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Abstract— This paper develops a method for building non-
parametric stochastic models of multivariate distributions from
large data sets. The motivation is stochastic optimization based
on time series forecasting models. The proposed non-parametric
stochastic modeling approach is based on multiple quantile
regressions with inter-quantile smoothing. The models are built
using ADMM optimization approach scalable to large datasets.
As an application example, the paper considers forecasting of
the loads in the electrical power grid. The forecasted load is used
for the electricity procurement in the day-ahead power market.
The stochastic optimization trades the costs of advance and
spot procurements of the electricity. This problem is currently
important because the random variability in the grid power
load increases with integration of renewable generation.

I. INTRODUCTION

This paper studies non-parametric multivariate stochastic
models that can be built from large data sets and used for
stochastic optimization of decisions. This work is motivated
by electrical power market applications where time series
forecasts of the load are used for day-ahead procurement.

A flexible non-parametric multivariate approach to model-
ing the empirical distribution function is offered by quantile
regression, see [1]. In this approach, the domain of the
inverse empirical distribution function at given value is
described by a linear combination of the regressors. Quantile
regression is used in many applications.

Quantile regression can be computed as a solution to a LP
(Linear Programming) problem, see [1]. For a given quantile,
it can be considered as a generalization of Generalized Linear
Model with ‘link function’ defined by asymmetric Laplacian
distribution. The solution is robust to the data outliers.

The quantile regression function is included with major
statistical software packages. However, so far, it has found
limited use for building non-parametric multivariate models
that can be used in stochastic calculus.

Most of the related quantile regression work is for kernel-
type models of multivariate non-linear distributions, e.g.,
see [2], [3], [4], [5], [6]. The kernel models use as many
regressors as there are data points. One known issue with
quantile regression is quantile crossing. The problem is
that for some model arguments different quantile regression
solutions might be improperly ordered. For kernel models,
this problem can be addressed by introducing the ordering
constraint at each data point and solving the optimization
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problems for all quantiles simultaneously, e.g., see [3], [4].
An alternative is adding a regularization penalty term that
encourages the smooth transition of the model between
different quantiles, e.g., see [5].

The literature on multivariable non-parametric quantile
regression models, such as the forecasting problem in this
paper, is limited. Estimation of multi-quantile model with
smoothing is discussed in [7]. Some of the theoretical issues
related to smoothed quantile regression and reordering for
the quantile crossing are discussed in [8], [9], [10]. These
papers do not address computational scalability of the model
estimation and modeling of the distribution tails. High and
low quantiles do not have enough data points to fit multivari-
ate models. A viable approach is to fix the regression slope
and use a parametric model of the tail, see [11].

Non-parametric multivariate quantile regression modeling
of the entire distribution for stochastic optimization appears
to be new. Earlier, quantile regression was applied to off-line
analysis of the data, such as risk estimation in finance [12].
The quantile model in [13] is suitable for forecasting of wind
power generation; yet this model separates each regressor
variable and is not truly multivariate.

To address the quantile regression crossing, we introduce a
notion of a solution ball where the quantiles are guaranteed to
be ordered. This paper develops a characterization of the ball
radius, which can be increased by enhancing the smoothing.

The multi-quantile regression formulation in this paper
is a quadratic programming (QP) problem. We present a
computational procedure for solving this QP problem using
alternating direction method of multipliers (ADMM) method
known as block splitting, see [14], [15]. The procedure is
scalable to extremely large training data sets.

The contributions of this paper are as follows. (i) A multi-
quantile regression formulation for a non-parametric model
suitable for use in stochastic optimization. The smoothed
formulation enables numerical differentiation of the quantiles
to obtain the probability density. (ii) A scalable compu-
tational method for optimization solution of the proposed
formulation. (iii) A constructive approach to addressing the
issues of quantile regression crossing and tail modeling.
(iv) An application to stochastic optimization of power load
forecasting in the day-ahead power market. We train the non-
parametric model using historical data and demonstrate its
use for on-line stochastic optimization.

II. SINGLE QUANTILE REGRESSION

Consider a dataset

D = {Zi, yi}Ni=1, (1)
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where scalars yi are response variables, vectors Zi ∈ <n are
explanatory variables (regressors), i is the sample number,
and N is the number of the samples, which can be large. In
what follows, we assume that data (1) are i.i.d., and follow
unknown conditional multivariate distribution p(yi|Zi). In
forecasting applications, i is the time sample and the i.i.d.
assumption means time-invariance of the underlying process.

A. Quantile Regression Problem

We assume that the generating distribution p(yi|Zi) for
(1) is described by the model

P (yi ≤ y|Zi) = q, y(q) = Ziβ(q) + α(q), (2)

where q ∈ (0, 1) is the quantile level; β ∈ <n and α ∈ < are
the quantile regression hyperplane parameters. For a given
q, model (2) is a solution to the LP problem, see [1],

min
α,β

N∑
i=1

[
q (yi − Ziβ − α)+ + (q − 1) (yi − Ziβ − α)−

]
,

where (x)+ = max{x, 0} and (x)− = min{x, 0}. This
problem can be compactly written as

minimize
α,β

h(y − Zβ − α1N ; q),

h(x; q) =
1

2
||x||1 +

(
q − 1

2

)
1TNx,

(3)

where matrix Z = [Z1 . . . ZN ] ∈ <N×n and 1N ∈ <N is a
column vector of ones. For q = 1/2, the quantile regression
is the median regression. The regression hyperplanes for
different quantiles might be not parallel to each other.

Practical use of the quantile regression model has to deal
with two issues. The first issue is the large variance of the
solution (3) when there are few data points on one side of
the hyperplane. The left (q � 1) are right (1 − q � 1) tail
quantiles have few to none points, which is a problem.

The second issue is that for some data the quantiles might
be unordered such that

Ziβ(q1) + α(q1) > Ziβ(q2) + α(q2)

for q1 < q2, where {α(q), β(q)} solves (3) for quantile
level q. This is the quantile crossing problem mentioned in
the introduction. In fact, if the hyperplanes are not parallel,
β(q1) 6= β(q2), they cross. This means one can always find
test data such that the quantiles will be unordered.

Both issues are addressed in Section IV.

B. ADMM Block Formulation

The ADMM formulation is a scalable way to solve LP
problems. The ADMM algorithm is formulated for the
problem in the following general graph form, see [15],

minimize
w

N∑
i=1

f(zi) + g(w),

subject to z = Aw,

(4)

where w ∈ <K , z ∈ <J , and A ∈ <J×K , and f(z), g(w)
are two convex closed functions.

The ADMM update at iteration k + 1 is, see [15],

w(k+1/2) = proxg

(
w(k) − w̃(k)

)
,

z(k+1/2) = proxf

(
z(k) − z̃(k)

)
,(

w(k+1), z(k+1)
)

= ΠA

(
w(k+ 1

2 ) + w̃(k), z(k+
1
2 ) + z̃(k)

)
,

w̃(k+1) = w̃(k) + w(k+1/2) − w(k+1),

z̃(k+1) = z̃(k) + z(k+1/2) − z(k+1),
(5)

where proxf,g are the proximal operators and ΠA denotes
projection onto {(w, z) ∈ <J+K |z = Aw}, see [16].

For quantile regression (3), we have J = N , K = n+ 1,

f(zi) =
1

2
|yi − zi|+

(
1

2
− q
)
zi, (i = 1, . . . , N), (6)

g(w) = 0, (7)

A =
[
1TN ZT

]T
, (8)

w =
[
α βT

]T
. (9)

For functions f (6) and g (7), the operators in (5) are

(
proxf (z)

)
i

=yi +

(
zi − yi −

1− q
ρ

)
+

−
(
yi − zi −

q

ρ

)
+

,(
proxg(w)

)
i

=wi,

(10)

ΠA(w, z) =
((
I +ATA

)−1 (
w +AT z

)
, Aw

)
, (11)

where ρ is a scalar penalty parameter, see [14].
The ADMM algorithm in general is extremely scalable

and parallelizable. This is covered in depth in [15]. We are
specifically interested in scalability for large data set size
N in (3). Updates (10) scale by separating components i =
1, . . . , N . In (11), matrix (ATA)−1 has small size n× n. It
can be right-multiplied by A one column at a time. This is
very scalable, as is the multiplication Aw. Finally, the scatter
matrix ATA can be computed as the running sum

ATA =

N∑
i=1

[1 Zi]
T · [1 Zi].

III. MULTI-QUANTILE REGRESSION

We need a model (2), where α = α(q) and β = β(q)
are smooth functions that can be differentiated to compute
the probability density. Solving single quantile regression
problems (3) on a grid of q might not give the desired result.
To get a better solution, we solve multiple quantile regression
problems jointly, with a smoothing penalty. The optimization
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problem on grid of nq quantiles qj is formulated as

minimize
{αi,βi}

nq
i=1

nq∑
j=1

h(y − Zβj − αj1N ; qj)

+ λ

nq∑
j=2

||β(qj)− β(qj−1)||22

+ µ

nq−1∑
j=2

(αj+1 + αj−1 − 2αj)
2
,

subject to βL = βi, (i = 1, . . . , L),

βR = βi, (i = R, . . . , nq),

(12)

where h(x, q) has the same form as in (3); λ is a penalty on
the first difference on βj ; µ, on the second difference of αj .
The constraints on βj are introduced because for the low and
the high quantiles there is not enough data on one side of
the hyperplane to get accurate estimates of both regression
slope βj and its intercept αj . For these quantiles, we keep
βj constant and just estimate αj .

A. ADMM Formulation

We cast (12) into ADMM form (4). With the overload
of the notation, for problem (12) we have K = nq(n + 1),
J = nqN + (2nq − 3)(n+ 1),

f(zi) =
ai
2
|Yi − zi|+

(
1

2
−Qi

)
aizi + (1− ai)z2i ,

g(w) = I(Cw = 0),

A =
[(
Inq
⊗ [1N Z]

T
)
FT
]T
.

(13)

In (13), I(·) is the indicator function, ⊗ is the Kronecker
product, and

w =
[
α1 βT1 · · · αnq

βTnq

]T
, (14)

Y =
[
1Tnq
⊗ yT 01,(2nq−3)(n+1)

]T
, (15)

q =
[
q1 q2 . . . qnq

]T
, (16)

Q =
[
qT ⊗ 1TN 01,(2nq−3)(n+1)

]T
, (17)

F =
[ √

λDT
nq,1 ⊗ IR

√
µDT

nq,2 ⊗ e1
]T
, (18)

ai =

{
1, i = 1, . . . , nqN,
0, otherwise , (19)

C =

[
DT
L,1 ⊗ IR 0KL,K−KL

0KR,K−KR
DT
R,1 ⊗ IR

]
, (20)

where IR = In+1 − e1eT1 with eT1 = [1 0 . . . 0] ∈ <n+1

and Im an identity matrix of size m, KL = L(n+1), KR =
R(n+ 1), DT

m,1 ∈ <(m−1)×m is the first difference matrix,
Dm,2 ∈ <(m−2)×m is the second difference matrix, 1m ∈
<m is a vector of ones, and 0m,p ∈ <m×p is a matrix of
zeros; L and R are the numbers of constrains in (12).

The ADMM update steps for (13) have the form (5), where
the proximal operators are given by(
proxf (z)

)
i

= Yi −
(
Yi −

ρzi + ai/2− (1/2−Qi)ai
2(1− ai) + ρ

)
+

+

(
ρzi − ai/2− (1/2−Qi)ai

2(1− ai) + ρ
− Yi

)
+

,

proxg(w) = ΠC(w),
(21)

where ΠC is the Euclidean projection onto a convex set given
by constraint matrix C, see [17]. Since we have expressed the
problem in graph ADMM form, this problem is extremely
scalable to large datasets with a large number of independent
variables. For large number N of the data points, the same
type of reasoning as in Section II-B applies.

IV. MODEL PREDICTIVE POWER

Two issues with the predictive power of the smoothed
multi-quantile model of Section III are brought up in Sub-
section II-A. The first issue is quantile crossing for large
regressors, ‖Zj‖ � 1. The second issue is with the distri-
bution tail modeling for large absolute values of response
variables y. This section examines these two issues in more
depth.

A. Large Regressors

The multi-quantile model is obtained by solving (14). The
solution is the set of the slopes βj and intercepts αj (12),
defined on the quantile grid qj (16), where j = 1, . . . , nq .
In what follows, we assume this set describes the functions
α(q) and β(q) in (2). The probability density p(y) = dq

dy can
be obtained by differentiating y = Ziβ + α. In practice, a
secant method of differentiation will use βj and αj .

The quantile crossing is avoided if dq
dy > 0. This is

equivalent to dy
dq > 0, which can be expressed as

Zi
dβ(q)

dq
+
dα(q)

dq
> 0. (22)

We will use an equivalent form of (22)

−ZiM−1 ·
d (Mβ(q))

dq
·
[
dα(q)

dq

]−1
≤ 1, (23)

where M is a preconditioner matrix. Consider the regressor
scatter matrix ZTZ, where Z = [Z1 . . . ZN ], for data set
(1). Preconditioner M can be selected such that the matrix
M−1(ZTZ)M−1 has condition number of 1.

Consider the following use case. Model (2) is estimated
(trained) for the historical data set (1). It is then used
as a basis of on-line stochastic optimization for new data
points. The quantile hyperplanes intersect somewhere in the
regressor space, unless β(q) is constant. This means one can
always find a new regressor Z∗ such that model has quantile
crossing. Below is a simple condition that for a given Z∗
there is no quantile crossing.
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Using Cauchy-Schwarz inequality, a sufficient condition
for (23) to hold is

‖Z∗M−1‖2 ≤ Ω, (24)

Ω = max
q

∥∥∥∥∥d(Mβ(q))

dq
·
[
dα(q)

dq

]−1∥∥∥∥∥
−1

2

, (25)

where Ω is the radius of the scaled regressors ball where the
model is guaranteed to have no crossing.

B. Large Response Variable

The described smoothed model interpolates the training
data. The models for low or high quantiles can extrapolate
beyond that range if the parametric form of the distribution
tails is known. Extreme Value Theory (EVT) predicts that in
many cases the distribution tails, which describe the extreme
events, follow a Pareto (power law) distribution. The tails
can be estimated using peaks over threshold (POT) method,
where the tail model is fitted to the data exceeding a thresh-
old, see [18]. The exceedance data are usually sparse and
parametric fit procedures used, such as the Hill’s estimator
for Pareto tail model [19].

The application example in Section V and VI uses log
coordinates. Thus, the Pareto distribution becomes an expo-
nential distribution. Consider the first q1 and the last qnq

quantiles on the modeling grid (16) as the tail thresholds.
The POT exceedances are

eL,j = yj − Zjβ1 − α1, j ∈ JL, (26)
eR,k = yk − Zkβnq

− αnq
, k ∈ JR, (27)

where JL ≡ {j : yj < Zjβ1 + α1} and JR ≡ {k : yk >
Zkβnq

+ αnq
}.

We model the probability distributions of eL,j and eR,k as

−eL,j ∼ q1 · Exp(θL), eR,k ∼ qnq
· Exp(θR). (28)

The maximum likelihood estimates (MLE) of θL and θR
in (28) are

θ̂−1L = −mean{eL,j |j ∈ JL}, θ̂−1R = mean{eL,k|k ∈ JR}.
(29)

V. POWER LOAD MODEL

The motivating example for development of the proposed
non-parametric approach is forecasting of electrical power
demand for a utility. The hourly load and price data from an
anonymous US utility are described in [20]. The smoothed
quantile regression modeling methodology was applied to
the total system load. The range of the loads is 11.54 to
33.22 GW, with the average value being 18.02 GW. The data
time range is from January 2011 to June 2013. The sampling
interval is one hour. There are N = 21, 696 samples in all.

Let Pt be the load demand. The data is sampled every
hour and index t is the number of hours elapsed since the
start of the data collection. Logarithmic load, normalized by
P0 = 1 GW, was used as response variable yt

yt = log (Pt/P0) . (30)

The 45 non-linear regressors Zt included the day-behind
log load and the time related regressors from [21], such as
the hour, the week day, and the calendar month.
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Fig. 1. Plot of median regression forecast.

Median regression, described by (3) with q = 1/2, is used
to illustrate the quantile regression use for forecasting of the
power load data in Figure 1. The forecast plotted is yt =
Ztβ(1/2) + α(1/2). One can see that the forecast matches
the data reasonably well.
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Fig. 2. Log-log plot of cluster radius Ω as a function of λ and µ.

To set up the smoothed multi-quantile regression model
estimation problem (12), we experimented with the smooth-
ing parameters µ and λ. For each combination of these pa-
rameters, we solved (12) with the available dataset using the
ADMM method of Subsection III-A. We then numerically
differentiated the obtained multi-quantile model data α(q)
and β(q) to compute the empirical estimate of the radius Ω
in (25) plotted in Figure 2.

The problem parameters used in the example are summa-
rized in Table I. These parameters yield Ω = 0.0021 in the
condition (25). Sufficient condition (24) for the absence of
level crossing is then satisfied for 19,451 points in the data
set, leaving approximately 2200 points out.

The PP (probablity-probablity) plot in Figure 3 illustrates
the accuracy of the data fit for the developed model. The
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abscissa is quantile level q in the fitted model (2), P(yt <
Ztβ(q) + α(q)) = q. The ordinate is the empirical quantile
level estimated as the fraction of the data points in the set
where the inequality yt < Ztβ(q) + α(q) holds. For ideal
model, the data points would be on the diagonal. As shown,
the data points are close to the diagonal.
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Fig. 3. PP plot for non-parametric distribution model fit for the load data.

VI. STOCHASTIC OPTIMIZATION OF COST

This section considers an example of using the non-
parametric model described in Section V for stochastic
optimization. The utilities order power in the electricity
market a day in advance. If the actual power load is higher,
the utility has to buy additional electricity at much higher
spot price. If it is lower, then overpayment results. The goal
of the stochastic optimization in this section is to minimize
the total expected cost.

A. Advance and Expected Spot Cost

Consider a given time t, when regressor Zt is known. The
future (day-ahead) log-load yt is defined by the conditional
quantile model of the form (2) discussed in Section V. This
section assumes that the advance and the spot prices of the
electricity are known.

The dataset [20] used in Section V includes electricity spot
prices. The spot prices range from $12.52 to $363.80, with
average value being $48.51.

The stochastic optimization requires the estimation of the
advance cost and the expected spot cost components of the
total expected cost. These costs depend on the advance order

Pa(t) = P0e
yt , (31)

TABLE I
PARAMETERS OF MULTI-QUANTILE MODEL FOR LOAD

nq q1 qnq qL qR λ µ

99 0.01 0.99 0.1 0.9 106 108

where yt is the logarithmic load. One can always find a
quantile level s for Section V model such that y(s) = yt
in (31).

y(s) =

 y(q1) + log(s/q1)/θL, s < q1
Ztβ(s) + α(s), q1 ≤ s ≤ qnq

y(qnq )− log((1− s)/qnq )/θR, s > qnq

.

(32)

The advance cost is the deterministic value πadv,tPa(t),
where πadv,t is the advance price at time t.

At(s) = πadv,tP0e
y(s). (33)

The spot cost is the random variable defined by the day-
ahead future load. The expected spot cost can be computed
using the model p(y|Zt) of the log-load y distribution
conditional on the regressors Zt. The utility has to pay the
spot price only when the advance order Pa(t) = P0e

y(s) is
exceeded. The expectation of the spot cost C(s) is

Ey[C(s)] =

∫ ∞
−∞

P0πt

(
ey(q) − ey(s)

)
+

· p(y(q)|Zt)dy(q),

(34)

where q and s are quantile levels and the integrand is the spot
cost times the excess demand. The spot price πt is assumed
deterministic and known ahead of time. Assuming the spot
prices are known yields the same result as assuming they are
forecasted and the forecast error is independent of the load.

The pdf in (34) can be expressed in terms of the quantile
levels q in accordance with (2) by using

p(y|Zt) = dq/dy(q). (35)

Changing the integration variable in (34) to q and using (35)
yields

Ey[C(s)] = P0πt

∫ 1

s

(
ey(q) − ey(s)

)
dq. (36)

Integral (36) is computed by substituting the model (32)
for y(q). Expressions (32), (36) break into three parts: the
numerical model for the middle part of the distribution and
the two analytical models for the tails.

Ey[C(s)] = P0πt · (BL(s) +BM (s) +BR(s)) , (37)

where the subscripts L, M , and R indicate the left tail,
the middle part, and the right tail respectively. The integrals
BL(s), BM (s), and BR(s) in (37) are computed as follows

BL(s) =

∫ q1

min(s,q1)

(
ey(q) − ey(s)

)
dq

= q1−γL1 (qγL1 −min(s, q1)γL) /γL · ey(q1)

− ey(s) (q1 −min(s, q1)) ,

(38)

BM (s) =

∫ qnq

min(max(s,q1)),qnq )

(
ey(q) − ey(s)

)
dq, (39)

BR(s) =

∫ 1

max(s,qnq )

(
ey(q) − ey(s)

)
dq

= q1−γRnq

(
1−max(s, qnq

)
)γR

/γR · ey(qnq )

− ey(s)
(
1−max(s, qnq

)
)
,

(40)
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where γL = 1 + 1/θL and γR = 1− 1/θR.
The integral in (39) is evaluated numerically for given s

using the smoothed non-parametric models described above.
The integrals involving the tails have been evaluated ana-
lytically assuming they converge, which requires θR > 1.
The tail parameters estimated for the example load demand
dataset were θL = 39.2248 and θR = 31.7821. This means
the tail integrals converge.

B. Cost Optimization Results

The total cost can be computed from (33) and (36) as
T (s) = A(s) + E[C(s)]. Based on (33), advance cost A(s)
is a non-decreasing function of s. Based on (36), the expected
spot cost E[C(s)] is a non-increasing positive function of s.
The numerical results show that there is an optimal trade-off
between the advance cost and the spot cost that is defined
by s in log-load expression (32) and minimizes the total cost
T (s). To find the optimum, T (s) is computed numerically
on a grid of the values of s by evaluating formulas (38)–(40)
for the trained non-parametric model of the load.

The non-parametric model was trained on the data set as
described in Section V. As an example, the time sample of
January 11, 2011 at 10 PM was selected, when Pt = 20.371
GW and πt = $69.19/MW-hour. The assumed advance price
was πadv,t =$10/MW-hour. Figure 4 shows the total cost
T (s) computed for this time sample t using the trained
model.

This stochastic optimization result was compared to the
baseline case of the median regression model, where log-
load (32) for s = 0.5 quantile is used. The baseline total
cost is higher by approximately $5,096.40/hour. This hourly
difference corresponds to $44,644,464/year. A summary of
the total cost and the savings is shown in Table II.
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TOTAL COST ($/1000)
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Fig. 4. The total cost and the optimal quantile level Q gives the minimum
of the total cost.

TABLE II
COST RESULTS

Strategy/Model Smoothed QR Median
Total Cost $220,550 $225,640

Percentage Savings 2.26% 0%
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and multiple-output regression quantiles: From L1 optimization to
halfspace depth,” The Annals of Statistics, vol. 38, pp. 635–669, 04
2010.

[11] H. J. Wang, D. Li, and X. He, “Estimation of high conditional quantiles
for heavy-tailed distributions,” Journal of the American Statistical
Association, vol. 107, no. 500, pp. 1453–1464, 2012.

[12] L. Qian, L. Yongli, and W. Chong, “The risk linkage effects of
stock indexes based on quantile regression and granger causality test,”
in Control and Decision Conference (CCDC), 2013 25th Chinese,
pp. 4252–4257, May 2013.

[13] H. A. Nielsen, H. Madsen, and T. S. Nielsen, “Using quantile
regression to extend an existing wind power forecasting system with
probabilistic forecasts,” Wind Energy, vol. 9, no. 1-2, pp. 95–108,
2006.

[14] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction
method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[15] N. Parikh and S. Boyd, “Block splitting for distributed optimization,”
Mathematical Programming Computation, vol. 6, no. 1, pp. 77–102,
2014.

[16] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and
Trends in Optimization, vol. 1, no. 3, pp. 123–231, 2013.

[17] S. Boyd and L. Vandenberghe, Convex Optimization. New York:
Cambridge University Press, 2004.

[18] L. de Haan and A. Ferreira, Extreme Value Theory: An Introduction.
New York: Springer, 2006.

[19] J. Beirlant, P. Vynckier, and J. L. Teugels, “Tail index estimation,
Pareto quantile plots, and regression diagnostics,” Journal of the
American Statistical Association, vol. 91, pp. 1659–1667, December
1996.

[20] Crowdanalytix.com, “Global energy forecasting competition
2014 probabilistic electricity price forecasting.” Avail-
able: https://crowdanalytix.com/contests/
global-energy-forecasting-competition-2014
-probabilistic-electricity-price-forecasting#.

[21] S. Shenoy and D. Gorinevsky, “Risk adjusted forecasting of electric
power load,” in American Control Conference (ACC), 2014, pp. 914–
919, IEEE, 2014.

[22] C. Fougner, “Proximal operator graph solver.” Available: https://
github.com/foges/pogs.

6


