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Abstract— In this work we present an optimization based
statistical estimation approach for diagnostics in large scale sys-
tems. The fault estimation scheme relies on prediction residuals
generated by detailed prediction models of the system under
consideration. The system dynamics are generally nonlinear. We
linearize the system around its nominal operation and estimate
deviations (faults) from the nominal behavior. The statistical
estimation approach is based on numerical optimization of a
log-likelihood function. It allows us to estimate time varying
fault parameters in an online setting, and can accommodate the
loss of some sensor measurements during system operation. The
proposed estimation approach is explained through examples
from aerospace applications.

I. I NTRODUCTION

This work focuses on systems for which we have detailed
prediction models. These models may contain a nonlinear
dependence of the system dynamics on the unknown fault
parameters. We assume that the magnitude of the evolving
faults is small and they don’t significantly change the dy-
namics of the system. This allows us to linearize the system
around its nominal (no fault) trajectory. The system will
ideally follow the nominal path during its operation. Any
deviations from this nominal behavior may be indicative of
a faulty operation. Such faults increase the probability of
system failure, and have serious economical and safety im-
plications. It is therefore critical to have a reliable method for
an accurate online estimate of the developing faults. The pro-
posed fault estimation scheme is applicable to a wide class
of problems where detailed system models are available.
Application areas include several safety critical systems such
as spacecraft and aircraft,process plants, startup/shutdown
sequences in nuclear reactors and engines etc.

There has been a lot of emphasis in system monitor-
ing, fault detection and diagnosis. Different data-driven and
model-based schemes have been proposed for fault iden-
tification [1], [2], [3]. In a wide variety of applications,
fault detection is carried out by implementing a simple
threshold logic. In the case where only output signals are
available, signal-based methods for fault detection are used.
These include spectral analysis, maximum entropy based
estimation, and bandpass filters etc. More recently, parameter
estimation and observer-based methods have been used for
system diagnostics [4], [5].

Most model-based fault detection methods deal with the
residuals, also referred to as theparity variables. The resid-
uals reflect the deviation between the actual plant measure-

ment and the model-based prediction. A non-zero residual
serves as a fault indicator. There are several techniques for
generating residuals depending upon the type of models
under consideration. Output observer-based approach is used
for fixed parametric models, parity equations are used for
fixed parametric or nonparametric models, identification and
parameter estimation is used for adaptive nonparametric or
parametric models. Once the residuals are obtained, the next
step is to detect the faults by residual analysis. Different
residual evaluation methods, like neural networks, fuzzy
logic and Bayes classification, are used in diagnostics. We
use convex optimization based methods to find statistically
optimal estimates of the incipient faults from the given
residuals. The optimization based approach is easily scalable
to diagnostics of large scale systems. It provides statistically
optimal estimates in an efficient manner to enable real time
online detection.

In this paper, we present two main implementations of the
optimization based approach for determining the unknown
fault parameters. Thebatch estimationapproach uses the
entire data available at any instant of system operation. As a
result, the estimates tend to improve as more measurements
become available with time. A major drawback of using a
batch estimation approach relates to memory limitations and
computational time. Themoving horizon estimationapproach
has a Kalman filter type recursive formulation and solves a
problem of fixed dimension at every step. For more details
of the moving horizon estimation scheme, see [6], [7], [8].

As a base-line case, consider the fault parameters entering
the system dynamics linearly. If we allow only gaussian
noise, the resulting optimal solution is given by batch least-
squares. We consider a problem that is more general than the
unconstrained least-squares formulation. We deal with linear
time varying models and account for any a priori information
about the unknown faults in the form of constraints. More
general noise distributions, like uniform, exponential and
laplacian noise can be handled in the developed approach.
Estimates of the time varying fault parameters are obtained
by solving a constrained convex programming problem for
each batch/moving horizon. This approach is robust to loss
of some sensors during system operation.

This paper is composed as follows. First, a brief descrip-
tion of the type of problems being considered is presented
in Section II. The models of different types of faults that
can be estimated by the proposed approach are given in



Section III. A convex formulation of the statistical estimation
scheme is presented in Section IV. Section V describes
the computation of the matrix of fault sensitivities that is
critical to the residual-based estimation approach. Batch
optimization algorithms are described and validated by an
example of rocket diagnostics in VI. The proposed approach
is then used to solve a moving horizon estimation problem
in Section VII. Some concluding remarks are presented in
Section VIII.

II. T ECHNICAL PROBLEM STATEMENT

Model-based approach is frequently used for system anal-
ysis in many application areas. In this work, we deal with
detailed predictive models of the system under consideration.
The prediction model may depend nonlinearly on some faults
of interest. The zero fault case determines the nominal trajec-
tory of the system. We begin by linearizing the system around
its nominal trajectory. Using this linear relationship, we
estimate any deviations (faults) from the nominal behavior.

The prediction modeldivides the system operation in an
input/output form. The model predicts the outputs given the
inputs. The predicted output is determined by the underlying
system dynamics. The model describes the dynamics of the
system through a set of ordinary differential equations (ODE)
or static maps. This ODE model is either derived from
the basic principles of physics and/or obtained empirically.
Once developed, the model may be numerically integrated to
simulate the system operation. Fig. 1 shows schematics of a
prediction model:x(t) ∈ Rn is the state vector (measured
variables),f(t) ∈ Rp is the vector of seeded faults and
t ∈ Z+ denotes the sampling time. Note that we allow fault
inputs to the prediction model. The output of the prediction
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Fig. 1. Schematic diagram of a prediction model

model is the vector of prediction residuals,y(|f) ∈ Rm.
These model-based prediction residuals are the difference
between the predicted output and the actually observed
output, assuming nominal (no fault) system behavior. If the
prediction model accurately describes the system operation,
the residuals are zero in the absence of faults, i.e.,y = 0
when f = 0. A non-zero residual value on the other
hand results from off-nominal behavior and indicates some
deviation of the parameters from their nominal values. This
may correspond to performance deterioration in the system.

The parameters of interest may enter the system dynamics
in a non-linear manner. As a consequence, the prediction
model is in general non-linear. In many applications, the
magnitude of the underlying faults is usually small, i.e., the
perturbations from the nominal parameter values are not too
large. We can thus make the fundamental assumption that the
change in underlying system dynamics caused by the (small)
change in nominal parameters values is relatively small under
most operating conditions. This allows us to linearize the

model around the nominal wheref = 0. Using this linear
approximation for the prediction model, we get a linear fault
residual relationship that can be conveniently expressed as

y(|f) = Sf + e, (1)

where S ∈ Rm×p is called the fault sensitivity matrix
or the matrix of fault signatures. It can be obtained by
Jacobian linearization of the prediction model. If the model
is not available in an analytical form, the sensitivity matrix
is obtained by a secant method. The computations may be
performed on-line or off-line depending upon the application
under consideration. Details about the calculation of the fault
sensitivity matrix are discussed in Section V. The noise term
e accounts for modeling and sensor measurement errors.
Note that if e = 0 in (1) (no noise, no modeling errors),
then the residual in the absence of faulty(|0) = 0. This
will indicate nominal system operation. We assumee to be
uncorrelated normally distributed noise sequence with zero
mean and covarianceQ

eτ v N(0, Q). (2)

The fault estimation problem is to find the unknown fault
parametersf, given the prediction residualsy and the matrix
of fault signaturesS.

III. FAULT EVOLUTION MODELS

To obtain a statistically optimal estimate of the unknown
faults, we complement the linear residual model (1) with
the statistical model of the unknown fault sequence. The
proposed fault estimation scheme is applicable to a variety
of fault models that arise in different application areas. In
our framework, the most general model for the evolution of
the unknown faults has the form

f(t + 1) = Φ(f(t)) + γ(t), (3)

whereΦ(·) is some linear or nonlinear function of the fault
at the previous step.γ(τ) is the process noise driving the
evolution of the fault vector at the update cycleτ. The noise
is assumed to be independent, identically distributed (IID)
with probability density functionp(·).
A. Linear Model with Gaussian Noise

As a baseline case, we considerΦ(·) to be linear and
the process noiseγ to be gaussian. Then the fault evolution
model (3) reduces to

f(t + 1) = af(t) + γ(t), (4)

The noiseγ is gaussian with zero mean and varianceσ2. Its
probability density is given as

p(z) = (2πσ2)−1/2e−z2/2σ2
. (5)

This linear gaussian model covers the familiar random walk
approach of probabilistic modeling of an unknown data
sequence.



B. Linear Model with Uniform Noise

In some applications, a linear model with a uniform noise
distribution instead of the gaussian noise better describes the
evolution of faults. If we can considerγ(t) to be uniformly
distributed on[−a, a], then the probability density on this
interval is given as

p(z) =
1
2a

, z ∈ [−a, a]. (6)

C. Linear Model with Laplacian Noise

We may also extend our model to fit the situations where
fault evolution is better described by a Laplacian noise as
opposed to other symmetric distributions. If the letγ(t) to
be Laplacian, then the probability density is given as

p(z) =
1
2a

e−|z|/a, a > 0. (7)

D. Linear Model with Exponential Noise

We introduce another fault evolution model in whichγ(t)
is an uncorrelated exponentially distributed noise sequence.
The exponential distribution is used to model fault trends that
accumulate with time, e.g., mechanical damage. It is used to
model faults such as fatigue damage which are explained by
the well known Palmgren-Miner cumulative damage theory.
A symmetric distribution implies that the probability of fault
increasing or decreasing with time is the same. A one sided
exponential distribution is therefore used to model monotonic
fault trends. The probability density of the exponentially
distributed noise is given as

p(z) =
1
λ

e−z/λ, z ≥ 0. (8)

We now mathematically formulate the fault estimation
problem as the solution of a convex log-likelihood function.

IV. SOLUTION APPROACH

To obtain a statistically optimal estimate of the unknown
fault parameters, such as themaximum likelihood(ML) or
the maximum a posteriori probability(MAP) estimate, we
make use of the concept of conditional probability. For any
two random variablesf andy, the conditional probability is
denotedP (f |y) with the corresponding conditional probabil-
ity density represented bypf |y. It is natural to think in terms
of conditional probabilities when we have dynamical models
of the form (1). For such discrete time Markov processes,
the known prediction residual completely determines the
unknown future fault evolution up to the random disturbances
given bye.
The ML estimate of the random variablef given y is

ML estimate:= arg max
x

py|f . (9)

The MAP estimate of the random variablef given y is

MAP estimate:= arg max
x

pf |y. (10)

The ML estimate considersf as a parameters whereas the
MAP estimate takesf to be a random variable with some
prior density. This density represents our prior information

about what the values of the unknown fault vector might be,
before we observe the prediction residuals. Using the Bayes’
rule, we define the performance indexJ as

J := − log pf |y = − log py|f − log pfk
(.) + c, (11)

where subscriptk is used to index different types of faults.
fk(.) denotes the time seriesfk(1) . . . fk(t) for each fault as
given by the appropriate fault evolution model of Section III,
andc = log py is a constant that plays no role in determining
the estimate . We obtain the MAP estimate of the unknown
fault sequence by minimizing the loss index (11)

f̂MAP := arg min
[− log pf |y

]
, pf |y 6= 0. (12)

The first term in the performance index,− log py|f is deter-
mined by the linear model (1). From our earlier assumption
of a gaussian distribution for the noise terme in (2), we can
rewrite the performance index (11) as

J =
1
2
(y − Sf)T Q−1(y − Sf) +

∑

k

Jk, (13)

whereJk = − log pfk(.) depends on the nature of each fault
in the fault vectorf. The type of fault is determined by the
choice of the corresponding fault model. This term can be
interpreted as taking our prior knowledge of the faults into
account. It essentially penalizes estimates of faults that are
unlikely according to the prior density. If we assume thatγ(t)
in the fault evolution model (3) are mutually independent for
different k, and have independent probability distributions
with the density functionspk(x), then

Jk =
N∑

t=2

− log pk (fk(t)− Φ(fk(t− 1))) , (14)

whereN denotes the length of the estimation horizon.

V. FAULT SENSITIVITY COMPUTATIONS

As described in Section II, a non-zero residual vector in
indicates an off-nominal behavior and implies presence of
faults. The diagnostics algorithms use the prediction residuals
along with the fault signatures as inputs to determine the fault
estimates. The fault sensitivity matrix in (1) provides a linear
mapping between the unknown faults and the residuals. This
linearized dependence of the residuals on the faults allows us
to efficiently solve the estimation problem by reducing it to
a quadratic programming problem. The idea of linearization
of the non linear map about the nominal is motivated by
the analogous approach in the control problems. In a control
problem formulation, the use of linear time varying (LTV)
and linear time invariant (LTI) maps is widely accepted.
Estimation is the dual of control, and it is natural to follow
a similar approach in this setup.

The fundamental assumption in our discussion up to this
point is that the fault sensitivity matrix in (1) is a known
quantity. We now give an explanation of its computation.
The dependence of the residual data vector on the faults
given by the prediction model in Fig. 1, is in general not
available in an analytical form for computing the sensitivity



(Jacobian) matrixS. It can however be computable point-
wise by running a simulation of the prediction model. The
sensitivity matrix can then be numerically estimated by a
finite difference method. This is done by simply incrementing
each component of the fault vector and then running the
prediction model with the corresponding fault inputs to
compute point-wise values of the residual data vectory(|f).
The finite difference estimate of the columns ofS is obtained
by normalizing increments of the observed residual vector
change. Mathematically, the secant estimate for a column
S(t)(j) of the sensitivity matrixS at time instantt is given
by

S(t)(j) =
[
y(t|se(j))− y(t|0)

s

]
, (15)

wheree(j) is the unit fault vector with all entries zero except
the unit componentj, and s is the secant step size. The
choice ofs determines the tradeoff between the nonlinearity
error and the numerical accuracy. A smalls might limit
the numerical accuracy while reducing the nonlinearity error.
The sensitivity matrix computations may be performed on-
line, or off-line prior to system operation, depending upon
the type of application.

A. On-line and Off-line Sensitivity Computations

In some cases, the sensitivity matrix computation may be
performed off-line prior to the system operation. The pre-
computed sensitivity matrix may then be stored and later
used by the estimation algorithms during on-line computa-
tions. Such a computation of sensitivity matrix assumes that
the system will closely follow its nominal trajectory during
its operation. If the actual state of the system doesn’t match
the desired trajectory, then there will be an inaccuracy in
the computed sensitivity matrix. In many space applications,
where the pre-planned trajectory of the vehicle is available,
off-line computations may be more suitable. The results for
the satellite launch vehicle example of the next section are
obtained using off-line computations.

An alternate method is to compute the sensitivity matrix
on-line using the actual system state obtained from the
sensors. In this approach the nominal prediction model is
run alongside the prediction models with each of the fault
inputs in an online setting using the actual system state at
that time of the flight. The prediction model is a static input
output map in this case and requires the measured states in
real time to compute the sensitivities. In aircraft applications,
where there are disturbances in the form of wind gusts, on-
line processing of the fault signatures greatly increases the
accuracy of the estimates. The downside is the increases
computational burden on the on-board processors.

VI. BATCH ESTIMATION APPROACH

The batch estimation approach makes use of all the
available data at any instant in time. The estimates improve
as more data becomes available due to better statistical
averaging. We denote the residual data vector accumulated

from start to the current estimation update cycle numberτ
as

Yτ =
[

y(1) . . . y(τ ·M)
]T

, (16)

where M represents the length of each update cycle. The
sampled-data estimation logic assumes that fault parame-
ters f(t) are constant through each estimate cycle, i.e.,
f(t) = F (τ) ∈ Rp, for M(τ − 1) < t ≤ Mτ . This
assumption reduces the number of the fault values that are
estimated and improves statistical averaging properties of the
estimation scheme. At the same time, there is little loss of
estimation performance in addition to the already accepted
sampling time delay of the estimation update. We let the fault
parameter vector accumulated from the start to the estimation
update cycle numberτ be denoted as

Fτ =
[

f(1) . . . f(τ)
]T

. (17)

The algorithm objective is finding the unknown fault param-
eter vectorFτ . This requires relatingFτ to the available
residual data vectorYτ . As mentioned earlier, if the faults
don’t change the underlying system dynamics substantially,
we can linearize the dependence between the residuals and
the unknown faults. This linear relationship given in (1) is
expressed in the batch mode up to the current update cycle
as

Yτ (|Fτ ) = Sτ · Fτ + eτ , (18)

whereeτ is the noise vector, andSτ is the fault sensitivity
matrix for data up to the current estimation cycleτ. The
sensitivity matrixSτ corresponding to the estimation update
cycle τ does not need to be computed from scratch at
each update cycle. Instead it can be computed once for the
terminal update cycle, sayτ = Tf . For any τ < Tf , the
matrix Sτ is a truncation of the matrixST (a Mτ × τ sub-
matrix of theMT × T matrix ST ).

A. Rocket Ascent Example

In this section we briefly discuss the application of the
batch algorithms to diagnostics of rocket flight control. The
example is discussed in [9], where details of the vehicle
telemetry datax(t), prediction residualsy(t), unknown faults
f(t), and the relevant subsystem prediction models are given.
The developed algorithms are applied to the full nonlinear
models in [9] and are shown to give good estimates even in
the presence of nonlinearities.

Even the simplified models of a rocket control system are
highly nonlinear and protected by proprietary information.
We work with a given linear model of the system in the form
(18) to validate the batch estimation approach. The diag-
nostics problem is to estimate the following four parametric
faults during the first phase of rocket ascent

f :=




Thrust Loss, percent
Drag Increase, percent

Gimbal Sluggishness, percent
Pitch Sensor Offset, percent


 , (19)



where thrust loss is modeled as a monotonic fault, drag
increase is considered a step, gimbal sluggishness is assumed
to be constant, and pitch sensor offset is non-monotonic.

The nature of the faults determines the choice of the
probability distribution in (14). For the two monotonic faults,
thrust loss and drag increase, we use the linear fault evolution
model with exponential noise as given in Section III-D.
Substituting this exponential distribution for the process
noiseγk in (14) yields

Jk =
L∑

τ=2

1
λ

[Fk(τ)− Fk(τ − 1)] . (20)

Sincepk(x) = 0 for x < 0, the condition in (12) implies that
to obtain the MAP estimate for the two monotonic faults we
need to minimize the loss index (13) subject to the constraints

Fk(τ + 1) ≥ Fk(τ). (21)

For the non-monotonic fault of pitch sensor offset, we use
the fault evolution model of Section III-A. The symmetric
distribution is used as it implies that the probability of the
fault increasing or decreasing is the same. Substituting this
gaussian distribution for the process noiseγk in (14) yields

Jk =
1
2σ

L∑
τ=2

[Fk(τ)− Fk(τ − 1)]T [Fk(τ)− Fk(τ − 1)] .

(22)

The assumed gaussian distribution of the noiseγk for a
non-monotonic fault results in a quadratic penalty term in the
loss index (13) and the problem becomes an unconstrained
generalized least-squares estimation.
Gimbal sluggishness appears as a constant fault. A constant
fault describes a fault condition that does not change during
the planned system operation. In this case,Jk = 0 in (14)
and we minimize the loss index (13) subject to an equality
constraint

Fk(τ + 1) = Fk(τ). (23)

The prediction residual vectory(t) is a combination of the
guidance, navigation, and control subsystem residuals and
the gimbal subsystem residual

y(t) :=




Vertical acceleration residual, ft/s2

Flight angle rate residual, rad/s
Pitch acceleration residual, rad/s2

Servo rate residual, rad/s


 . (24)

A uniformly distributed noise was added to the residual data
to make the estimation problem more realistic. The fault
sensitivity matrix is provided for the first phase of rocket
launch that lasts approximately150 seconds. Fig. 2 shows
the columns of the given linear operatorSτ for the update
cycle τ = 6, i.e., 75 ≤ t ≤ 90. Here the operator is causal
in the sense thatYτ (Fτ ) does not depend onFρ, ρ > t/M .
It is also clear from the figure that the map is sparse in time
because of the negligible influence of fault after-effect on the
residual vector for the next cycle. The sampling is at a high

rate of 100 ms and we decide to run the estimation update
every15 seconds.
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Fig. 2. Fault signatures for an interval during first stage ascent

Fault estimates are obtained using the batch estimation
scheme by minimizing the loss index in (13), with the appro-
priateJk term chosen from (20) and (22) and the constraints
(21) and (23). For validation, the obtained estimates are
compared against the faults that were actually seeded in the
given linear model. Fig. 3 shows the estimates computed at
t = 70, 115, and 150. As seen in the plots the estimates
improve with time as more data is accumulated, and match
the unknown (seeded) faults reasonably well despite the
added noise.

VII. M OVING HORIZON ESTIMATION APPROACH

As more data becomes available for estimation, the size of
the batch optimization problem increases, and the problem
may become computationally intractable beyond a certain
dimension. To overcome this problem, a moving horizon
estimation approach is used. It has a Kalman filter type
recursive formulation and enables embedded implementation
for real time online diagnostics. Moving horizon formulation
for constrained estimation is presented in detail in [7].

In a moving horizon formulation, we always solve a
problem of fixed size (horizon) at each instant. LetN denote
the length of the moving horizon. We can then rewrite the
loss index (13) for the moving horizon estimation (MHE)
problem as

J =
1
2
(ȳ − S̄f̄)T Q−1(ȳ − S̄f̄) − log pfk

, (25)

where

ȳ =
[

y(t−N) . . . y(t)
]T

,

f̄ =
[

f(t−N) . . . f(t)
]T

,

S̄ = diag
(

S(t−N) . . . S(t)
)
.
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Fig. 3. Seeded faults and fault estimates for Rocket ascent

There should be an additional term in the MHE problem that
defines the hand over of initial condition for each moving
window. In general, a quadratic penalty term to penalize
deviations from the initial estimate is used. This additional
penalty can be expressed as

1
2
[f(t−N)− f0]T Q−1

0 [f(t−N)− f0], (26)

whereQ0 is the initial condition covariance andf0 = f(t−
N |t−1), i.e., the estimate off(t−N) at the instant(t−1). If
the initial condition covariance is very large thenQ−1

0 is very
small and we can ignore the quadratic penalty term during
the MHE solution. On the other hand, if there is reasonable
confidence about the initial point estimate at the previous
step, thenQ−1

0 is large and the initial penalty term has a
significant contribution to the loss index (25). For very small
covariance of the initial condition, we can also specify an
explicit equality constraint of the formf(t−N |t) = f(t−
N |t− 1) during the MHE solution.

A. Unmanned aerial vehicle example

The moving horizon estimation scheme is applied to a
linearized model of longitudinal dynamics of the Aerosonde
UAV. The Aerosonde was the first UAV to fly across the
Atlantic. We present a univariate example to explain the
concept.

A single fault, step loss in lift coefficientCL, was seeded
in the model after50 seconds. The vertical speed residual
after the addition of uniform noise was used as an input to the
estimation scheme. The residual plot is shown in Fig. 4. The
fault signature of the lift loss was computed by linearizing
the model about a specified trim state with and without the

seeded fault. The results of the lift loss estimate are shown
in Fig. 4, where a moving horizon window ofN = 30 was
used in the computations.
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Fig. 4. Residuals and fault estimate for Aerosonde UAV

VIII. C ONCLUSION

In this paper we have developed algorithms for estimating
time varying fault parameters for systems with detailed
prediction models. The algorithms are based on numerical
optimization techniques and perform efficient online compu-
tations for incipient fault detection. The proposed approach is
validated by an application to rocket flight control and UAV
diagnostics. This approach of estimating parametric faults
using convex optimization techniques provides a unique
diagnostics ability for online fault detection while accommo-
dating a priori fault constraints, multi-rate system operation,
and possible sensor loss.
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