W1(s, p∗1) shares the ‘natural’
numerator of the plant but imposes minimum temporal band-
widths specified by parameter p∗1.

Objective (3): Robust bounded actuator displacements:
This requires transfer functions in Eqn (23) to remain below
specified displacement bounds, i.e.,∣∣∣∣ k∗

s + a∗ + (h∗ + ε) k∗

∣∣∣∣ ≤ W2(s, p∗2) =
1
p∗2

Each of these inequalities must be satisfied for all pertur-
bations |ε| ≤ ∆ ‖h‖ , for all temporal frequencies s = jω,

0 ≤ ω < ∞, and for all spatial frequencies v = exp(jξ∆x),
w = exp(jλ∆y), 0 ≤ ξ∆x, λ∆y ≤ 2π.

The parameters p∗0, p∗1, p∗2 are closed-loop specifications
supplied by the design team. For most systems, all three can
be treated as positive constants, requiring uniform closed-loop
behavior over all spatial frequencies. However, for systems
with very small (or even negative) h∗ + ε in some frequency
regions, it is necessary to exclude those regions from Objective
(2).

Objectives (1)-(3) have two key properties that make them
tractable. First, as mentioned above, because of the symmetry
the transform functions h∗, a∗ and k∗ are real-valued for
spatial frequencies on the unit circle. Second, with real-valued
transforms, the worst-case perturbations ε are also real-valued,
and the left-hand sides of all three design objectives achieve
their extremes at s = 0 (i.e., at temporal steady state). Hence,
the temporal degree of freedom can be removed for the design
process. Furthermore, with real-valued transforms, we can
clear the denominators of (25)–(26) to produce a set of linear
inequalities in the design parameters k∗, a∗ (see [5]):

a∗ + h∗k∗ ≥ p∗0 + ∆ ‖h‖ k∗

a∗ + h∗k∗ ≥ p∗0 − ∆ ‖h‖ k∗ (27)

a∗ + h∗k∗ ≥ p∗1 + ∆ ‖h‖ k∗

a∗ + h∗k∗ ≥ p∗1 − ∆ ‖h‖ k∗ (28)

a∗ + h∗k∗ ≥ k∗(p∗2 + ∆ ‖h‖)
a∗ + h∗k∗ ≥ k∗(p∗2 − ∆ ‖h‖) (29)

These inequalities must again be satisfied for all spatial
frequencies, with the exception that frequency regions with
small or negative h∗ − ∆ ‖h‖ must be excluded from (28).

In general, it will be true that p∗0 � p∗1, i.e., the stability
robustness specification is a lot weaker than the performance
specification. So (28) actually dominates (27) except in the
regions where it must be excluded. As a result, (27) and
(28) can be combined into a single set of inequalities with
bounds p∗0 ± ∆ ‖h‖ k∗ inside the excluded regions and p∗1 ±
∆ ‖h‖ k∗ outside. With this interpretation, the excluded spatial
frequency regions are analogous to the crossover region (and
beyond) of classical temporal control loops, where stability
robustness is the key design issue, and the included regions
are analogous to the in-band active control bandwidth, where
robust performance is the key issue.

Finally, note that all three sets of inequalities can be satisfied
with sufficiently large integrator leakage terms a∗. Unfor-
tunately, such design choices would destroy the controller’s
integral action and severely undermine Design Objective (2).
Instead, we should attempt to preserve the integral action
as much as possible by minimizing the leakage terms. In
addition, we should also take care to keep the leakage terms
non-negative, because negative terms correspond to open-loop
unstable controllers that are difficult to test, verify and com-
mission in the field. Hence, it is prudent to add a minimization
criterion and another set of inequalities to the design problem,
i.e. ∫∫

(W ∗
k k∗ + W ∗

a a∗) dξdλ → min (30)
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a∗ ≥ 0 (31)

In (30), W ∗
k ,W ∗

a are weighting functions on the transforms of
control gains and integrator leakage terms, respectively: W ∗

k

should be small, just to keep solutions bounded, while W ∗
a

should seriously penalize the leakage terms.
Note that (30) provides a linear optimization criterion for

design parameters k∗, a∗ that are otherwise constrained by
linear inequalities (27)–(29) and (31) on the spatial frequency
domain. Hence, by gridding the domain and expressing the
inequalities at each grid point, linear programs (LPs) can be
used to solve the design problem.

It is important to recognize that the use of LPs is not enabled
merely by the specific choice of design objectives used above.
LPs can in fact capture a much wider range of specifications.
For example, in the present modeling/design setup we have
assumed that maximum temporal bandwidths are well below
the first resonance mode ω0 of the surface. This assumption
can be enforced explicitly by including another inequality
analogous to (28) that bounds maximum bandwidths, e.g.,

[a∗ + h∗k∗] ≤ p∗1 max = 0.5ς0ω0 (32)

With different values of p∗1 max, such constraints can also
enforce bandwidth limitations imposed by other phenomena,
such as maximum digital sampling rates of the control hard-
ware or time delays in the surface deformation sensing scheme
and/or the communications architecture.

Another example of additional LP-constraints comes from
specifications on the controller’s temporal steady state error.
Ideally, with no integrator leakage, steady state errors at cell
locations are zero. However, when leakage is non-zero, steady
state errors are also non-zero. In fact, they are given explicitly
by a∗/(a∗ + h∗k∗). So, in light of the optimization criterion
(29), it follows that steady state errors are automatically
minimized, in a weighted average sense, by the LP solution.
Nevertheless, it may still be desirable to specify explicit
constraints on these errors, i.e.

a∗

a∗ + h∗k∗ ≤ p∗3

a∗ ≤ p∗3(a
∗ + h∗k∗) (33)

Finally, it is important to note that once the design param-
eters are obtained as solutions of LPs, the fact remains that
they correspond to actuator/sensor arrays with infinite spatial
extent. Formal methods to assure that these solutions also work
for finite arrays remain subjects of research. Meanwhile, only
brute-force methods of verification are available. These consist
of building a series of successively larger finite array models in
the form (16) with controller (14) and with N = N0 < N1 <
N2 < . . . < Nm, where the largest dimension is limited by
computing resources and budgets available to the design team.
Closed-loop properties of this series can then be evaluated,
and hopefully, they can be shown to converge as N increases.
If necessary, the parameters k∗, a∗ of cells near the array’s
boundaries can be fine-tuned to improve closed-loop behavior.
These steps are illustrated in the design example below.

V. DESIGN EXAMPLE

We illustrate the above theoretical construction of
transform-based design methods with an abstracted example
from a proposed large flexible space reflector application [6].
This reflector consists of an active membrane of many cells,
each with adjustable thickness, so that it can compensate for
local deformation errors of its non-rigid supporting structure.
The cell arrangement is hexagonal, as illustrated in Figure 2.
Starting with a single hexagonal central cell at the origin of
the reflector, the total arrangement consists of many rings of
other hexagonal cells around the center.

y-axis

x-axis
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0,1
1,0

0,2

1,1

2,0

1
2
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4

5
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5
3
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6
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6
5

Fig. 2. Design Example with Hexagonal Array

The actuator influence function, the control influence func-
tion, and the integrator leakage function for this cell ar-
rangement are assumed to be hexagonally symmetric. This
means that several cells share the same function value. The
central cell, corresponding to the actuator/controller location
in the overall reflector grid, has function parameter value f1,
its first-neighbor surrounding ring of six cells has function
parameter value f2, its second-neighbor ring of twelve cells
has parameter values f3 and f4, etc. This indexing scheme is
illustrated by the circled numbers in Figure 2.

A representative actuator influence function for the reflector
is shown in Figure 3. The two-dimensional spatial transform of
this pulse response is shown in Figure 4, both as a ‘level curve
representation’ (contour plot) on the spatial frequency domain
and as a ‘radial curve representation’ showing magnitudes
along spatial frequency rays covering the frequency domain
in 15-degree radial increments. The latter representation is
very appealing for control engineers trained in classical fre-
quency response analyses. In particular, it is evident from the
radial curves that the influence function provides adequate
gain at spatial frequencies below ≈1.5 radians/distance along
all radial directions. However, its gain is very low beyond
that frequency, recovering only near the spatial sampling
frequencies, e.g. at (ξ, λ) = (2π, 0), (2π, 2π), and (0, 2π),
(e.g., as we approach 2π along the 0, 45, and 90-deg rays).
The recovery of gain near the sampling frequencies is, of
course, a result of the periodicity of discrete transforms in two
dimensions. Specifically, the transforms repeat themselves in
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Fig. 3. Spatial Pulse Response. Pulse Response of the Surface Deformation
- Upper Plot. Actuator Bump - Lower Plot

each consecutive 2π×2π square. They also exhibit symmetry
within each square. Namely, if we divide the square into four
equal sub-squares, then the upper right sub-square is the mirror
image of the lower left one, and the upper left sub-square
is the mirror image of the lower right one (this is evident
in the level curves of Figure 4). This pattern of symmetry
is analogous to the symmetry of 1D-transforms, where the
function above the half-sample (Nyquist) frequency π is the
mirror image of the function below π. Its significance is that
design and analyses of 2D-transforms must examine either the
full 2π×2π square or at least the sub-domains 2π×π or π×2π.
Examining only the lower left π×π sub-square is not adequate!
With this important side observation, the characteristics shown
in Figure 4 suggest that the in-band region of our control
designs should cover approximately 0-1.5 r/d radially around
each of the four corners of the 2π × 2π square, and that all
other frequencies should be considered out-of-band. (A precise
definition of the boundary between these regions is determined
by the ‘in-band threshold’ parameter, as illustrated below.)

A. One-Ring Controller

LP-derived control parameters for the system in Figures 3–
4 are shown in Figure 5. These parameters correspond to a
‘one-ring design’, meaning that the control law for each cell
was constrained to use only its own local measurements plus
measurements from one ring of cells immediately surrounding
it (i.e., data from six immediate neighbors).

Design specifications for the controller were the following:

Robust stability: p∗0 = 0.1
Robust performance: p∗1 = 1.0
Uncertainty level: ∆ = 0.05
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Fig. 4. Spatial Frequency Response, h∗
x. A) Level Curve Representation; B)

Radial Curve Representation (15-degree increments)

Fig. 5. Feedback Operators in One-Ring Design. Upper Plot: Control
Influence Operator, k = {2.294,−0.358}. Lower Plot: Integrator Leakage
Operator, a = {0.081,−0.014}. The two numbers given here for each of
the operators k and a correspond to the cell-ordering scheme in Figure 2
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In-band threshold: h∗ − ∆ ‖h‖ ≥ 0.1 ‖h‖
Maximum bandwidth: p∗1 max = 3
Minimization Weights: W ∗

k = 10−6, W ∗
a = 1.0

Spatial frequency domain: (2π × 2π) rad, 10 × 10 grid
Spatial frequency domain properties of the one-ring design

are shown in Figures 6. Figure 6A gives a radial curve
representation of closed loop temporal bandwidths, as com-
pared against the robust performance spec, p∗1, the robust
stability spec, p∗0, and the maximum bandwidth constraint,
p∗1 max. Figure 6B gives a similar representation of closed loop
steady state error. Note that all specifications are satisfied.
Furthermore, from Figure 6B, the integrator leakage terms are
small in-band, and they rise out-of-band to assure stability
robustness in the presence of uncertainty ∆.

A)

B)

Spatial Frequency

hx.aOpt.rt÷(hx.aOpt.rt+hx.rt°hx.kOpt.rt)
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In-Band
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Fig. 6. Spatial Frequency Domain Properties of the One-Ring Solution.
A) Temporal Bandwidth, a∗ +k∗h∗, Radial Curve Representation (15 incre-
ments); B) Steady State Error, a∗/(a∗+k∗h∗), Radial Curve Representation

Temporal properties of the one-ring solution are illustrated
in Figures 7, 8. These figures contains time simulations of
initial condition pulse responses, i.e. at t = 0, u00(t) =
1, umn(t) = 0 otherwise. First, Figure 7 shows surface
deformations and actuator deflections for a 30-ring array at
t = 0. Figure 8 then shows the surface deformations and
actuator deflections that have evolved at t = 5. The simulation
confirms that the closed loop system is stable for a finite-
dimensional array.

Figure 9 shows time responses of the same one-ring con-
troller but for increasingly larger array dimensions. This con-
firms that temporal properties converge (at least qualitatively)
as arrays grow large. Hence, the controller is scalable to very
large array dimensions.

Note that initial condition responses include no external dis-
turbances, i.e. d0(t) ≡ 0, so all simulations satisfy d(t) → 0,
and u(t) → 0. Simulations with non-zero disturbances do not
have this property because high- spatial-frequency disturbance
components are not removed completely (Figure 6B). This

Fig. 7. Temporal Properties of the One-Ring Solution: Pulse Compensation,
the system at t = 0. Upper Plot: Surface Deformations. Lower Plot: Actuator
Deflections.

Fig. 8. Temporal Properties of the One-Ring Solution: Pulse Compensation,
the system at t = 15. Upper Plot: Surface Deformations. Lower Plot: Actuator
Deflections.
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Fig. 9. Temporal Properties of the One-Ring Solution. Initial Condition Pulse
Responses. Growing Array Size, y-Axis Cross-Section

is illustrated in Figures 10 and 11 which show simulation
results for spatially smoothed random disturbances. Note that
the closed loop system reduces uncontrolled disturbance levels
of 0.32 (2-sigma along the y-axis cross-section) down to 0.018,
an approximate 18:1 improvement factor.

B. Two-Ring Controller

Similar results for a second controller design are shown in
Figures 12 through 16. This second controller is a so-called
‘two-ring design’, meaning that the control law for each cell
was constrained to use its own local measurements plus mea-
surements from two rings of cells immediately surrounding
it (i.e., data from eighteen neighbors, each no more than two
cells away). The LP-derived parameters for this case are shown
in Figures 12, corresponding to the same specifications used
for the above discussed one-ring design. Frequency domain
properties of the two-ring solution are shown in Figures 13
and 14.

Results of temporal simulations of the closed loop system
are shown in Figure 15 (pulse responses) and Figure 16
(random disturbance responses).

The two-ring design meets all robust performance, stability
robustness, and maximum bandwidth constraints. This con-
troller was compared to a one-ring design (control for each
cell uses only this cell data and data for one ring of nearest
neighbours). The two-ring was found to be also superior to
the one-ring design, because its steady state errors are lower

Fig. 10. Temporal Properties of the One-Ring Solution: Random Initial Con-
dition Compensation, the system at t = 0. Upper Plot: Surface Deformations.
Lower Plot: Actuator Deflections

Fig. 11. Temporal Properties of the One-Ring Solution: Random Initial
Condition Compensation, the system at t = 15. Upper Plot: Surface
Deformations. Lower Plot: Actuator Deflections
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Fig. 12. Feedback Operators in Two-Ring Design . Upper Plot: Control
Influence Operator, k = {1.474,−0.032, 0.053,−0.244}. Lower Plot:
Integrator Leakage Operator, a = {0.062,−0.002,−0.010, 0.002}. As
before, the four numbers for k and a correspond to the cell-ordering scheme
in Figure 2.

Fig. 13. Temporal Bandwidth, a∗(λ, ξ) + k∗(λ, ξ)h∗(λ, ξ), in Spatial
Frequency Domain for the Two-Ring Solution.

on average. This is evident in Figure 14A, which shows lower
average errors than those in the corresponding Figure 6. The
closed loop control results in Figure 16 show the disturbance
level of 0.5718 (quadratic variation of the error in the end
of the simulation). This is an approximate 2:1 improvement
factor compared to the disturbance level 1.0942 obtained for
one-ring design.

It is also evident from Figures 13, 14, that the designed
two-ring controller exhibits two localized spatial frequency
regimes (near (ξ, λ) = (2, 4) and (4, 2), where steady state
errors are nearly 80% (e.g., very little disturbance rejection
occurs there). Note that these are ‘super-Nyquist’ frequencies,
outside of the lower left [0, π] × [0, π] sub-square, and a
sampled system cannot be expected to yield good performance
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Fig. 14. Spatial Frequency Domain Properties of the Two-Ring Solution. A)
Temporal Bandwidth, a∗ + k∗h∗, Radial Curve Representation (15o incre-
ments); B) Steady State Error, a∗/(a∗+k∗h∗), Radial Curve Representation.

Fig. 15. Temporal Properties of the Two-Ring Solution: Pulse Compensation,
the system at t = 15. Upper Plot: Surface Deformations. Lower Plot: Actuator
Deflections
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at these frequencies. Nevertheless, we must still assure the
required level of stability robustness, p∗0, is satisfied.

This is confirmed in Figures 13, 14.

Fig. 16. Temporal Properties of the Two-Ring Solution: Random Initial
Condition Compensation, the system at t = 15. Upper Plot: Surface
Deformations. Lower Plot: Actuator Deflections

VI. CONCLUSION

This paper has developed a classically-motivated design
methodology for distributed localized control laws of very
large actuator/sensor arrays. Standard PI-compensation, plus
lags and/or notch-filters, are used to deal with temporal
dynamics in each actuator channel. Scalability to very large
array sizes is achieved by imposing spatially localized fixed-
form constraints on the control law structure. In this setup, the
entire spatial-temporal design model can be transformed, via
Laplace transforms in time and 2D discrete Fourier transforms
in space, to produce a family of dynamic systems whose closed
loop characteristics can be subjected to standard classical
control-engineering specifications, including stability, perfor-
mance, and robustness. These specifications can be satisfied
for all members of the family by solving linear programs to
find parameters of the fixed-form structure. The veracity of
this methodology has been illustrated with a design example
loosely resembling an actively controlled reflector whose
local deformations are controlled by a hexagonal array of
actuator/sensor cells. We have designed and compared two
controllers for this example – a one-ring design where only
nearest neighbors are used in the fixed- form control law and a
two-ring design where the first and second neighbors are used.
Both designs yield good performance. The two-ring design is
generally superior to the one-ring design because it delivers
significantly smaller average steady state errors.
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