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Optimal Estimate of Monotonic Trend with Sparse Jumps

Dimitry Gorinevsky

Abstr_act—This paper o_Iiscusses a problem for rec_ove_ring an
underlying trend from noisy data. The key assumption is that relationship to sparsity properties 6f-optimal solutions of

the trend is monotonic, e.g., reflects accumulation of irreversible . . . .
system deterioration. The trend is obtained as a maximum overdetermined linear equation systems, which have recently

a posteriori probability estimate. The overall problem setup ~€Ceived significant attention in signal processing literature,
is related to a-3 filter and Hodrick—Prescott filter. The main ~ see [4], [3], [5], [7], [11] for further references.
difference is that instead of a Gaussian process noise, a one- The initial motivation for our work came from turbine
sided exponentially distributed noise is assumed. The batch engine performance trending applications. Some of the recent
estimate is a solution to a Quadratic Programming problem. . . S S .
The approach works exceptionally well for piece-wise linear yvork|nth|s. app[lcat|on area ex'pI|C|tIy|ntroduces monotonic-
trends that have a small number of jumps in the trended ity constraints in the estimation of the performance loss.
variable or its increase rate. Theoretical analysis justifies the The papers [13], [19] consider a single-step constrained
sparsity properties for the jumps in the solution. estimation, which is locally optimal. They stop short of
formulating an optimal estimation problem.

Optimal statistical estimation with monotonicity con-

‘This paper considers trending of univariate time seri€gaints has been known in statistics for some time under
Simple or more sophisticated methods for trending are usege name of Isotonic Regression. Much of the early work

in finance,_ economicg, business, decision suppprt, conditiof this area is summarized in the books [1], [16], see also
baged maintenance, mdust'rlal process monitoring, mangf%bre recent papers [15], [18]. This prior work leads to
turing automation, enterprize resource planning, medicahp problem formulations that could be also obtained for
geological, weather, and environmental applications. monotonic trend estimation based on a first-order random

Optimal estimation of a trend requires a prior knowledggyak model. This is different from the second-order random
of a trend model. A broadly used model is a second-ordg{51k model considered herein.

random walk where Gaussian increments drive a slope stateggme prior work in statistics is aimed at estimating

and an Intercept state of a linear trend model. Known as g, qtonic curves, such as cumulative probability distribu-
Holt model (in econometrics) of- model, such second- yions The monotone spline smoothing considered in [12]
order model is also a mainstay of Kalman filtering in NaVieads to a QP problem statement close to one considered
gation systems. A batch estimation of the t_rend (smoothing this paper (though it is not motivated by time series
problem) based on the second-order model is commonly usggimation). There is also substantial literature on constrained
for fmanual and econometric analysis under the name %fptimization-based estimation, in particular moving horizon
Hodrick-Prescott filter. . . . estimation, see [8], [14], [20]. Yet this work does not focus
The problem statement in this paper was motivated by, 1\ onotonic trending.
estimation applications wherg the trgnd reflects a 'physipal This paper extends an earlier conference paper [9], where
property, such as damage, irreversibly accumulating WltHending based on the monotonic walk model was introduced.

time. We consider trending based on second-order MONOtOMUE . (1 2ted work (outside of the scope of this paper) see

random Wa".( model W'th mqnotomcny constraints. S|m|lar[17] and the references there. The goals and contribution of
to the a-( filter trending, this second order model might

S i ) this paper are two-fold. First, it provides tutorial material
have many apphcanons. While th.ere IS abupdant resgar(élﬁ the monotonic trending. Second, it explains some of
and textbook literature on ‘usual’ linear trending, very I|ttlethe properties of the monotonic trending, in particular, the

work on'm.onotomc.trendmg seems to exist. . sparsity of the jumps and inflection points in the trend
A statistically optimal estimate of a monotonic trend can | tion

be obtained by numerical optimization of a log-likelihood
index with the monotonicity constraints. The problem can
be formulated as Quadratic Programming (QP) and solved
efficiently. An interesting property of the solution is that This section establishes a departure point of the study by
it usually comes out as a piecewise linear function witlbriefly reviewing standard linear-quadratic trending meth-
sparse jumps and inflection points. One can think of theds. The problem with Gaussian noises in this section is
Jumps as discrete fa||u_re events in the damage accgmulan_(m;u known and considered for tutorial purposes. The main
history. We analyze this property in the paper and discuss itéason for practical success of these methods is in their
. , __conceptual clarity. They are easy to implement and have
Information Systems Laboratory, Department of Electrical Englneerlnga I b f I d d
Stanford University, Stanford, CA 9430§prin@stanford.edu. small number or well-un erstoq parameters to set up
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problem formulation by modifying the baseline problem of The MAP estimate minimized = —log P(X|Y). Ob-

this section. taining the conditional probabilities in (7)—(9) by using (3)—
Consider a univariate data sEtrepresenting an underly- (4), (6), yields the MAP problem in the form

ing trend X perturbed by a noise

Y = {y(1), . y(N)}, (1) Zuy O + 5 o) = woll3,  (10)
X = {z(1), ., z(N)}, @)
where y(t) are scalars and:(t) € RX are trend state T3 Z”x - Ax(t—1) HQ — min,

vectors. As an illustrative example, Figures 1 and 2 show an
underlying trend (dashed line) and simulated time seYies where|| - | o is a weighted 2-norm such thﬁa;b”é =27 Q.
(dots) obtained by addinf-1, 1] bounded pseudo-random The weighting matrices ar@ = ¢=~! andQ, = ¢=; .
numbers to the trend. The solution to the quadratic minimization problem (10)
In what follows, we will study the problem of estimating gives an estimate of state history vecfy; that consists of
the underlying trendX from the observed dat&. This stacked state vectors(t) and has length ofV - K (length
requires assuming a model for tredd and a relationship of 2,V for the model, (3)—(4), (5), (6)). The estimated trend
betweenX andY. Consider a linear model of the form  outputg(t) = Cz(t) can be displayed and compared against
the original data.
s(t+1) = Az(t) +£0), ©) For large N, the solution to (10) does not depend on the
y(t) = Cux(t) +e(t), (4) initial condition z, and its weightQ,. Since= is diagonal,
where z(1) € RE is the trend statec(t) € RX is the the second-order model (3)—(4) has two tuning parameters

state driving noisee(t) € R is the measurement noise, Q1 and Qq, where@ = diag{Q1, Q2}-
A € REE andC € RVE . In particular, consider a second-

HP SMOOTHING, SECOND-ORDER REGRESSION MODEL

order random walk model, whet® = 2 and 6
10
A_[al}’ C=[0 1], (5) a4t

where « is a positive scalar parameter. A free response of|
(5) describes a linear trend (an affine function of time). The
statez; is the slope and: is the intercept of the trend.

Assume that(¢) ande(t) in (3)—(4) are independent white ¢ 50 100 150 200
Gaussian noises. The probability distributions £t ), e(t), SAMPLE NUMBER
and¢(t) are Fig. 1. Smoothing using the second-order trend model - H-P filter
z) ~ N(zg, =), e(2) ~ N(0,q), 6 . . .
po(2) (%0, Zo) Pe(2) N(O q:) ©) A special case of the second-order smoothing algorithm
pe(z) ~ N(0,5), (10) known as Hodrick—Prescott filter (H-P filter) is broadly
where the covariance is a scalar, the initial state, is a Used in econometrics. The H-P filter is a tool of choice
2 vector, and the covariancé, = are R2-2 matrices. for financial analysis (for stock valuation trending). For

A Maximum A posteriori Probability (MAP) estimate of formulating H-P filter assumex = 1, @y = 0 and Q =
the trendX can be obtained by maximizing the conditionaldiag{Q:, 0}. From (3) we get||z(t) — Az(t — 1)[], =
probability P(X|Y) — max. Using the Bayes rule, the Q1 - [z1(t) — x1(t — 1)]*. In accordance with (5) we have
conditional probability can be expanded as x1(t) = x2(t + 1) — z2(t). By using that in (10) we get a
standard H-P filter formulation
P(X|Y) = P(Y|X)- P(X)-C,

where C = [P(Y)]"! is independent ofX. Since the Z ly(t) — z2(t)]* + (11)
noise values:(t) in (4) for differentt are independent and

. . . ! N-1
identically distributed ap.(z), we get %Z ot + 1) 2a(8)] — [2(t) — a(t — D> — min,
t=2

P(Y1X) = Hpe z(t)) (8) The smoothing results for the H-P filter witl}; = 5 are

shown in Figure 1.
By applying the Bayes rule to equation (3) for eacénd

using the fact thag(t) in (3) are independent with identical I1l. M ONOTONIC TRENDING
distributionsp, (z) we get Monotonicity of a trend might be caused by accumulation
of irreversible deterioration in a system. The state variable
P(X) = pr — Az(t — 1)) 9) x2(t) in the monotonic trend model (3)—(4), (5) might have a

meaning of the cumulative deterioration accumulated in the



SECOND-ORDER MONOTONIC REGRESSION

system. The state variablg (¢) describes the nondecreasing g
rate of the deterioration accumulation. One can say that
x1(t) is a primary deterioration and,(¢) is a secondary 4
deterioration, which is accumulated because of the presenc
of the primary, as well as because of other random causes. A
an intuitive examplez; (t) might describe a quality of oil in

the car (between oil changes) anglt) overall deterioration

T T T

of the engine. The engine would deteriorate faster if the oil iso 50 100 150 200
bad. Engine deterioration and oil deterioration are considered SAMPLE NUMBER
to be monotonic (irreversible). Fig. 2. Second-order monotonic regression for [2, 5|7

We model the monotonicity through probability distribu-
tion p¢(x) of the process noisg(t) assuming thape(z) =
0, for z < 0. The assumegy,(x) should be reasonably trend estimated with an H-P filter in Figure 1, using the
simple, justifiable, and lead to a solvable formulation. Irsecond-order monotonic walk model in Figure 2 yields about
what follows, we mainly consider a one-sided (positive0% better mean square error in recovering the underlying
exponential distributiorp, (z) that yields MAP formulation trend.
in the form of a QP (Quadratic Programming) problem. In  Computational experiments show that the formulated
addition to the exponential distribution, the QP formulatiormonotonic trending algorithm can recover the jumps and
of the MAP problem can be also obtained for a uniformnflection points in the underlying trend extremely well. In
on an interval distribution and a Gaussian distribution witlact, the trend estimate in most practical cases comes out as
a positivity constraint. All of these assumptions result irhaving sparse jumps and inflection points. The reasons for
similar QP problems. the trend estimate having such form are discussed in the next

Consider the second-order model (5). Assume that thgction. When trending the underlying damage, the steps and
process noise§(t) = [£1(t) &2(t)]” in (3) are exponentially inflection points can be interpreted as discrete failure events.
distributed (always nonnegative). The model states, thus,The tuning parameters of the algorithm; and p, are
evolve monotonically. The observation noisg) in (4) is  defined by the covarianeeof the Gaussian observation noise
assumed to be an independent white Gaussian noise. Td) and the parametefs; of the exponential distribution for
probability distributions (6) forz(1) = [z1(1) x2(1)]", the process noisg(t) in the model (3)—(4), (5). We consider
e(t), and&(t) = [&1(t) &(t)] are replaced by p1 andp, as tuning knobs of the algorithm and de-emphasize

pe(@) ~ N(0,9),  polx) ~ N(zo,Zo), (12) the statistical meaning of the parameters.

Pe, (x) ~ Eje—f/if forz >0, (j=1,2), IV. ANALYSIS FOR MONOTONIC RANDOM WALK

whereZ; and=; have the meaning similar to the process As described in the previous section, a monotonic trend
noise cojvariancjes in (6) based on the random walk model can be computed by solving

The MAP estimation broblem i€ — —log P(X|Y) —» @ QP problem. This section presents an analysis of the
min. Substituting the conditional probabilities in (7)_(9)solutlon properties. The main issue of interest is: why does

from (3)—(4) and (12) we get, similar to how (10) is obtainedtN€ Solution comes out having a few jumps or inflection
points with the straight line segments in-between? We will

1 s 1 5 attempt to answer this question.
L=3 Z ly(®) = Cz(@)I” + ) lz(1) —2ollg,  (13) Introduce the model deviatiorg = 1, ..., N — 1)
t=1

u(t) = z(t + 1) — Az(t) (15)

N
_T i
+;p l2(t) = Aa(t = 1)] = min, We will further useu(t) as decision variables. The constraint
subject toz(t) — Az(t —1) >0, (14) (14) can be expressed a$t) > 0. The variablest(t) can
be found fromu(t) by running a recursive update

where A and C' are given by (5),p = [¢Z7", ¢Z5']7,
and Qo = ¢=;'. The loss index (13) includes linear and z(t+1) = Az(t) 4 u(?)
quadratic terms in componenigt) of the decision vector
Xy, the constraints (14) are linear inequalities. This Q
problem is always feasible:(t) = A*~lz, is one feasible

Let us introduce a decision vectbiy describing the trend
i?2) a vectorYy describing the observations (1)

solution. Hence, a global optimum can be found using a stan- u(1) y(1)
dard QP solver. The solution depends on two regularization {7y = : ., Yy = : ; (16)
parameterg; = ¢=; " andps = ¢=5 . w(N — 1) y(N)

To illustrate the performance of the algorithm (13)—(14),
Figure 2 illustrates the trend estimated for the same daWle will show that the vecto/y € R2N-1) estimated
set as in Figure 1. As one can see, the proposed algoritfnom Yy € R” is sparse - has a relatively small number of
recovers the underlying trend very well. Compared to thaonzero components. Then, the estimated trend consists of



straight line segments with sparse jumps (whef&) > 0)  Sparse solution in the absence of noise

and sparse inflection points (whesg(t) > 0). Following the scheme of analysis in [5], [7], [11], consider
The optimal sparse solutions of overdetermined probleMgst 5 no-noise case. Assume that the deta is exactly

are of much interest in signal processing and there is sigearated by the trend model of the form (3)=(5) in the
nificant past and current research work in this area, see [3]psense of noise such that

[7], [11] and references thereof. In [3], [4], [5], [7], [11]
it is shown that under certain conditions, a sparse solution Yy = ANVN + By, (23)
of overdetermined system of linear equations carexetly

reproduced byi; optimization. With a proper modification
this property holds for noisy data. The problem (13)—(14?

is equivalent td;-norm optimization with linear constraints . . .
d ! P ming) problem. The second constraint (22) changes into two

and noisy data. lities (1) — d
Our analysis of the problem (13)—(14) is inspired by [5]€4a" les:z(1) = vo an

[7_], [11]. The f(_)rmulated result_s, howe\_/er, are technic_ally Yy — AnUn — Byvg =0 (24)
different, use different assumptions. This section considers _ . .
the second-order random walk model (3)—(5), but the results The overdetermined system of equations (24) with
can be generalized to higher-order random walk models. 2(!V — 1) decision variables allows many solutions. The
For convenience of analysis, this section assumes th@gestion is whether a sparse solution of this overdetermined
p1 = p» = p in (13). This can be assumed without a los$ystem can be recpyered exactly by solving thg LP prqblem.
of generality. Consider a variable change — §z;, where  In [5], [7], [11] it is shown that under certain technical
B = pa/p1 = Z2/=1. After this variable change the model| conditions a sparse solution of an overdetermined system
(3)—(5) keeps the same form with a change of paramete®f linear equations (which is a combinatorial complexity
a — a/f, B1 — Zo; in (13) we getp; — py and py — po. problem) can be found by solving an LP in a computationally
Using (16), the first term in the loss index (13) can befficient way. Though at the first glance these results seem to
presented in the forYy — AxUx — Byx(1)||?, where be related, they are not applicable to the problem (20), (24).

where the initial condition of the trend assumes a zero initial
lope, v = [0 v2]T andxy = wy.
For e = 0, (20)—(22) becomes an LP (Linear Program-

- The results of [3] require neighborliness of the system matrix
0 0 ... 0 . .
- the property that does not hold for the problem in question.
C 0 ... 0 .
Ay = _ _ L, The results of [5], [7], [11] require low mutual coherence.
: : P This means cross-correlation between the columns of the
| CAN=2 cAN=3 .. C system matrix being small, which is not the case for the
T Toelpitz impulse response matriky (17).
CA In [5], [7], [11] and related work, sparsity is characterized
By = i , (17) through the number of nonzero components of the decision
5N ) vector. If this number is small enough, the sparse solution can
| ¢ATT be recovered by solving an LP. To illustrate that this does not
For further analysis, let us re-write the problem (13)—(14yvork for the problem (20), (24) consider a counterexample.
in the matrix form using notation (16), (17). Assume that the data is generated by the model of the form
1 1 (3)—(5) withuy (t) = v1(t) andus(t) = va(t) corresponding
SI¥Yn = AnUy — Byz(1)|]” + llz(1) = P to the vectorVy in (23) andz(1) = 0. Assume further that
+p17Uy — min, (18) the only nonzero components bf; in (23) are given by
subject toUy >0,  (19) v(T+1)=a, v(r+l)=1,

where1 is a vector of ones of the lengt{N' — 1) and the  for some1 < 7 < N. A different solution withu (r) = 1

inequality (19) is component-wise. - __and the rest oy components being zero has a smaller
The QP problem (18)—(19) has a positive semidefinitg_qm: 17Ux = 1 while 17Vy = 1 + a. The solutions
Hessian. About a half of the Hessian eigenvalues are 20 and Uy vyield the same outpu(t) = (t — 7 — 1) -
We are interested in showing that solving this problem woulgh, ; < - 7 ang y(t) = 0 for ¢t < 7+ 1. This means in
yield a sparse solution. Following the analysis approacipe considered case the sparse solution (25) with only two
of [5], [7], [11] we notice that the problem (18)~(19) iS hon-zero componenis notrecovered exactly.
equivalent to a problem We will show that if Vy in (23) is sparse and satisfies
17Uy — min, (20) certain additional conditions then solving the LP problem
swieat 10Uy 2.0, (21) (200 (28 lls 1 ecouer e spse soton evecty. e
2 2 2 N = VN. i ity It I u
¥y = AnUn = Bya(DI" + l2(1) = 2ollg, < €, (22)  perein is that nonzero component indices in the underlying
wherep in (18)—(19) is an inverse of a Lagrange multipliertrend are never adjacent (are separated by gaps). This is quite
for the convex constraint (22) in (20)—(22). Largercorre- different from the assumptions in [5], [7], [11].
sponds to smallet and vice versa. The following result can be established.



Theorem 1:Consider the problem arbitrarily small,V; achieves the overall minimum of (18)—
- ) (19). (For small enough, an increase in the quadratic terms

1" Uy — min, (25 would always negate any decrease in the linear term).

subject toYy = AyUn + Byvg, Un >0, (26) Second, the problem (18)—(19), (27)—(28) for- 0, p > 0

can be presented in the form
where Ay and By are given by (5), (17). Assume that (23) P

holds, wherevy = [0 v,]7 and the components of vector lUT Un + (T + T + ~eT)Un — min 29

VN correspond to the underlying trendt¢). Assume that 2 NERUN Peo 77) Y (29)

for j # k, v;(t1) > 0 andwy(t2) > 0 simultaneously only if subject toUy = 0, (30)

|t2—t1| > k > 1. Assume further that in (5) we have> 1. \here the matrice§), c, c,, andc,, are independent of and
Then solving the LP problem (25)—(26) yiel@sy = Vv . To obtain (29)—(30), first substituiéy from (27)—(28) into

(@ndu(t) = v(t)). _ _ . ~(18)—(19); second, find:(1) from unconstrained quadratic
Theorem 1 is proved in Appendix A. The proof is specificoptimization of (18); and, third, substitute the optimall)

for the second order trend model (5), but could be possiblyinearly dependent of/y) back into (18).

generalized for a higher order model (3)—(4). The two perturbation parameters in (29) can be replaced

by a single parametex such that

In practice, the data is always noisy and the question p=Ahg, ¥ =Ahy (31)
is whether the sparse solution could be recovered frOWherehp and h., are positive constants.

such data. We will show that generally this is the case. A perturbed quadratic problem of the form (29)—(30), (31),
Our formulation and analysis approach are related 10 thgfas considered in [10] (and a few other papers cited there).
of [7]. The difference is that we are considering positivityrhe results of [10] prove that a closed invariancy interval
constraint, while [7] considers a similar QP optimization, < X\ < ), exists where the ‘solution support’ (a set of
problem withi; norm regularization penalty but without a ,gnzero indices of the soluticfiy) is the same as fok =
positivity constraint. In [7] the Lagrange multipliers cor-q Moreover, [10] proposes a computational procedure for
responding to bounded norm are limited by unity. The finging an approximation to this interval.

Lagrange multipliers for the positivity constraints do not have g the invariancy interval, Property 1 in Theorem 2 holds
such bound. by definition. Property 2 in Theorem 2 could be proved by
Consider date’y generated by the trend model (3)~(5)computing the nornjUy — V|| for projections on the solu-

and distorted by a bounded noise. Instead of (23) assume;jon support subspace (componentdaf andVy outside of

@7) this subspace are zero anyways). The constraints are inactive
on the solution support subspace. Thiig, can be estimated

el < 1 (28)  from linear equations obtained for unconstrained quadratic

wheree € RV is the noise sequence with bounded terms an@Ptimization on the solution support subspace. Since the
~ is the noise intensity parameter. We will show that for smafferturbation param_eters e_znter (29) linearly, Property 2 in
enoughy and under some additional technical conditions thdheorem 2 follows immediately. QE.D.
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Add the inequalities (39) with the weights(t+1) —w(t),
for t < N and the inequality for = N with the weight
w(N). In accordance with (34), these weights are positive.
The addition yields
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APPENDIXA: PROOF OFTHEOREM 1

Consider the differentiated output sign@ly(t) = y(t) — N-1 N-1
y(t — 1). Based on (3)—(5), the equality constraint (26) can Z w(k)uy (k) < Z w(k)v (k) (40)
be re-written as k=1 k=1

t—1 By comparing (33), (36), and (40) we get
k=1 N = N

. . Since Uy is an optimal solution to the LP problem
Note that if the components(t) of the vectorly in (26) (25)-(26) andVy is a feasible solution, the opposite sign

satisfy (32), thenz; (1) can be always chosen such that (26]nequality must hold and we gaf Uy — 17 V. This means

Is satisfied;z(1) does not influence the_ loss index (25). AISOthe inequalities in the derivation chain must be equalities.
uz(N), u1(N), anduy (N — 1) do not influence the output |, oo iclar, (39) is equality, which means (k) = vy (k).

y in (3)—(4) on the time intervall, N]. The minimization From thatus(k) — va(k) follows easily. Hencel/y = V.

in (25), together with nonnegativity constraint in (26) yield QED.
u2(N) = w1(N) = u1(N — 1) = 0. By summing up the



