
OPTIMIZATION-BASED TUNING OF

LOW-BANDWIDTH CONTROL IN SPATIALLY

DISTRIBUTED SYSTEMS

Dimitry Gorinevsky∗, Stephen Boyd†, and Gunter Stein‡

American Control Conference · Denver, CO, June 4–6, 2003

Abstract

We describe a new method for tuning a certain family of low-
bandwidth controllers for linear time-invariant and spatially-
invariant (LTSI) plants. We consider LTSI controllers with
a fixed structure, which is PID in time and local in spa-
tial coordinates. Two spatial feedback filters, assumed to
be symmetric and have finite spatial response, modify the
local PID control signal based on the error and control sig-
nals, respectively, at nearby nodes. Like an ordinary PID
controller, this controller structure is simple, but provides
adequate performance in many practical settings.

We cast a variety of specifications on the steady-state spatial
response of the controller as a set of linear inequalities on the
design variables, and so can carry out the design of the spa-
tial filters using linear programming. The method handles
steady-state limits on actuator signals, error signals, and sev-
eral constraints related to robustness to plant and controller
variation. While the method does not directly handle some
important constraints involving the effects of boundary con-
ditions, or guaranteed closed-loop spatial or time decay, it
does appear to work very well for low-bandwidth controllers,
and so is applicable in a variety of practical situations.

1 Introduction

Proliferation of embedded computing, and the maturing of
actuator and sensor technologies has led to growing impor-
tance of spatially distributed system control technology. In
such systems spatial profiles (distributions) of physical vari-
ables are controlled using arrays of actuators and sensors
distributed over a spatial domain. Array signal processing
has had numerous practical applications for quite some time;
array control technology is presently emerging.

Much of the expected growth in array control technology
area is related to development of Micro-Electro Mechanical
Systems (MEMS) with low-cost production of large arrays of
actuators and sensors. The computing might be distributed
and embedded with the actuators.
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Apart from such potential future applications, array control
systems can be encountered in multiple types of industrial
processes, and have been used in some cases for a long time.
For example, a core of a nuclear reactor usually contains a
2-D array of control rods used to regulate temperature and
neutron flux in the active zone. Perhaps the most widespread
industrial application is control of flat sheet processes, such
as paper manufacturing, where linear arrays of up to 300
actuators might be employed. There are also diverse array
control applications related to thermal processing, including
Rapid Thermal Processing in semiconductor manufacturing,
crystal growth control, and material heating processing. In
all of these applications, spatial profiles of temperature are
controlled using arrays of heating elements.

Some more futuristic applications are being developed in the
aerospace area. Flow control using large arrays of microac-
tuators distributed over on an airfoil or a channel boundary
is one of them. Another area is ‘smart structure’ control of
lightweight space reflector shape. (A 1-D distributed reflec-
tor control problem is considered in this paper as an exam-
ple.) This is closely related to adaptive optics, where large
2-D arrays of actuators are used to deform a reflecting sur-
face to achieve wavefront control.

Various mathematical approaches to analysis and design of
feedback control in large (or infinite) distributed systems
with regular array structure were proposed and explored in a
number of publications. The most relevant to this paper are
[1, 2, 4, 5, 7], where further references can be found. Most
of this work is focused on design of high-performance spa-
tially invariant feedback control systems, with performance
and robustness guarantees.

In this paper, we consider a spatially distributed system ana-
log of low-bandwidth PID control. A standard PID con-
troller uses three values of the plant output (current, past
and the integral) for computing the control. In a similar
way the ‘spatial PID’ controller considered in this paper uses
data from a few neighboring array cells. Such an approach is
justified by its computational simplicity. This is important
for centralized implementation of the array control because
of the potential issues with the computing power needed for
control of hundreds or thousands of actuators. Such control
algorithms can be also conveniently implemented as decen-
tralized computations in an array with distributed embed-
ded computing. In the latter case, parallel processing makes
computing performance less of an issue but constraints on
communication between the processors become important;
local communication with the nearest neighbors can be per-
formed most efficiently. The spatial PID controller architec-
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ture considered in this paper, like an ordinary low-bandwidth
PID controller, provides adequate performance in many, or
even most, practical situations. Also like an ordinary low-
bandwidth PID controller, it is not meant to achieve a limit
of possible performance; it is meant to be adequate, after
proper tuning, in a large number of practical cases.

An approach closely related to ours is spatial loopshaping
design (or tuning) of a distributed controller, as discussed in
[10, 11]. Spatial loopshaping allows accommodating many
important engineering specifications for controller design.
The localized controller in [10, 11] is obtained by design-
ing of a non-localized controller, which is then truncated to
provide a localized controller.

The contribution of this paper is the formulation of the spa-
tially distributed controller design (tuning) problem as a con-
vex optimization problem. Localized spatial (FIR) operators
are assumed at the outset, and the main engineering specifi-
cations are accommodated within a linear programming (LP)
optimization framework. This allows for a computationally
efficient and conceptually clean one-shot solution for the op-
timal FIR weights in the controller.

We will see that the conversion of the problem to an LP
is possible because the spatial responses considered are sym-
metric. This makes the spatial transfer functions (numerator
and denominator) real and enables us to convert linear frac-
tional (closed-loop) design constraints into linear constraints.
The same trick does not work in the absense of symmetry.

The idea that symmetry of a pulse response leads to a real
transfer function, and therefore limits on the frequency re-
sponse can be expressed as linear inequalities, is not new; it
is the basis of linear programming based design of symmetric
FIR filters for signal processing applications, which has been
done at least since 1969 (see [3, p.380]). In this paper, how-
ever, we consider closed-loop expressions, which are linear
fractional expressions in the FIR filter weights. As far as we
know, this has not been done before.

2 Plant model

In this paper an array control system will be modeled as a
linear time-invariant spatially-invariant (LTSI) system. This
model does not consider boundary effects present in a finite
array (unless it has a circulant structure). An LTSI model
allows for an efficient multidimensional frequency-domain
analysis of the problem. Note that an analysis involving spa-
tial frequencies can be considered as modal analysis of the
system dynamics, since the spatial sinusoids are the eigen-
modes of a spatially invariant system [1].

Consider a two-dimensional (2-D) distributed system evolv-
ing in the integer time t = 0, 1, . . . and with an integer spatial
coordinate x = . . . ,−1, 0, 1, . . . indexing the actuator cells.
(We assume that x ranges over all integers; in reality, the
number of actuators is always finite. In what follows, we ig-
nore the issue of (finite) boundaries, except in the simulation
example.) The (scalar) actuator or control signal will be de-
noted u = u(t, x), which is the control applied by actuator
number x in the array, at time t. The (scalar) process output
is y = y(t, x), where one measurement per actuator, and per
time sample, is assumed. A general input-output model of
an LTSI plant has the 2-D convolution form

y(t, x) =

∞∑
k=0

∞∑
n=−∞

h(t− k, x− n)u(k, n), (1)

where h(t, x) is the system 2-D impulse response function,
or system Green’s function.

We will assume a separable plant model, which has the form

h(t, x) = ht(t)hx(x), (2)

where ht(t) is the plant time impulse response, and hx(x)
is the plant spatial impulse response. We assume that ht is
causal, i.e., ht(t) = 0 for t < 0. We will also assume that
the plant is spatially symmetric, which means that hx(−x) =
hx(x). (The same methods work for plants that are spatially
anti-symmetric, i.e., satisfy hx(−x) = −hx(x).)

Such a model is applicable in many distributed systems
where actuator dynamics or sensor dynamics or dynamics
of a fixed dynamical filter are dominant. These dominant
time dynamics are described by the time response ht(t) while
hx(x) gives the steady-state spatial response shape. Models
of the form (2) are used in many practical applications of
array control including web processes and adaptive optics.
Note that the separable model (2) can be considered as a
first dyadic term in a principal component analysis approxi-
mation of a general pulse response.

The analysis to follow uses a 2-D transfer function of the
plant obtained by computing a z-transform of the pulse re-
sponse (2). This transfer function has the form H(z, λ) =
g(z−1)G(λ), where g(z−1) is the z-transform of the dynam-
ical impulse response ht(t) in (2) and G(λ) is a spatial
transfer function computed as the (two-sided) z-transform
of the spatial impulse response (Green function) hx(x). The
plant is assumed stable and the spatial response absolutely
summable (spatially stable). This means g(z−1) is analytic
inside the unit circle |z| ≤ 1 in the complex plane, and G(λ)
is analytic inside an annulus r ≤ |λ| ≤ r−1, where 0 < r ≤ 1.

The plant model used in the control design and analysis is

y = g(z−1)G(λ)u (3)

In this model z−1 can be interpreted as a unit time delay
operator and λ as a unit positive spatial displacement oper-
ator. We assume that g and G are scaled so g(1) = 1, i.e.,
the time transfer function g is normalized to have unit static
gain. The assumed spatial symmetry implies that the spa-
tial transfer function G is real for |λ| = 1. (If the plant were
spatially anti-symmetric, then G would be pure imaginary
for |λ| = 1.)

3 Controller structure

As described in the introduction, we are interested in low-
bandwidth control of the plant (3). The goal is to cancel
the steady-state error in reaching the desired spatial pro-
file yd(x). This goal can be achieved by using a controller
structure given by

u = z−1u− z−1c(z−1)K(λ)(y − yd)− z−1S(λ)u (4)

The first term in (4) introduces integration into the actua-
tor signal path; the transfer function c in the second term
corresponds to the particular controller used. The spatial
filters K and S, which appear in the second and third terms,
are used to improve the spatial response of the closed- loop
system. They can be interpreted as regularization terms,
which avoid inverting the plant at spatial frequencies where
the plant gain is small [12]. Controllers of the form (4) have
been used in web manufacturing processes [9, 6, 11].
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We assume that the spatial filters K(λ) and S(λ) are FIR
operators, which implies that the controller (4) is spatially
localized; the control signal u(t, x) is computed based on
only a finite number of error and actuator signals, at nearby
actuator cells. This reflects important communication and
computing constraints. For a centralized controller (finite
but large array) FIR operators K and S can be implemented
with high computational efficiency as convolution kernels ap-
plied to respective spatial variable profiles; for implementa-
tion through distributed embedded computing, K and S be-
ing FIR limits communication to a few near neighbors only.

The dynamical controller c(z−1) in (4) (together with the
integrator term) is a simple low-bandwidth controller, such
as a PI or PID controller (considered in the example sec-
tion), or a Dahlin controller (discrete-time Smith predictor),
which is used in paper web manufacturing control. We can
interpret the controller (4) as a simple LTSI generalization
of the classical PID controller.

We will assume that the controller, like the plant, is spatially
symmetric, i.e., K and S are symmetric FIR filters; K(λ) and
S(λ) are real for |λ| = 1. (For a spatially anti-symmetric
plant, we choose anti-symmetric K and symmetric S.)

4 Closed-loop dynamics

We now consider the closed-loop dynamics for the system
(3)-(4). As discussed in more detail in [1], an LTSI system
can be diagonalized by the spatial sinusoids. By substitut-
ing λ = eiν we obtain the modal dynamics for the spatial
frequency ν. With some overload of notation, the error dy-
namics for the mode at frequency ν are

e(t + 1, ν) = (1− s(ν))e(t, ν) (5)

−l(ν)g(z−1)c(z−1)e(t, ν) + s(ν)yd(ν),

where yd(ν) is a Fourier transform of e(t, ν) = y(t, eiν) −
yd(ν), and the modal loop gains are

l(ν) = G(eiν)K(eiν), s(ν) = S(eiν) (6)

Our assumptions of spatial symmetry of the plant and con-
troller imply that GK and S are real for |λ| = 1, so the modal
loop gain l(ν) and the modal smoothing gain s(ν) in (5) are
real numbers. The equation (5) gives another interpretation
of our basic controller structure: it can be considered family
of independent PID (or other simple structure) controllers,
one for each spatial frequency. The modal loop gain l(ν) and
the modal smoothing gain s(ν) are determined by the coef-
ficients of the spatial filters K and S. The tuning of these
filters can be interpreted as the problem of tuning a family
of the controllers, indexed by the spatial frequency ν.

Assume first that s(ν) = 0. The modal error e will con-
verge to zero provided that the loop gain l > 0 is sufficiently
small and the steady-state gain of dynamical controller is
such that g(1)c(1) > 0. The steady-state error in e is elim-
inated because of the integrator (a pole at z=1) present in
the controller (4) for S = 0. The modal convergence can
be made faster by increasing the loop gain l within certain
limits l(ν) ≤ L0. This is a usual loopshaping arrangement.
The specific value of L0 and the details of tuning the integra-
tor gain, depend on the plant transfer function g(z−1) and
controller transfer function c(z−1) and will not be discussed
here. The only design specification we will use for achieving
low-bandwidth modal control is the one already mentioned,

0 < l(ν) ≤ L0, (7)

which limits the loop gain to be less than a given limit L0,
at all spatial frequencies.

We can interpret the smoothing operator S as a regularizing
term needed when the plant spatial gain is very small, or
zero. To see this, suppose the plant gain G(eiν) is zero or
very small at some spatial frequency ν. In accordance with
(3), for this mode the plant output y(t, ν) can be assumed
to be zero. Hence the dynamics (4) of the control input at
this spatial frequency can be approximated as

u(t + 1, ν) = (1− s(ν))u(t, ν) + c(z−1)K(eiν)yd(ν).(8)

Here the term s(ν), provided it is positive, can be inter-
preted as introducing some leakage into the integrator in the
controller. Without any smoothing, i.e., with s(ν) = 0, how-
ever small the controller gain K(eiν) is, the integrator in (4)
will keep integrating until the actuator signal becomes ex-
tremely large. The operator S (and the gain s(ν) has an
effect of regularizing the ill-defined problem of controlling a
distributed plant with some zero modal gains. It is often
called a ‘smoothing’ operator because small gain is usually
associated with high spatial frequencies and the regulariza-
tion has an effect of reducing the large amplitude of high
frequency components in the control signal u.

5 Specifications for controller tuning

The goal of this paper is to formulate an optimization ap-
proach to tuning the spatial FIR operators K and S in the
controller (4). The main emphasis is on low-bandwidth con-
trol; we take the maximum loop gain condition (7) as the
only condition related to the time-domain loop dynamics. As
touched upon in the previous section, the main issues with
low-bandwidth control are related to steady-state closed-loop
response, i.e., the response for z = 1. By combining (3) and
(4) the closed-loop spatial transfer functions can be obtained.
The error e = y − yd and control u in steady-state (i.e., at
z = 1), and at spatial frequency ν (λ = eiν), are given by

e =
S(eiν)

S(eiν) + G(eiν)kIK(eiν)
yd(ν), (9)

u =
kIK(eiν)

S(eiν) + G(eiν)kIK(eiν)
yd(ν), (10)

where the integrator gain is kI = c(z = 1). Recall that
g(z = 1) = 1 is assumed.

For deriving engineering specifications on the control it will
be assumed that a bound on the target profile yd is available
in the form |yd(ν)| ≤ d0, i.e., we have a known bound on the
maximum of the of the target profile at every frequency. We
require that for any such target profile, the magnitude of the
control is bounded for all spatial frequencies, i.e., |u| ≤ u0)
for all ν. Using (10), the last condition can be expressed in
the form

∣∣∣∣
kIK(eiν)

S(eiν) + G(eiν)kIK(eiν)

∣∣∣∣ ≤ u0/d0, for all ν. (11)

In a similar way we require that the magnitude of the steady-
state error is bounded, i.e., |e| ≤ e0 for all ν in the band of
spatial frequencies B ⊆ [0, π] over which we require good
control performance. This leads to the steady-state perfor-
mance condition
∣∣∣∣

S(eiν)

S(eiν) + G(eiν)kIK(eiν)

∣∣∣∣ ≤ e0/d0, for all ν ∈ B. (12)
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Unlike (11), which is required to hold for any spatial fre-
quency ν, the small steady-state error condition (12) is re-
quired only within the spatial bandwidth of the system,
ν ∈ B. This bandwidth might be taken, for example,
as the set of the spatial frequencies where the plant gain
is sufficiently large to ensure that the disturbances can
be compensated without an excessive control effort, i.e.,{
ν ∈ B : |K(eiν)| ≥ k0

}
.

Another important engineering requirement is the robustness
of the closed-loop system to plant modeling error. Assume
that instead of the plant description (3), we have the follow-
ing perturbed plant,

y = g(z−1)G(λ)u + δP (z−1, λ)u, (13)

where |δP | ≤ δ0 for |z| ≤ 1, |λ| = 1. The small gain theorem
guarantees stability of the closed-loop system with perturbed
plant (13), and the controller (4), provided∣∣∣∣

c(z−1)K(λ)

1− z−1 + z−1S(λ) + z−1c(z−1)g(z−1)G(λ)K(λ)

∣∣∣∣ δ0

< 1 for |z| = 1, |λ| = 1. (14)

Since in low-bandwidth control the main control action takes
place at low dynamical frequencies, a steady-state robustness
condition will be considered in place of (14). For |z| = 1, (14)
reduces to∣∣∣∣

kIK(λ)

S(λ) + kIG(λ)K(λ)

∣∣∣∣ δ0 < 1 for |λ| = 1. (15)

We can also consider robustness to controller variations. A
distributed controller implementation might differ from the
designed controller, for several reasons: our analysis does not
take boundary effects into account; and we may have sensor,
actuator, or computing element faults in the distributed con-
trol system. Assume that instead of the nominal controller
(4), we have

u = z−1u− c(z−1)K(λ)(y − yd)− z−1S(λ)u + δC(z−1, λ)u, (16)

where |δC| ≤ δC for |z| ≤ 1, |λ| = 1. Similar to how (15) is
derived, the small-gain based steady-state robustness condi-
tion can be expressed in the form∣∣∣∣

S(λ)

S(λ) + kIG(λ)K(λ)

∣∣∣∣ δC < 1 for |λ| = 1. (17)

Finally, we consider robustness to variations in the smooth-
ing operator S. Assume that in (4) the smoothing operator
is S(λ) + δS(z−1, λ), where |δS(z−1, λ)| ≤ δS for |z| ≤ 1,
|λ| = 1. Once again, we can derive a small-gain based ro-
bustness condition:∣∣∣∣

1

S(λ) + kIG(λ)K(λ)

∣∣∣∣ δS < 1 for |λ| = 1. (18)

In summary, the specifications are given by the loop-gain
limit for dynamic stability (7), and

• the actuator limit (11)
• the performance specification (12)
• robustness to plant variation (15)
• robustness to controller variation (17)
• robustness to smoothing operator variation (18).

Since the loop gain l(ν) is a linear function of K(ν), the
loop gain constraint consists of a lower bound (i.e., 0) and
an upper bound (L0) on a linear function of K, for each
frequency ν. Each of the other specifications has the form
of a limit on the magnitude of a linear fractional function
of K(λ) and S(λ), for all |λ| = 1, or (in the case of the
performance specification) for some |λ| = 1.

6 Optimization formulation

We now show how the design of the spatial filters K and S
can be cast as a semi-infinite convex optimization problem,
which can be approximated well as a linear program (and
therefore solved efficiently). As briefly mentioned in Sec-
tion 3, these operators are constrained to be FIR operators
such that information from near neighbors only is used when
computing control at a particular spatial location.

In the case when the FIR operator K is symmetric (which
we assume when G is symmetric), we can express it as

K(λ) = κ0 +

N∑
k=1

(λk + λ−k)κk, (19)

where κ0, . . . , κk are the coefficients. When G(λ) is anti-
symmetric, we take K to be anti-symmetric as well, in which
case it has the form

K(λ) =

N∑
k=1

(λk − λ−k)κk. (20)

(We will explain the method assuming that K and G are
symmetric.) The smoothing FIR operator S(λ) is always
assumed to be symmetric, and has the form

S(λ) = σ0 +

N∑
k=1

(λk + λ−k)σk, (21)

where σ0, . . . .σN are the coefficients. At the spatial fre-
quency ν, i.e., λ = eiν , we have

K = κ0 + 2

N∑
k=1

κk cos(kν), S = σ0 + 2

N∑
k=1

σk cos(kν).

Let x ∈ R2N+2 be the vector of all the coefficients, i.e., our
optimization variables:

x = [κ0 · · · κN σ0 · · · σN ]T . (22)

For each spatial frequency ν, K and S are linear functions
of x, and therefore so are the loop and smoothing gains, l(ν)
and s(ν).

We will now show how all of the tuning specifications can be
expressed as (infinite) sets of linear inequalities on the vari-
able x. For each ν, the loop-gain limit for dynamic stability
(7), 0 ≤ l(ν) ≤ L0, is a pair of linear inequalities in x.

Expressing the other constraints (which involve linear frac-
tional functions) as linear constraints is not as straightfor-
ward. For each spatial frequency ν, the requirements (11),
(12), (15), (17), and (18) have the form

∣∣∣∣
aT x + b

s(ν) + kI l(ν)

∣∣∣∣ ≤ 1, (23)

where a ∈ Rn and b ∈ R (and depend on the spatial fre-
quency, and also which specification is being represented).
The second term in the denominator, kI l(ν), is nonnegative,
and is positive except at spatial frequencies where the plant
gain is zero. In fact, the whole denominator must be posi-
tive at all spatial frequencies; indeed, the whole point of the
smoothing operator S is to ensure s(ν) > 0 for spatial fre-
quencies where l(ν) is small. We can argue this as follows.
Suppose the denominator (which is real) changes sign, and
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therefore is zero at some spatial frequency ν. At that fre-
quency, the robustness to smoothing operator variation con-
straint, (18), is violated, since the numerator of the relevant
transfer function is a nonzero constant, and the denomina-
tor vanishes, so the relevant transfer function is infinite (and
certainly not less than one in magnitude). Thus, we have

s(ν) + kI l(ν) > 0 for all ν, (24)

for any controller that satisfies all the specifications. Since
the denominator is positive, we can multiply through by it,
and express the linear fractional constraint (23) as

−(s(ν) + kI l(ν)) ≤ aT x + b ≤ s(ν) + kI l(ν). (25)

This is a pair of linear inequalities in the variable x, since
both s(ν) and l(ν) are linear functions of x.

Finally, we consider the objective.

Roughly speaking, we want the (dynamic) loop gain l0(ν) as
uniform as possible for the spatial frequencies in our control
bandwidth and within the bound l0(ν) ≤ L0 for all ν. This
would give us uniformly fast convergence for all the spatial
modes. We can achieve this goal, approximately, by taking
as objective

φ(x) = max
ν∈B

|l(ν)− L0/2|. (26)

Since this objective is the maximum of a family of convex
functions (absolute values of linear functions), it is a convex
function of x. If φ is small, then we can expect approximately
constant rate of convergence of the closed-llop system, over
all spatial frequencies in B. An alternative objective would
be to have the loop gain as large as possible (to give us rapid
convergence), while respecting the limit l0(ν) ≤ L0 for all ν.

φ2(x) = −min
ν∈B

l(ν), 0 ≤ l(ν) ≤ L. (27)

The minimization objective (27) is also a convex function,
with a convex constraint. The example below uses (26).

The overall design problem is a convex optimization problem:

minimize φ(x)
subject to linear inequalities (25) above, for each ν.

The objective is given in (26), and the constraints are an
infinite set of linear inequalities; specifically, ten per spatial
frequency ν. (Such a problem is called semi-infinite since
the constraints are indexed by the real number ν.)

Finally, we approximate the semi-infinite convex problem as
an LP. We take a finite but sufficiently dense set of spatial
frequencies, {ν1, . . . , νM}, and impose all of the linear in-
equalities at these frequencies only. This results in a large,
but finite, number of linear inequalities. Similarly, we ap-
proximate the objective by sampling over spatial frequencies:

φ̂(x) = max
νi∈B

|l(νi)− L0/2|.

This is a piecewise linear and convex function of x. We can
in turn formulate this sampled problem as a linear program,
by introducing a new variable γ, and adding the constraints

−γ ≤ l(νi)− L0/2 ≤ γ, for νi ∈ B. (28)

These constraints ensure that γ ≥ φ̂(x). Then we formulate
the following linear program:

minimize γ
subject to −γ ≤ l(νi)− L0/2 ≤ γ, for νi ∈ B

linear inequalities (25) for each νi.
(29)

In this problem, the objective and all constraints are linear,
i.e., it is a linear program (LP).

The LP (29) has 2N + 3 variables (2N + 2 in case of anti-
symmetric K), and no more than 12M linear inequality con-
straints. (The exact number depends on the number of spa-
tial frequency samples that fall in the control band B.) It
can be solved very quickly for typical problem sizes, e.g., N
several tens, and M several hundreds.

This method of synthesizing the spatial filters K and S can
be used to tune the LTSI controller, by varying parameters
in the specifications, such as the control band B, the actu-
ator limit u0, the error limit e0, and the constants related
to various types of uncertainty, i.e., δ0, δC , and δS . These
parameters become the ‘knobs’ used by the control designer,
that are varied to obtain adequate performance.

It should be clear from the discussion that many other spec-
ifications can also be included, and more complex specifica-
tions can also be handled by the method. As an example, we
can impose a limit on loop gain that is a function of spatial
frequency, instead of the constant L0 used here. In addition,
we can impose limits on the magnitude of any steady-state
closed-loop spatial transfer function, since every one will be
linear fractional, with the same denominator as the ones con-
sidered.

7 Simulation example

To illustrate our method for tuning an LTSI controller, we
consider distributed control of a large-scale linear antenna
reflector, describe in more detail in [8]. The plant model has
the form (3), where

G(λ) = − λ− λ−1

λ− 2− θ + λ−1
, g(z−1) =

z−1

1− az−1
. (30)

The anti-symmetric spatial response operator G(λ) describes
the pulse response of the reflector surface slope to the local
actuator bending moment, as illustrated in Figure 1. The pa-
rameter a is a dynamical exponential factor describing the
actuator response, and θ describes the relative effect of the
beam tension and stiffness on the deformation in the Timo-
shenko beam model. A unit distance between the actuators
is assumed. In the simulations, it was assumed that a = 0.8
(actuator time constant is 4-5 samples), and θ = 0.3 (mod-
erate tension in the beam). As a dynamical controller, a
low-bandwidth PI controller was used, of the form (4), with

c(z−1) = kP (1− z−1) + kI , (31)

where the gains are kP = 0.3 and kI = 0.1.

Since the plant spatial operator G(λ) in (30) is anti-
symmetric, the operator K in the controller (4) is also chosen
to be anti-symmetric, while S a symmetric operator. Both
operators K and S have 3 FIR taps on each side off the cen-
ter, i.e., N = 3. Since K is anti-symmetric, there are a total
of seven coefficients in the FIR operators to be optimized.

The controller tuning problem was cast as an LP, as de-
scribed above, with spatial frequency sampled at 128 points
uniformly spaced in [0, π]. The controller specification pa-
rameters were chosen as follows:

• the loop gain limit is L0 = 0.4 (so the target loop gain
is L0/2 = 0.2)
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• the disturbance (target profile) bound is d0 = 0.1
• the allowed control amplitude bound is u0 = 10 = 100d0

• the bandwidth B was taken as the set of spatial fre-
quencies at which |G(eiν)| ≥ 0.2

• the disturbance rejection (target profile tracking) error
bound is e0 = 0.005 = 0.05d0

• the additive uncertainty in the integrator is δS =
0.00025L0

The solution to the described LP problem was found to be

[κ1 κ2 κ3] = [3.513 − 2.995 2.562],

[σ0 σ1 σ2 σ3] = [0.344 − 0.268 0.213 − 0.105].

The engineering specifications (11), (12), and (28) for the
designed controller are illustrated in Figure 2. The top plot
illustrates the expected control amplitude—the lefthand side
in (11)—computed as a a function of the spatial frequency.
The thin straight line is the righthand side constraint in (11).
The middle plot in Figure 2 shows the expected error am-
plitude in the lefthand side of (12). The thin straight lines
show the righthand side constraint. As one can see a low
steady-state error is enforced within the plant bandwidth
domain as shown by the extent of the constraint lines. The
error grows rapidly outside of the bandwidth B. The loop
gain l(ν) in the condition (28) is displayed in the bottom plot
in Figure 2. The horizontal solid line in the middle corre-
sponds to the target gain L0/2. The robustness constraints
(15)–(18) where less tight than the constraints (11), (12),
(28) and therefore are not shown in Figure 2.
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Figure 2: Computed steady-state loop shapes

The designed controller was implemented in a simulation to-
gether with the described plant model. The simulation as-
sumed a finite linear array of 100 actuator cells. In simula-
tion, a very fast convergence to the steady-state is observed.
The final steady-state error is achieved in 10-15 steps. The
simulated time (and space) evolution of the closed-loop re-
sponse to a single actuator pulse is illustrated in Figure 3.
The lower plot shows the response of the output error, the
upper plot shows the response of the control. One can see
the fast convergence of the responses and the fact that high
spatial frequencies close to the Nyquist frequency are not
controllable.
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