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Abstract— This paper discusses a problem for recovering an
underlying trend from noisy data. The key assumption is that
the trend is monotonic, e.g., reflects accumulation of irreversible
system deterioration. The trend is obtained as a maximum
a posteriori probability estimate. The overall problem setup
is related to α-β filter and Hodrick–Prescott filter. The main
difference is that instead of a Gaussian process noise, a one-
sided exponentially distributed noise is assumed. The batch
estimate is a solution to a Quadratic Programming problem.
The approach works exceptionally well for piece-wise linear
trends that have a small number of jumps in the trended
variable or its increase rate. Theoretical analysis justifies the
sparsity properties for the jumps in the solution.

I. I NTRODUCTION

This paper considers trending of univariate time series.
Simple or more sophisticated methods for trending are used
in finance, economics, business, decision support, condition-
based maintenance, industrial process monitoring, manufac-
turing automation, enterprize resource planning, medical,
geological, weather, and environmental applications.

Optimal estimation of a trend requires a prior knowledge
of a trend model. A broadly used model is a second-order
random walk where Gaussian increments drive a slope state
and an intercept state of a linear trend model. Known as a
Holt model (in econometrics) orα-β model, such second-
order model is also a mainstay of Kalman filtering in navi-
gation systems. A batch estimation of the trend (smoothing
problem) based on the second-order model is commonly used
for financial and econometric analysis under the name of
Hodrick-Prescott filter.

The problem statement in this paper was motivated by
estimation applications where the trend reflects a physical
property, such as damage, irreversibly accumulating with
time. We consider trending based on second-order monotonic
random walk model with monotonicity constraints. Similar
to the α-β filter trending, this second order model might
have many applications. While there is abundant research
and textbook literature on ‘usual’ linear trending, very little
work on monotonic trending seems to exist.

A statistically optimal estimate of a monotonic trend can
be obtained by numerical optimization of a log-likelihood
index with the monotonicity constraints. The problem can
be formulated as Quadratic Programming (QP) and solved
efficiently. An interesting property of the solution is that
it usually comes out as a piecewise linear function with
sparse jumps and inflection points. One can think of the
jumps as discrete failure events in the damage accumulation
history. We analyze this property in the paper and discuss its
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relationship to sparsity properties ofL1-optimal solutions of
overdetermined linear equation systems, which have recently
received significant attention in signal processing literature,
see [4], [3], [5], [7], [11] for further references.

The initial motivation for our work came from turbine
engine performance trending applications. Some of the recent
work in this application area explicitly introduces monotonic-
ity constraints in the estimation of the performance loss.
The papers [13], [19] consider a single-step constrained
estimation, which is locally optimal. They stop short of
formulating an optimal estimation problem.

Optimal statistical estimation with monotonicity con-
straints has been known in statistics for some time under
the name of Isotonic Regression. Much of the early work
in this area is summarized in the books [1], [16], see also
more recent papers [15], [18]. This prior work leads to
QP problem formulations that could be also obtained for
monotonic trend estimation based on a first-order random
walk model. This is different from the second-order random
walk model considered herein.

Some prior work in statistics is aimed at estimating
monotonic curves, such as cumulative probability distribu-
tions. The monotone spline smoothing considered in [12]
leads to a QP problem statement close to one considered
in this paper (though it is not motivated by time series
estimation). There is also substantial literature on constrained
optimization-based estimation, in particular moving horizon
estimation, see [8], [14], [20]. Yet this work does not focus
on monotonic trending.

This paper extends an earlier conference paper [9], where
trending based on the monotonic walk model was introduced.
For related work (outside of the scope of this paper) see
[17] and the references there. The goals and contribution of
this paper are two-fold. First, it provides tutorial material
on the monotonic trending. Second, it explains some of
the properties of the monotonic trending, in particular, the
sparsity of the jumps and inflection points in the trend
solution.

II. L EAST SQUARES TRENDING

This section establishes a departure point of the study by
briefly reviewing standard linear-quadratic trending meth-
ods. The problem with Gaussian noises in this section is
well known and considered for tutorial purposes. The main
reason for practical success of these methods is in their
conceptual clarity. They are easy to implement and have
a small number of well-understood parameters to set up
and tune. Subsequently we consider other, less standard,



problem formulation by modifying the baseline problem of
this section.

Consider a univariate data setY representing an underly-
ing trendX perturbed by a noise

Y = {y(1), ..., y(N)}, (1)

X = {x(1), ..., x(N)}, (2)

where y(t) are scalars andx(t) ∈ <K are trend state
vectors. As an illustrative example, Figures 1 and 2 show an
underlying trend (dashed line) and simulated time seriesY
(dots) obtained by adding[−1, 1] bounded pseudo-random
numbers to the trend.

In what follows, we will study the problem of estimating
the underlying trendX from the observed dataY . This
requires assuming a model for trendX and a relationship
betweenX andY . Consider a linear model of the form

x(t + 1) = Ax(t) + ξ(t), (3)

y(t) = Cx(t) + e(t), (4)

where x(t) ∈ <K is the trend state,ξ(t) ∈ <K is the
state driving noise,e(t) ∈ < is the measurement noise,
A ∈ <K,K , andC ∈ <1,K . In particular, consider a second-
order random walk model, whereK = 2 and

A =
[

1 0
α 1

]
, C =

[
0 1

]
, (5)

whereα is a positive scalar parameter. A free response of
(5) describes a linear trend (an affine function of time). The
statex1 is the slope andx2 is the intercept of the trend.

Assume thatξ(t) ande(t) in (3)–(4) are independent white
Gaussian noises. The probability distributions forx(1), e(t),
andξ(t) are

p0(z) ∼ N(x0, Ξ0), pe(z) ∼ N(0, q), (6)

pξ(z) ∼ N(0, Ξ),

where the covarianceq is a scalar, the initial statex0 is a
<2 vector, and the covariancesΞ0, Ξ are<2,2 matrices.

A Maximum A posteriori Probability (MAP) estimate of
the trendX can be obtained by maximizing the conditional
probability P (X|Y ) → max. Using the Bayes rule, the
conditional probability can be expanded as

P (X|Y ) = P (Y |X) · P (X) · C, (7)

where C = [P (Y )]−1 is independent ofX. Since the
noise valuese(t) in (4) for different t are independent and
identically distributed aspe(x), we get

P (Y |X) =
N∏

t=1

pe (y(t)− Cx(t)) (8)

By applying the Bayes rule to equation (3) for eacht and
using the fact thatξ(t) in (3) are independent with identical
distributionspξ(x) we get

P (X) = p0 (x(1)) ·
N∏

t=2

pξ (x(t)−Ax(t− 1)) (9)

The MAP estimate minimizesL = − log P (X|Y ). Ob-
taining the conditional probabilities in (7)–(9) by using (3)–
(4), (6), yields the MAP problem in the form

L =
1
2

N∑
t=1

‖y(t)− Cx(t)‖2 +
1
2
‖x(1)− x0‖2Q0

(10)

+
1
2

N∑
t=2

‖x(t)−Ax(t− 1)‖2Q → min,

where‖ · ‖Q is a weighted 2-norm such that‖x‖2Q = xT Qx.
The weighting matrices areQ = qΞ−1 andQ0 = qΞ−1

0 .
The solution to the quadratic minimization problem (10)

gives an estimate of state history vectorXN that consists of
stacked state vectorsx(t) and has length ofN · K (length
of 2N for the model, (3)–(4), (5), (6)). The estimated trend
output ŷ(t) = Cx(t) can be displayed and compared against
the original data.

For largeN , the solution to (10) does not depend on the
initial condition x0 and its weightQ0. SinceΞ is diagonal,
the second-order model (3)–(4) has two tuning parameters
Q1 andQ2, whereQ = diag{Q1, Q2}.
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Fig. 1. Smoothing using the second-order trend model - H-P filter

A special case of the second-order smoothing algorithm
(10) known as Hodrick–Prescott filter (H-P filter) is broadly
used in econometrics. The H-P filter is a tool of choice
for financial analysis (for stock valuation trending). For
formulating H-P filter assumeα = 1, Q0 = 0 and Q =
diag{Q1, 0}. From (3) we get‖x(t) − Ax(t − 1)‖2Q =
Q1 · [x1(t) − x1(t − 1)]2. In accordance with (5) we have
x1(t) = x2(t + 1) − x2(t). By using that in (10) we get a
standard H-P filter formulation

L =
1
2

N∑
t=1

‖y(t)− x2(t)‖2 + (11)

Q1

2

N−1∑
t=2

‖[x2(t + 1)− x2(t)]− [x2(t)− x2(t− 1)]‖2 → min,

The smoothing results for the H-P filter withQ1 = 5 are
shown in Figure 1.

III. M ONOTONIC TRENDING

Monotonicity of a trend might be caused by accumulation
of irreversible deterioration in a system. The state variable
x2(t) in the monotonic trend model (3)–(4), (5) might have a
meaning of the cumulative deterioration accumulated in the
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system. The state variablex1(t) describes the nondecreasing
rate of the deterioration accumulation. One can say that
x1(t) is a primary deterioration andx2(t) is a secondary
deterioration, which is accumulated because of the presence
of the primary, as well as because of other random causes. As
an intuitive example,x1(t) might describe a quality of oil in
the car (between oil changes) andx2(t) overall deterioration
of the engine. The engine would deteriorate faster if the oil is
bad. Engine deterioration and oil deterioration are considered
to be monotonic (irreversible).

We model the monotonicity through probability distribu-
tion pξ(x) of the process noiseξ(t) assuming thatpξ(x) =
0, for x < 0. The assumedpξ(x) should be reasonably
simple, justifiable, and lead to a solvable formulation. In
what follows, we mainly consider a one-sided (positive)
exponential distributionpξ(x) that yields MAP formulation
in the form of a QP (Quadratic Programming) problem. In
addition to the exponential distribution, the QP formulation
of the MAP problem can be also obtained for a uniform
on an interval distribution and a Gaussian distribution with
a positivity constraint. All of these assumptions result in
similar QP problems.

Consider the second-order model (5). Assume that the
process noisesξ(t) = [ξ1(t) ξ2(t)]T in (3) are exponentially
distributed (always nonnegative). The model states, thus,
evolve monotonically. The observation noisee(t) in (4) is
assumed to be an independent white Gaussian noise. The
probability distributions (6) forx(1) = [x1(1) x2(1)]T ,
e(t), andξ(t) = [ξ1(t) ξ2(t)]T are replaced by

pe(x) ∼ N(0, q), p0(x) ∼ N(x0,Ξ0), (12)

pξj (x) ∼ Ξje
−x/Ξj for x ≥ 0, (j = 1, 2),

whereΞj and Ξj have the meaning similar to the process
noise covariances in (6).

The MAP estimation problem isL = − log P (X|Y ) →
min. Substituting the conditional probabilities in (7)–(9)
from (3)–(4) and (12) we get, similar to how (10) is obtained,

L =
1
2

N∑
t=1

‖y(t)− Cx(t)‖2 +
1
2
‖x(1)− x0‖2Q0

(13)

+
N∑

t=2

ρ̄T [x(t)−Ax(t− 1)] → min,

subject tox(t)−Ax(t− 1) ≥ 0, (14)

where A and C are given by (5),ρ̄ = [qΞ−1
1 , qΞ−1

2 ]T ,
and Q0 = qΞ−1

0 . The loss index (13) includes linear and
quadratic terms in componentsx(t) of the decision vector
XN ; the constraints (14) are linear inequalities. This QP
problem is always feasible:x(t) = At−1x0 is one feasible
solution. Hence, a global optimum can be found using a stan-
dard QP solver. The solution depends on two regularization
parametersρ1 = qΞ−1

1 andρ2 = qΞ−1
2 .

To illustrate the performance of the algorithm (13)–(14),
Figure 2 illustrates the trend estimated for the same data
set as in Figure 1. As one can see, the proposed algorithm
recovers the underlying trend very well. Compared to the
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Fig. 2. Second-order monotonic regression forρ = [2, 5]T

trend estimated with an H-P filter in Figure 1, using the
second-order monotonic walk model in Figure 2 yields about
40% better mean square error in recovering the underlying
trend.

Computational experiments show that the formulated
monotonic trending algorithm can recover the jumps and
inflection points in the underlying trend extremely well. In
fact, the trend estimate in most practical cases comes out as
having sparse jumps and inflection points. The reasons for
the trend estimate having such form are discussed in the next
section. When trending the underlying damage, the steps and
inflection points can be interpreted as discrete failure events.

The tuning parameters of the algorithm:ρ1 and ρ2 are
defined by the covarianceq of the Gaussian observation noise
e(t) and the parametersΞj of the exponential distribution for
the process noiseξ(t) in the model (3)–(4), (5). We consider
ρ1 andρ2 as tuning knobs of the algorithm and de-emphasize
the statistical meaning of the parameters.

IV. A NALYSIS FOR MONOTONIC RANDOM WALK

As described in the previous section, a monotonic trend
based on the random walk model can be computed by solving
a QP problem. This section presents an analysis of the
solution properties. The main issue of interest is: why does
the solution comes out having a few jumps or inflection
points with the straight line segments in-between? We will
attempt to answer this question.

Introduce the model deviations(t = 1, . . . , N − 1)

u(t) = x(t + 1)−Ax(t) (15)

We will further useu(t) as decision variables. The constraint
(14) can be expressed asu(t) ≥ 0. The variablesx(t) can
be found fromu(t) by running a recursive update

x(t + 1) = Ax(t) + u(t)

Let us introduce a decision vectorUN describing the trend
(2) a vectorYN describing the observations (1)

UN =




u(1)
...

u(N − 1)


 , YN =




y(1)
...

y(N)


 , (16)

We will show that the vectorUN ∈ <2(N−1) estimated
from YN ∈ <N is sparse - has a relatively small number of
nonzero components. Then, the estimated trend consists of
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straight line segments with sparse jumps (whereu2(t) > 0)
and sparse inflection points (whereu1(t) > 0).

The optimal sparse solutions of overdetermined problems
are of much interest in signal processing and there is sig-
nificant past and current research work in this area, see [5],
[7], [11] and references thereof. In [3], [4], [5], [7], [11]
it is shown that under certain conditions, a sparse solution
of overdetermined system of linear equations can beexactly
reproduced byl1 optimization. With a proper modification
this property holds for noisy data. The problem (13)–(14)
is equivalent tol1-norm optimization with linear constraints
and noisy data.

Our analysis of the problem (13)–(14) is inspired by [5],
[7], [11]. The formulated results, however, are technically
different, use different assumptions. This section considers
the second-order random walk model (3)–(5), but the results
can be generalized to higher-order random walk models.

For convenience of analysis, this section assumes that
ρ1 = ρ2 = ρ in (13). This can be assumed without a loss
of generality. Consider a variable changex1 → βx1, where
β = ρ2/ρ1 = Ξ2/Ξ1. After this variable change the model
(3)–(5) keeps the same form with a change of parameters:
α → α/β, Ξ1 → Ξ2; in (13) we getρ1 → ρ2 andρ2 → ρ2.

Using (16), the first term in the loss index (13) can be
presented in the form‖YN −ANUN −BNx(1)‖2, where

AN =




0 0 . . . 0
C 0 . . . 0
...

...
. ..

...
CAN−2 CAN−3 . . . C


 ,

BN =




C
CA

...
CAN−1


 , (17)

For further analysis, let us re-write the problem (13)–(14)
in the matrix form using notation (16), (17).

1
2
‖YN −ANUN −BNx(1)‖2 +

1
2
‖x(1)− x0‖2Q0

+ρ1T UN → min, (18)

subject toUN ≥ 0, (19)

where1 is a vector of ones of the length2(N − 1) and the
inequality (19) is component-wise.

The QP problem (18)–(19) has a positive semidefinite
Hessian. About a half of the Hessian eigenvalues are zero.
We are interested in showing that solving this problem would
yield a sparse solution. Following the analysis approach
of [5], [7], [11] we notice that the problem (18)–(19) is
equivalent to a problem

1T UN → min, (20)

subject to UN ≥ 0, (21)

‖YN −ANUN −BNx(1)‖2 + ‖x(1)− x0‖2Q0
≤ ε2, (22)

whereρ in (18)–(19) is an inverse of a Lagrange multiplier
for the convex constraint (22) in (20)–(22). Largerρ corre-
sponds to smallerε and vice versa.

Sparse solution in the absence of noise

Following the scheme of analysis in [5], [7], [11], consider
first a no-noise case. Assume that the dataYN is exactly
generated by the trend model of the form (3)–(5) in the
absense of noise such that

YN = ANVN + BNv0, (23)

where the initial condition of the trend assumes a zero initial
slope,v0 = [0 v2]T andx0 = v0.

For ε = 0, (20)–(22) becomes an LP (Linear Program-
ming) problem. The second constraint (22) changes into two
equalities:x(1) = v0 and

YN −ANUN −BNv0 = 0 (24)

The overdetermined system ofN equations (24) with
2(N − 1) decision variables allows many solutions. The
question is whether a sparse solution of this overdetermined
system can be recovered exactly by solving the LP problem.

In [5], [7], [11] it is shown that under certain technical
conditions a sparse solution of an overdetermined system
of linear equations (which is a combinatorial complexity
problem) can be found by solving an LP in a computationally
efficient way. Though at the first glance these results seem to
be related, they are not applicable to the problem (20), (24).
The results of [3] require neighborliness of the system matrix
- the property that does not hold for the problem in question.
The results of [5], [7], [11] require low mutual coherence.
This means cross-correlation between the columns of the
system matrix being small, which is not the case for the
Toelpitz impulse response matrixAN (17).

In [5], [7], [11] and related work, sparsity is characterized
through the number of nonzero components of the decision
vector. If this number is small enough, the sparse solution can
be recovered by solving an LP. To illustrate that this does not
work for the problem (20), (24) consider a counterexample.
Assume that the data is generated by the model of the form
(3)–(5) with u1(t) = v1(t) andu2(t) = v2(t) corresponding
to the vectorVN in (23) andx(1) = 0. Assume further that
the only nonzero components ofVN in (23) are given by

v1(τ + 1) = α, v2(τ + 1) = 1,

for some1 < τ < N . A different solution withu1(τ) = 1
and the rest ofUN components being zero has a smaller
1-norm: 1T UN = 1 while 1T VN = 1 + α. The solutions
VN and UN yield the same outputy(t) = (t − τ − 1) · α
for t > τ + 1 and y(t) = 0 for t ≤ τ + 1. This means in
the considered case the sparse solution (25) with only two
non-zero componentsis not recovered exactly.

We will show that if VN in (23) is sparse and satisfies
certain additional conditions then solving the LP problem
(20), (24) allows to recover the sparse solution exactly, i.e.,
UN = VN . The additional sparsity conditions introduced
herein is that nonzero component indices in the underlying
trend are never adjacent (are separated by gaps). This is quite
different from the assumptions in [5], [7], [11].

The following result can be established.
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Theorem 1:Consider the problem

1T UN → min, (25)

subject toYN = ANUN + BNv0, UN ≥ 0, (26)

whereAN andBN are given by (5), (17). Assume that (23)
holds, wherev0 = [0 v2]T and the components of vector
VN correspond to the underlying trendv(t). Assume that
for j 6= k, vj(t1) > 0 andvk(t2) > 0 simultaneously only if
|t2−t1| > k ≥ 1. Assume further that in (5) we haveα > 1.

Then solving the LP problem (25)–(26) yieldsUN = VN

(andu(t) = v(t)).
Theorem 1 is proved in Appendix A. The proof is specific

for the second order trend model (5), but could be possibly
generalized for a higher order model (3)–(4).

Recovering sparse solution from noisy data

In practice, the data is always noisy and the question
is whether the sparse solution could be recovered from
such data. We will show that generally this is the case.
Our formulation and analysis approach are related to that
of [7]. The difference is that we are considering positivity
constraint, while [7] considers a similar QP optimization
problem with l1 norm regularization penalty but without a
positivity constraint. In [7] the Lagrange multipliers cor-
responding to boundedl1 norm are limited by unity. The
Lagrange multipliers for the positivity constraints do not have
such bound.

Consider dataYN generated by the trend model (3)–(5)
and distorted by a bounded noise. Instead of (23) assume

YN = ANVN + BNv0 + γe, (27)

‖e‖∞ ≤ 1 (28)

wheree ∈ <N is the noise sequence with bounded terms and
γ is the noise intensity parameter. We will show that for small
enoughγ and under some additional technical conditions the
sparse solutionUN = VN could be reasonably reproduced
from data (27)–(28) by solving (18)–(19).

In particular, the support of the solutionUN (the index
set of nonzero components) is the same as ofVN and the
solution error‖UN − VN‖ is bounded.

Theorem 2:Consider the QP problem (18)–(19) where
YN is given by (27)–(28). LetVN in (27) be the sparse
solutionVN mentioned in the conditions of Theorem 1. Then
positive γ∗ and ρ∗ exist such that for0 ≤ γ ≤ γ∗ and
0 ≤ ρ ≤ ρ∗ solving this QP problem yieldsUN with the
following properties

1) The support set of the solution vectorUN (the set of
nonzero component indexes) is the same as forVN

2) ‖UN − VN‖ = O(γ, ρ)
Proof. First, note that forγ = 0 and sufficiently smallρ,

the solution of the QP problem (18)–(19), (27)–(28) is given
by UN = VN . Indeed,VN achieves the minimum (zero) of
the first two quadratic terms in (18). Theorem 1 says that
the second term proportional to1T UN is also minimized,
conditionally to the first two terms being zero. Sinceρ is

arbitrarily small,VN achieves the overall minimum of (18)–
(19). (For small enoughρ, an increase in the quadratic terms
would always negate any decrease in the linear term).

Second, the problem (18)–(19), (27)–(28) forγ > 0, ρ > 0
can be presented in the form

1
2
UT

NQUN + (cT + ρcT
ρ + γcT

γ )UN → min (29)

subject toUN ≥ 0, (30)

where the matricesQ, c, cρ, andcγ are independent ofρ and
γ. To obtain (29)–(30), first substituteYN from (27)–(28) into
(18)–(19); second, findx(1) from unconstrained quadratic
optimization of (18); and, third, substitute the optimalx(1)
(linearly dependent onUN ) back into (18).

The two perturbation parameters in (29) can be replaced
by a single parameterλ such that

ρ = λhρ, γ = λhγ (31)

wherehρ andhγ are positive constants.
A perturbed quadratic problem of the form (29)–(30), (31),

was considered in [10] (and a few other papers cited there).
The results of [10] prove that a closed invariancy interval
0 ≤ λ ≤ λu exists where the ‘solution support’ (a set of
nonzero indices of the solutionUN ) is the same as forλ =
0. Moreover, [10] proposes a computational procedure for
finding an approximation to this interval.

On the invariancy interval, Property 1 in Theorem 2 holds
by definition. Property 2 in Theorem 2 could be proved by
computing the norm‖UN −VN‖ for projections on the solu-
tion support subspace (components ofUN andVN outside of
this subspace are zero anyways). The constraints are inactive
on the solution support subspace. Thus,UN can be estimated
from linear equations obtained for unconstrained quadratic
optimization on the solution support subspace. Since the
perturbation parameters enter (29) linearly, Property 2 in
Theorem 2 follows immediately. Q.E.D.
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APPENDIX A: PROOF OFTHEOREM 1

Consider the differentiated output signalDy(t) = y(t) −
y(t − 1). Based on (3)–(5), the equality constraint (26) can
be re-written as

Dy(t) = u2(t) + α

t−1∑

k=1

u1(k) (32)

Note that if the componentsu(t) of the vectorUN in (26)
satisfy (32), thenx1(1) can be always chosen such that (26)
is satisfied;x(1) does not influence the loss index (25). Also
u2(N), u1(N), andu1(N − 1) do not influence the output
y in (3)–(4) on the time interval[1, N ]. The minimization
in (25), together with nonnegativity constraint in (26) yield
u2(N) = u1(N) = u1(N − 1) = 0. By summing up the

equalities (32) we obtain

y(N)− y(1) = 1T UN +
N−1∑

k=1

w(k)u1(k) (33)

w(k) = α(N − k + 1)− 1 (34)

Since by Theorem assumptionα > 1, w(k) > 0 is a
decreasing sequence of positive weights.

Similar to (32) and (33), the sparse trend inputv(t) that
generates the data satisfies

Dy(t) = v2(t) + α

t−1∑

k=1

v1(k) (35)

y(N)− y(1) = 1T VN +
N−1∑

k=1

w(k)v1(k) (36)

For eacht, when v2(t) = 0, comparing (32) and (35)
yields

u2(t) + α

t−1∑

k=1

u1(k) = α

t−1∑

k=1

v1(k), (37)

whereu2(t) ≥ 0 (recall the positivity constraints (14), (15)).
Let tj be a jump time whenv1(tj −1) > 0 or v2(tj) > 0.

In accordance with the sparsity conditions of the Theorem,
v2(tj + 1) = 0 and v1(tj) = 0. The following chain of
inequalities holds

tj−1∑

k=1

u1(k) ≤
tj∑

k=1

u1(k) ≤
tj−1∑

k=1

v1(k) =
tj∑

k=1

v1(k) (38)

where the first inequality holds becauseu1(tj) ≥ 0, the last
equality holds sincev1(tj) = 0, and the middle inequality
follows from u2(tj + 1) ≥ 0 and (37). Together, (37) and
(38) mean that the inequality

t−1∑

k=1

u1(k) ≤
t−1∑

k=1

v1(k) (39)

holds for anyt ∈ [1, N ], whethert is a jump time or not.
Add the inequalities (39) with the weightsw(t+1)−w(t),

for t < N and the inequality fort = N with the weight
w(N). In accordance with (34), these weights are positive.
The addition yields

N−1∑

k=1

w(k)u1(k) ≤
N−1∑

k=1

w(k)v1(k) (40)

By comparing (33), (36), and (40) we get

1T UN ≥ 1T VN (41)

Since UN is an optimal solution to the LP problem
(25)–(26) andVN is a feasible solution, the opposite sign
inequality must hold and we get1T UN = 1T VN . This means
the inequalities in the derivation chain must be equalities.
In particular, (39) is equality, which meansu1(k) = v1(k).
From thatu2(k) = v2(k) follows easily. HenceUN = VN .

QED.
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