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Abstract—In this work we present an optimization based ment and the model-based prediction. A non-zero residual
statistical estimation approach for diagnostics in large scale sys- serves as a fault indicator. There are several techniques for
tems. The fault estimation scheme relies on prediction residuals generating residuals depending upon the type of models

generated by detailed prediction models of the system under d iderai Outout ob based hi d
consideration. The system dynamics are generally nonlinear. we UNG€r consideration. Qutput observer-based approach Is use

linearize the system around its nominal operation and estimate for fixed parametric models, parity equations are used for
deviations (faults) from the nominal behavior. The statistical fixed parametric or nonparametric models, identification and

estimation approach is based on numerical optimization of a parameter estimation is used for adaptive nonparametric or
log-likelihood function. It allows us to estimate time varying — harametric models. Once the residuals are obtained, the next

fault parameters in an online setting, and can accommodate the tep is to detect the faults b idual analvsis. Different
loss of some sensor measurements during system operation. The S'€P 1S 10 Gelect the laulls by residual analysis. Difiere

proposed estimation approach is exp|ained through examp|es residual evaluation methOdS, like neural netWOka, fUZZy
from aerospace applications. logic and Bayes classification, are used in diagnostics. We

use convex optimization based methods to find statistically
optimal estimates of the incipient faults from the given
This work focuses on systems for which we have detailedbsiduals. The optimization based approach is easily scalable
prediction models. These models may contain a nonline&w diagnostics of large scale systems. It provides statistically
dependence of the system dynamics on the unknown fawptimal estimates in an efficient manner to enable real time
parameters. We assume that the magnitude of the evolviogline detection.
faults is small and they don't significantly change the dy- In this paper, we present two main implementations of the
namics of the system. This allows us to linearize the systeoptimization based approach for determining the unknown
around its nominal (no fault) trajectory. The system willfault parameters. Théatch estimationapproach uses the
ideally follow the nominal path during its operation. Anyentire data available at any instant of system operation. As a
deviations from this nominal behavior may be indicative ofesult, the estimates tend to improve as more measurements
a faulty operation. Such faults increase the probability diecome available with time. A major drawback of using a
system failure, and have serious economical and safety irbatch estimation approach relates to memory limitations and
plications. It is therefore critical to have a reliable method focomputational time. Thenoving horizon estimatioapproach
an accurate online estimate of the developing faults. The prbas a Kalman filter type recursive formulation and solves a
posed fault estimation scheme is applicable to a wide clagsoblem of fixed dimension at every step. For more details
of problems where detailed system models are availablef the moving horizon estimation scheme, see [6], [7], [8].
Application areas include several safety critical systems suchAs a base-line case, consider the fault parameters entering
as spacecraft and aircraft,process plants, startup/shutdotkie system dynamics linearly. If we allow only gaussian
sequences in nuclear reactors and engines etc. noise, the resulting optimal solution is given by batch least-
There has been a lot of emphasis in system monitosquares. We consider a problem that is more general than the
ing, fault detection and diagnosis. Different data-driven andnconstrained least-squares formulation. We deal with linear
model-based schemes have been proposed for fault idgime varying models and account for any a priori information
tification [1], [2], [3]. In a wide variety of applications, about the unknown faults in the form of constraints. More
fault detection is carried out by implementing a simplegeneral noise distributions, like uniform, exponential and
threshold logic. In the case where only output signals adeplacian noise can be handled in the developed approach.
available, signal-based methods for fault detection are usdskstimates of the time varying fault parameters are obtained
These include spectral analysis, maximum entropy baség solving a constrained convex programming problem for
estimation, and bandpass filters etc. More recently, parametszch batch/moving horizon. This approach is robust to loss
estimation and observer-based methods have been useddbsome sensors during system operation.
system diagnostics [4], [5]. This paper is composed as follows. First, a brief descrip-
Most model-based fault detection methods deal with thigon of the type of problems being considered is presented
residuals also referred to as thearity variables The resid- in Section Il. The models of different types of faults that
uals reflect the deviation between the actual plant measuigan be estimated by the proposed approach are given in

I. INTRODUCTION



Section Ill. A convex formulation of the statistical estimationmodel around the nominal wherg = 0. Using this linear
scheme is presented in Section IV. Section V describegpproximation for the prediction model, we get a linear fault
the computation of the matrix of fault sensitivities that isresidual relationship that can be conveniently expressed as
critical to the residual-based estimation approach. Batch

optimization algorithms are described and validated by an y(If) = Sf +e, 1)

example of rocket diagnostics in VI. The proposed approacfinere s ¢ R™*? is called the fault sensitivity matrix

?s then.used to solve a movin.g horizon estimation problerlggr the matrix of fault signatures. It can be obtained by
in Section VII. Some concluding remarks are presented ify,copian linearization of the prediction model. If the model

Section VIII. is not available in an analytical form, the sensitivity matrix
Il. TECHNICAL PROBLEM STATEMENT is obtained by a secant method. The computations may be

Model-based approach is frequently used for system anﬁgrformed Qn—l|n¢ or 0“"“?6 depending upon the application
nder consideration. Details about the calculation of the fault

ysis in many application areas. In this work, we deal with! vt i di din Section V. Th ise t
detailed predictive models of the system under consideration: > V1Y Matrix are discussed in Section V. The noise term
accounts for modeling and sensor measurement errors.

The prediction model may depend nonlinearly on some faulraote that ife — 0 in (1 : deli
of interest. The zero fault case determines the nominal trajec- e=21mn (1) (no noise, no modeling errqrs),
tory of the system. We begin by linearizing the system aroun@en. th_e reS|dua! in the absence qf faylto) = 0. This
its nominal trajectory. Using this linear relationship, weWIII indicate nominal sy;tem operatpn. we assuenm.be
estimate any deviations (faults) from the nominal behavioryncorrelated nor'mally distributed noise sequence with zero
The prediction modeldivides the system operation in an mean and covarianog
input/output form. The model predicts the outputs given the er -~ N(0,Q). 2)
inputs. The predicted output is determined by the underlying
system dynamics. The model describes the dynamics of tAide fault estimation problem is to find the unknown fault
system through a set of ordinary differential equations (ODH)arameters, given the prediction residuajsand the matrix
or static maps. This ODE model is either derived fronof fault signaturesS.
the basic principles of physics and/or obtained empirically.
Once developed, the model may be numerically integrated to
simulate the system operation. Fig. 1 shows schematics of aTo obtain a statistically optimal estimate of the unknown
prediction model:z(t) € R" is the state vector (measuredfaults, we complement the linear residual model (1) with
variables), f(t) € RP is the vector of seeded faults andthe statistical model of the unknown fault sequence. The
t € Z* denotes the sampling time. Note that we allow faulproposed fault estimation scheme is applicable to a variety
inputs to the prediction model. The output of the predictionf fault models that arise in different application areas. In
our framework, the most general model for the evolution of

I11. FAULT EVOLUTION MODELS

Parametric sensor_| the unknown faults has the form
data, x(1) Prediction Model | Prediction Residuals, ¥ (#)
Fault inputs, f (1) —|

fE+1) =o(f(1) +(1), ®)

_ o _ where®(-) is some linear or nonlinear function of the fault
model is the vector of prediction residualg|f) € R™. at the previous stepy(r) is the process noise driving the
These model-based prediction residuals are the differeng@olution of the fault vector at the update cyeleThe noise

between the predicted output and the actually observes assumed to be independent, identically distributed (IID)
output, assuming nominal (no fault) system behavior. If th@ith probability density functionp(-).

prediction model accurately describes the system operation,
the residuals are zero in the absence of faults, 4.e5 0  A. Linear Model with Gaussian Noise

when f = 0. A non-zero residual value on the other Ag 5 paseline case, we considét-) to be linear and

hand results from off-nominal behavior and indicates som@e process noise to be gaussian. Then the fault evolution
deviation of the parameters from their nominal values. Thig,qgel (3) reduces to

may correspond to performance deterioration in the system.

The parameters of interest may enter the system dynamics fiE+1)=af(t)+~(t), (4)
in a non-linear manner. As a consequence, the prediction ) ) i ) )
model is in general non-linear. In many applications, thd € NOIS€y is gaussian with zero mean and variance Its
magnitude of the underlying faults is usually small, i.e., th@robability density is given as
perturbations from the nominal parameter values are not too p(z) = (27_[_0_2)71/267,22/202. (5)
large. We can thus make the fundamental assumption that the
change in underlying system dynamics caused by the (smallhis linear gaussian model covers the familiar random walk
change in nominal parameters values is relatively small undepproach of probabilistic modeling of an unknown data
most operating conditions. This allows us to linearize theequence.

Fig. 1. Schematic diagram of a prediction model



B. Linear Model with Uniform Noise about what the values of the unknown fault vector might be,
In some applications, a linear model with a uniform nois®efore we o_bserve the prediction _residuals. Using the Bayes’
distribution instead of the gaussian noise better describes tf#ie; we define the performance indéxas

evolution of faults. If we can consider(z) to be uniformly J——_lo — 1o “ 1o J4e 11
distributed on[—a, a], then the probability density on this &Py gpyis ~logps()te (D)

interval is given as where subscripk is used to index different types of faults.
1 f(.) denotes the time serig& (1) ... f*(t) for each fault as
p(z) = % z € [—a,al. (6) given by the appropriate fault evolution model of Section I,

. ) ) . andc = log p, is a constant that plays no role in determining
C. Linear Model with Laplacian Noise the estimate . We obtain the MAP estimate of the unknown
We may also extend our model to fit the situations wherfault sequence by minimizing the loss index (11)
fault evolution is better described by a Laplacian noise as .

opposed to other symmetric distributions. If the 1€t) to frrap = argmin [—logpy, |, Prly 7 0. (12)
be Laplacian, then the probability density is given as The first term in the performance index,logp, ; is deter-
L /e mined by the linear model (1). From our earlier assumption
p(z) = —e , a > 0. @ . A . .
2 of a gaussian distribution for the noise teenn (2), we can
D. Linear Model with Exponential Noise rewrite the performance index (11) as
. . . . 1 _
_ We introduce another fault_ evolu_tlor_l model in whigfy) J==(y—SHTQ Ny —Sf) + ij’ (13)
is an uncorrelated exponentially distributed noise sequence. 2 =

The exponential distribution is used to model fault trends that Jo— d d th t ¢ h fault
accumulate with time, e.g., mechanical damage. It is used Y§'€7€/k = —logpy, () depends on the nature of each fau

model faults such as fatigue damage which are explained Bq};the fat;lir:/ectorf. The (tjype ]f)f fl?u“ '(Sj dletﬁ:m";ed by theb
the well known Palmgren-Miner cumulative damage theor)? oice of the corresponding tault model. This term can be

A symmetric distribution implies that the probability of fault mterpre:{telc: as takt'.n?l our prllpr knovx;!edgte of ftk;e ];?UE |tnto
increasing or decreasing with time is the same. A one sid count. 1t essentially penalizes estimates of taults that are

exponential distribution is therefore used to model monotonfén:'rlfell}' aﬁcordllntg tothe dprllogdensny. Itf WIT a_szume Hgéﬂ)t f
fault trends. The probability density of the exponentiall;)dn.ﬁ € a}[uk evodurl]on mo de ( );retmu ul:? gl'||'? (Zpetn_be? or
distributed noise is given as ifferent &, and have independent probability distributions

with the density functiongy (), then

p(z) = %e_z/’\, z > 0. (8) N
Ji = —lo t)—o(fr(t—1))), 14
We now mathematically formulate the fault estimation i ; 8 i (fi(?) (il ) (14)

roblem as the solution of a convex log-likelihood function. . . .
P 9 where N denotes the length of the estimation horizon.

IV. SOLUTION APPROACH
V. FAULT SENSITIVITY COMPUTATIONS

To obtain a statistically optimal estimate of the unknown
fault parameters, such as theaximum likelihood ML) or
the maximum a posteriori probabilityMAP) estimate, we
make use of the concept of conditional probability. For an
two random variableg andy, the conditional probability is
denotedP( f|y) with the corresponding conditional probabi

As described in Section I, a non-zero residual vector in
indicates an off-nominal behavior and implies presence of
{,aults. The diagnostics algorithms use the prediction residuals
along with the fault signatures as inputs to determine the fault
I_estimates. The fault sensitivity matrix in (1) provides a linear

ity density represented by, It is natural to think in terms mapping between the unknown faults and the residuals. This

of conditional probabilities when we have dynamical modelgr‘(a"’lr_iz_ed dependence of _the r.esiduals on the faults .alloyvs us
of the form (1). For such discrete time Markov processe§9 efficiently solve the estimation problem by reducing it to

the known prediction residual completely determines th@ quadratic programming problem. The idea of linearization

unknown future fault evolution up to the random disturbance%lc the non linear map about the nominal is motivated by

given bye. the analogous approach in the control problems. In a control

The ML estimate of the random variabfegiven y is problem formulation, the use of linear time varying (LTV)
and linear time invariant (LTI) maps is widely accepted.

ML estimate:= arg max py . (9) Estimation is the dual of control, and it is natural to follow
) ‘ ) ] ) a similar approach in this setup.
The MAP estimate of the random variabfegiveny is The fundamental assumption in our discussion up to this
MAP estimate= arg max p . (10) point is that the fault sensitivity matrix in (1) is a known
xT

guantity. We now give an explanation of its computation.
The ML estimate considerg as a parameters whereas thelfhe dependence of the residual data vector on the faults
MAP estimate takeg to be a random variable with some given by the prediction model in Fig. 1, is in general not
prior density. This density represents our prior informatioravailable in an analytical form for computing the sensitivity



(Jacobian) matrixS. It can however be computable point-from start to the current estimation update cycle number
wise by running a simulation of the prediction model. Theas

sensitivity matrix can then be numerically estimated by a T

finite difference method. This is done by simply incrementing YVo=[y) ... y(r-M)]", (16)

each component of the fault vector and then running ﬂ'\?/hereM represents the length of each update cycle. The

prediction fT‘Ode_' with ‘the correspo_nding fault inputs tosampled—data estimation logic assumes that fault parame-
compute point-wise values of the residual data vegiof). o f(t) are constant through each estimate cycle, i.e.,
The finite difference estimate of the columns%is obtained (t) = F(r) € RP, for M(r — 1) < t < Mr. This

by normalizing increments of the observed residual vect ssumption reduces the number of the fault values that are
chargjg)e. Mathemapga_llly, the_ secan_t est_lmate f(.)r a COIur"H%timated and improves statistical averaging properties of the
5(t)"7 of the sensitivity matrixS at time instant is given estimation scheme. At the same time, there is little loss of
by estimation performance in addition to the already accepted
y(t|se@) — y(¢|0) sampling time delay of the estimation update. We let the fault
S(t)V) = : (15)  parameter vector accumulated from the start to the estimation
S
update cycle number be denoted as
wheree?) is the unit fault vector with all entries zero except -
the unit component, and s is the secant step size. The I = [ f) o f() ] : 17
choice ofs determines the tradeoff between the nonlinearit

error and_the numerical accuracy. A smallm|_ght I_|m|t eter vectorF.. This requires relatingF’- to the available
the numerical accuracy while reducing the nonlinearity €MOLasidual data vectoF... As mentioned earlier, if the faults

T_he sensm\{lty m:?\trlx computations may be perfo.rmed "Gon't change the underlying system dynamics substantially,
line, or off-line prior to system operation, depending UPOe can linearize the dependence between the residuals and
the type of application. the unknown faults. This linear relationship given in (1) is

expressed in the batch mode up to the current update cycle

as
In some cases, the sensitivity matrix computation may be

performed off-line prior to the system operation. The pre- YA(|Fr) = S; - Fr + e, (18)

computed sensitivity matrix may then be stored and Iaterh is th . ; § s the fault v
used by the estimation algorithms during on-line computaVy eree, 1S e noise vector, and, 1S the tault sensi vity
atrix for data up to the current estimation cyeie The

tions. Such a computation of sensitivity matrix assumes that vt trixS ding to th timati dat
the system will closely follow its nhominal trajectory during sensilivity matrix>, corrésponding to the estimation update

its operation. If the actual state of the system doesn’t mat CIE T ((jjotes nolt nlee(tj tg .Ee col;nputed frfrg scrat;:h ?ht
the desired trajectory, then there will be an inaccuracy jfjach update cycie. instead it can be computed once for the

the computed sensitivity matrix. In many space applicationé?rm!naI u_pdate cyclg, say = Tj. F.Or anyr < Ty, the
where the pre-planned trajectory of the vehicle is availablé?atr!x S IS a truncation Of the matri§r (a M7 x  sub-
off-line computations may be more suitable. The results fdpatrix of the MT x T’ matrix Sr).

the satellite launch vehicle example of the next section ae Rocket Ascent Example

obtained using off-line computations.

An alternate method is to compute the sensitivity matrix !N this section we briefly discuss the application of the
on-line using the actual system state obtained from tHeatch alg(_)rlth_ms to d|agnost|cs of rocket f!|ght control. T_he
sensors. In this approach the nominal prediction model @xample is discussed in [9], where details of the vehicle
run alongside the prediction models with each of the fauf€lémetry data:(t), prediction residualg(t), unknown faults
inputs in an online setting using the actual system state 4ft), and the reIevant'subsystem pl’e.dICtIOI’l models are given.
that time of the flight. The prediction model is a static input! "® developed algorithms are applied to the full nonlinear
output map in this case and requires the measured statedTiRdels in [9] and are shown to give good estimates even in
real time to compute the sensitivities. In aircraft applicationdn€ presence of nonlinearities.
where there are disturbances in the form of wind gusts, on- Even the simplified models of a rocket control system are
line processing of the fault signatures greatly increases tféghly nonlinear and protected by proprietary information.
accuracy of the estimates. The downside is the increas¥€ work with a given linear model of the system in the form

computational burden on the on-board processors. (18) to validate the batch estimation approach. The diag-
nostics problem is to estimate the following four parametric

V1. BATCH ESTIMATION APPROACH faults during the first phase of rocket ascent

fhe algorithm objective is finding the unknown fault param-

A. On-line and Off-line Sensitivity Computations

The batch estimation approach makes use of all the Thrust Loss, percent
available data at any instant in time. The estimates improve a Drag Increase, percent
as more data becomes available due to better statistical = Gimbal Sluggishness, percent’
averaging. We denote the residual data vector accumulated Pitch Sensor Offset, percen

(19)



where thrust loss is modeled as a monotonic fault, dragte of 100 ms and we decide to run the estimation update
increase is considered a step, gimbal sluggishness is assuraeery 15 seconds.
to be constant, and pitch sensor offset is non-monotonic.
The nature of the faults determines the choice of the
probability distribution in (14). For the two monotonic faults,
thrust loss and drag increase, we use the linear fault evolution 04 008 o0
model with exponential noise as given in Section IlI-D. 02 002 ~0.06
SUbStitUting this eXponential distribution for the process 50 100 150 ° 50 100 150 ° 50 100 150 50 100 150
noise-y; in (14) yields ) )
L

Jo= 3" 5 [Fulr) = Fir = 1) (20
T=2

Sincepy(z) = 0 for 2 < 0, the condition in (12) implies that
to obtain the MAP estimate for the two monotonic faults we
need to minimize the loss index (13) subject to the constraints

Fi(r 4+ 1) 2 Fi(7). (21)

For the non-monotonic fault of pitch sensor offset, we use
the fault evolution model of Section IlI-A. The symmetric
distribution is used as it implies that the probability of the
fault increasing or decreasing is the same. Substituting this
gaussian distribution for the process noigein (14) yields
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1 L Fig. 2. Fault signatures for an interval during first stage ascent
Ji = 50 3 [Fi(m) = Fi(r = DI [Fa(r) = Fi(r = 1)]. | o -
e Fault estimates are obtained using the batch estimation
scheme by minimizing the loss index in (13), with the appro-
(22)  priate.J;, term chosen from (20) and (22) and the constraints
The assumed gaussian distribution of the noisefor a (21) and (23).. For validation, the obtained estimate; are
non-monotonic fault results in a quadratic penalty term in thggmpa_red against thg faults that were agtually seeded in the
loss index (13) and the problem becomes an unconstrain8t/©" linear model. Fig. 3 ShOWS. the estimates com_puted at
generalized least-squares estimation. t =70, 115, a_nd 150. As seen in the plots the estimates
Gimbal sluggishness appears as a constant fault. A const prove with time as more data is accumulated, and_match
fault describes a fault condition that does not change durifg® unkngwn (seeded) faults reasonably well despite the
the planned system operation. In this cagg,= 0 in (14) added noise.
and we minimize the loss index (13) subject to an equality  VII. M OVING HORIZON ESTIMATION APPROACH

constraint As more data becomes available for estimation, the size of

Fr(t+1) = Fi(7). (23) the batch optimization problem increases, and the problem

o ) . o may become computationally intractable beyond a certain
The prediction residual vectgy(t) is a combination of the gimension. To overcome this problem, a moving horizon

guidance, navigation, and control subsystem residuals agdtimation approach is used. It has a Kalman filter type

the gimbal subsystem residual recursive formulation and enables embedded implementation
Vertical acceleration residual, f¥/s for real time online diagnostics. Moving horizon formulation
Flight angle rate residual, rad/s for constrained estimation is presented in detail in [7].
y(t) = Pitch acceleration residual, rad/s| - (24) In a moving horizon formulation, we always solve a
Servo rate residual, rad/s problem of fixed size (horizon) at each instant. Detdenote

the length of the moving horizon. We can then rewrite the

A uniformly distributed noise was added to the residual datr%sS index (13) for the moving horizon estimation (MHE)
to make the estimation problem more realistic. The fautﬁroblem .

sensitivity matrix is provided for the first phase of rocke

launch that lasts approximatelys0 seconds. Fig. 2 shows J= l(g —-SHTQ Yy —Sf) — log py, , (25)
the columns of the given linear operatsr for the update 2

cycler = 6, i.e., 75 < t < 90. Here the operator is causal Where

in the sense that (F.) does not depend of,, p > t/M. = F— N n 1"

. . ; 4 v = [ ) y(t) |,
It is also clear from the figure that the map is sparse in time _ T
because of the negligible influence of fault after-effect on the J_c = [ fE=N) ... f@®) ] J
residual vector for the next cycle. The sampling is at a high S = d|ag( S(t—N) S(t) )
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Fig. 3. Seeded faults and fault estimates for Rocket ascent

seeded fault. The results of the lift loss estimate are shown
in Fig. 4, where a moving horizon window df = 30 was
used in the computations.
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Fig. 4. Residuals and fault estimate for Aerosonde UAV

VIII. CONCLUSION

There should be an additional term in the MHE problem that !N this paper we have developed algorithms for estimating

defines the hand over of initial condition for each movind

ime varying fault parameters for systems with detailed

window. In general, a quadratic penalty term to penalizBédiction models. The algorithms are based on numerical
deviations from the initial estimate is used. This additionaPPtimization techniques and perform efficient online compu-

penalty can be expressed as

1

U= N) = fo]"Qa [f(t = N) = fol, (26)

where() is the initial condition covariance anf) = f (¢t —
N|t—1), i.e., the estimate of (t— N) at the instanft—1). If
the initial condition covariance is very large th€qg Lis very

small and we can ignore the quadratic penalty term during

the MHE solution. On the other hand, if there is reasonab

tations for incipient fault detection. The proposed approach is
validated by an application to rocket flight control and UAV
diagnostics. This approach of estimating parametric faults
using convex optimization techniques provides a unique
diagnostics ability for online fault detection while accommo-
dating a priori fault constraints, multi-rate system operation,
and possible sensor loss.
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