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Abstract. This paper considers a practical approach to
model-based fault diagnostics. The fault estimation is per-
formed by a delayed FIR �lter that is designed as a non-
causal Wiener �lter. The approach is demonstrated using
a case study of a process upset in a separation column in a
petrochemical plant. The designed fault estimator demon-
strates early and reliable detection of the fault. It presents
a conclusive evidence of the fault more than 250 minutes
earlier than the action the operator took during the upset
based on direct sensory data.

1 Introduction

This paper discusses fault diagnostics in the context of
a case study centered around a real life incident in a
petrochemical plant. An ethylene manufacturing unit is
a typical example of tightly coupled separation columns,
optimized to minimize energy consumption and increase
throughput. In each separation column, it is very com-
mon to �nd a 2{3 layered control strategy that maximizes
heat utilization; each layer receives measurements from
several sensors upstream and downstream to �nd an opti-
mum setting for the cascading controller. With their maze
of cascading controls such processes can often be very vul-
nerable to single point faults { a minor sensor failure can
lead to disastrous domino e�ects in apparently unrelated
process parts.

The problem started out as a simple sensor failure that
was part of a three layered control strategy. The feedback
action masked this problem from the operator for several
hours before it manifested itself. After about 6 hours,
the operator responded to the �rst alarm, without realiz-
ing the root cause, and aggravated the situation. Within
15 minutes he realized the gravity of the situation and
cut the feed. The unit operated in this low feed mode
for several hours (translates into several thousands of dol-
lars loss) before the problem was identi�ed and �xed. It
is believed that if the operator was aware of the faulty
sensor, he could have intervened immediately by breaking
the cascade control loop and containing the problem to a
manageably small section of the process. This builds up
a case for an automated monitoring of the critical process
variables and relating their behavior to one or more fault
factors.

The problem of fault diagnosis has been discussed in the
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technical literature on control as well as in industrial
practice over the past several years. The two distinct
schools of thought in addressing this problem are: model-
based [18, 10, 6, 7] and data-driven [2, 4, 9]. A compara-
tive discussion of these approaches for a closely related in-
dustrial application can be found in [14] and [13]. In 1995,
the Abnormal Situation Management (ASMTM ) Consor-
tium was created by biggest petrochemical process compa-
nies and controls vendors, such as Honeywell, to address
fault diagnostics and recovery in the process control en-
vironment. Most of the early ASM activity was concen-
trated on data-driven diagnostic methods because of their
relative ease of development and deployment. A recently
completed ASM research concluded that model-based di-
agnostics is necessary for providing practical sustainable
decision support systems with low false alarm rates [12].

The main issue with practical application of model-based
diagnostic methods is the heavy cost of developing and
maintaining good �rst principles models for nominal and
faulty behaviors. This issue has always been a barrier in
the industrial acceptance of model-based diagnostic meth-
ods. While the issue of modeling e�ort cannot be avoided
altogether, the approach presented in this paper lends it-
self to easy to application.

Industrial plant models usually have to be split into inter-
connected simpler subsystems. They might include com-
plicated nonlinear heat and mass transfer equations that
defy analytic solution and are solved numerically. Often,
the modeling is done with the help of specialized modeling
and simulation software packages. At the same time, many
of the fault diagnostics methods discussed in the literature
require the use of detailed analytical models, which makes
them diÆcult to implement and deploy with practical sim-
ulation models. This paper demonstrates a model-based
fault diagnostics methodology that is well suited to work
with simulation models and uses easily available data only
for setup.

In this paper, as in many other model-based fault diag-
nostics studies, the fault is modeled as an unknown input
to a plant. The problem is to estimate the unknown fault
input from the noisy data which is given by the residual er-
ror of the model prediction. Such a problem of estimating
an unknown input (also called fault intensity) from noisy
data was discussed in the literature. In the model-based
fault detection and identi�cation (FDI) literature, the ap-
proaches such as robust residual �lters [3, 16, 20] are most
relevant to this study. However, these approaches are not
optimal and computationally diÆcult. The same problem
of estimating an unknown input of a dynamic system from
the noisy output data was rigorously studied in the signal
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processing literature where it is known as the deconvolution
problem. The deconvolution problem has been discussed
in a number of papers with respect to di�erent applica-
tions including the problem of fault estimation [1, 8, 21].
All the above mentioned papers propose di�erent formu-
lations and solutions of optimal (or suboptimal) �ltering
problem, assuming that the unknown input needs to be
estimated from the data using a given �xed delay. In the
FDI papers, such as [3, 16, 20], the delay is ignored (con-
sidered to be zero). The main drawbacks of these solutions
and formulations is that they (i) are conceptually compli-
cated multi-step mathematical solutions that are diÆcult
to implement in practical applications, (ii) provide only a
limited accuracy of the unknown input estimation because
all of the output information beyond a �xed estimation
delay is lost. Further, the choice of the delay parame-
ter, which is a very important implementation detail, is
not discussed. Yet, in practice the output response to the
unknown (fault) input is often delayed and choosing an
appropriate estimation delay is critical for the estimation
accuracy.

This paper uses a much simpler optimal Wiener �lter so-
lution to the deconvolution problem. The Wiener �lter
design assumes that all future output information is avail-
able for estimation of the unknown input at any point in
time. In this paper the designed Wiener �lter is truncated
and implemented in the form of a �xed delay FIR �lter
with practically the same accuracy. This automates the
choice of the estimation delay. The solution discussed in
this paper is conceptually simpler and much easier to im-
plement in practical applications compared to the above
referenced papers. The delayed FIR �lter used herein is
related to Kernel regression methods, e.g. see [5] and ref-
erences thereof. Unlike the �lter design presented in this
paper, Kernel regression is usually applied as an empirical
approach.

2 Case Study

The layout of a typical separation column is shown in Fig-
ure 1. The objective of such a column is to separate light
components (overhead product) from the heavy compo-
nents (bottoms product). This is done by supplying vapors
at the bottoms through the reboiler and cold liquid (re
ux)
at the top through the condenser. For additional details on
distillation columns see reference [11, 19]. The following
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Figure 1: Layout of a typical separation column

key variables characterize the performance of the separa-
tion process: xB { the composition of the heavy key in the
bottoms product expressed as a fraction; Fh { the 
ow of
the hot vapors to the reboiler, often Fh is translated to the
actual heat supplied Qrs using standard heat transfer cor-
relations; Qrd { a target for the amount of heat that needs
to be supplied at the reboiler; Pov { the tower pressure;
Rov { the re
ux 
ow. These variables are available in the
process control system either directly from respective sen-
sors, or as values calculated by the control system based
on the sensor data and standard correlations. The trends
and instantaneous values of these variables are displayed
by the control system user interface and observed by an
operator.

As mentioned in the Introduction, this paper is centered
around a relatively signi�cant upset that happened in a
petrochemical plant. The traces of some key variables
(normalized values) during this upset are shown in Fig-
ure 2. During this upset, a temperature sensor Tup used
in the calculation of the reboiler heat demand setpoint
Qrd developed a bias around t = 450 (Figure 2, upper
left). This almost froze the calculated value of the reboiler
heat demand Qrd (Figure 2, upper right). As a result,

ow of the heating medium (Fh, Figure 2, lower right) did
not respond to a deteriorating bottom composition (xB,
Figure 2, lower left). The operator detected the loss of
bottoms composition around sample 850 and since it was
too late, the feed to the unit was cut as a preventive mea-
sure. The unit operated in this reduced feed mode for
several hours before the heat balance was fully restored.
For this unit, this translates to several thousand dollars
of production loss. This is a classical event in which the
control system masks an incipient fault. According to an
experienced operator: \The controller setpoint, Qrd and
the controller output, Fh are consistent. The setpoint is
not changing, and therefore the Fh is not changing and
since xB is within normal range, nothing is wrong with
the unit". This is one of the primary reasons why this
event went undetected till things started to go really bad
and resulted in loss of production. It is important to get
an early warning to an operator in incidents like this one.
This paper describes a design of fault diagnostics system
that would have, with a high con�dence given an early
indication of the problem. For this particular incident,
if an early warning was provided to the operator around
t = 600, that clearly indicated the error in the calcula-
tion of Qrd, the operator would have responded correctly
by breaking the cascade and containing the problem. It
is believed that such a response would have avoided the
expensive correction the operator was forced to take.

A general idea of model-based fault diagnostic systems,
such as one considered herein, is to compare model-based
prediction of the plant output variables to the experimen-
tally observed values. The residual error of such predic-
tion is then used to evaluate the fault condition. This is
possible by using a model of how the fault in
uences the
plant outputs. The design of the model-based diagnostics
scheme in this paper goes through the following sequence
of steps: (1) Develop a model for nominal process oper-
ation; (2) Develop a model for the fault; (3) Design a
fault estimation scheme that allows evaluating fault in-
tensity fromthe residual error of the model-based predic-
tion.These steps are discussed in the next two sections of
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Figure 2: Variable traces in the incident

the paper. The last section presents an application of the
designed diagnostics system to the incident data of the
case study. There is potentially an additional step that
involves decision-making regarding when to warn an oper-
ator, based on statistical properties of the fault estimate.
This last step is not discussed in any detail in this paper
and the decision is nade based on simple thresholding of
the fault estimate.

3 Process and Fault Models

A model was developed that simulates the separation col-
umn under constant separation factors and 
oating pres-
sure conditions. Detailed thermodynamic models were de-
veloped for the condensation and vaporization in the con-
denser and the reboiler. The distillation column itself is
modeled as a ideal binary separation column with pres-
sure dependent relative volatility �(PT ). The feed F is
modeled as a measured disturbance, while the composi-
tion is an unmeasured disturbance. For additional details,
see the report by Mylaraswamy [15]. The models outlined
above can be summarized as a set of di�erential algebraic
equations of the form

_̂x = � (x(t); u(t); d(t); z(t)) ; (1)

0 =  (x(t); u(t); d(t); z(t)) ; (2)

ŷ(t) = g(x(t)); (3)

where x̂(t) is a state vector, ŷ(t) is the output vector, u(t)
is the control input vector, d(t) is the external disturbance
vector and z(t) is an auxiliary variable vector. These vec-
tors are described below. The 12-dimensional vector of
auxiliary variables z(t) is de�ned as an implicit function
of x̂(t), u(t), and d(t) by a 12-dimensional vector of alge-
braic equations (2). As it is usually the case, the developed
nominal plant model is available in the form of simulation
software rather than in an analytic state space form (5).

The incident discussed in this paper corresponds to the
failure of the sensor that measures Tup used in the calcu-
lation of the reboiler heat demand calculation, Qrd. The
fault was modeled as:

T
fault
up = Tup + bTup ; (4)

where bTup is the bias in the measurement of the temper-
ature. Equation (4) describes a modi�cation of the model
(1){(3) that is needed to re
ect the fault in
uence. By re-
placing Tup in (1){(2) with T fault

up (4), then solving (2) for

z(t), and �nally substituting z(t) expressed through x̂(t),
u(t), and d(t) into (1), the simulation model of the plant
can be presented in the form

_̂x = '(x̂; v; f); ŷ = g(x̂); (5)

where x̂ 2 <6 is the plant state vector, v =
�
uT dT

�T
2 <7

is the vector of measured external inputs to the plant
including control inputs and disturbance variables, and
f = [ bTup ] 2 < is the fault variable.

In the absence of the fault (for f = 0), the nonlinear func-
tion '(�; �; 0) is an implicit function de�ned by (1) and (2).
Vector ŷ 2 <6 is the vector of the plant output variables.
The plant inputs collected in the vector v are provided by a
number of di�erent cascaded controllers and include oper-
ator settings and measured upstream disturbances. These
inputs are available in addition to the output variables for
diagnostics purposes, but cannot be directly in
uenced by
the fault diagnostics software.

The fault modeling and diagnostics analysis will further
assume that (i) the plant is operating close to a steady
state regime and (ii) the plant operation change caused
by the fault is small. These two assumptions hold in our
case study and allow linearizing the plant model around a
nominal regime. These two assumptions hold in most in-
dustrial process plant fault diagnostics problems: (i) holds
because the steady state regime is an optimized regime of
the production and large deviations from this regime are
avoided in plant operation; (ii) the focus of the fault diag-
nostics is on early detection of fault conditions before they
cause large changes in the plant operation.

Under normal conditions, because of the approximations
and the uncertainty in the model, the departure of the
measurement variables, such as Qrd andQrs, from a nomi-
nal value will not be identically zero. The challenge is to be
able to identify signi�cant departures caused by the fault
as quickly as possible without generating too many false
alarms. model can be assumed to describe this deviation.

_x = '(x; v; f) + �; y = g(x) + �; (6)

where � and � are external disturbances (process variation)
sequences introduced to account for the deviation between
the model prediction and real process measurements. Sta-
tistical properties of these disturbance sequences are dis-
cussed further on. As mentioned above, the parameter
vector f in (6) is normally zero. The value of f gives
a measure of the fault condition intensity. By subtracting
the nominal model (5) with f = 0 from (6), and linearizing
the system by retaining only �rst order di�erence terms,
the following fault residual model can be obtained

_~x = A~x+Bf + �; ~y = C~x+ �; (7)

where

A =
@'

@x
(x̂; v; 0); B =

@'

@f
(x̂; v; 0); C =

@g

@x
(x̂);

The model (7) is in continuous-time. At the same time
data collected from the process and used in the signal pro-
cessing algorithms below is sampled at a certain rate|the
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sampling rate. In what follows, a sampled-time form of
the fault residual model will be used

~y(t) = F (z�1)f(t) +D(z�1)e(t); (8)

where ~y = y � ŷ is the model prediction residual, z�1 is a
unit delay operator and e(t) is a unit white noise sequence.
The signature �lter F (z�1) is obtained by sampling the
continuous-time transfer function C(Is�A)�1B, and the
shaping �lter D(z�1) de�nes the disturbance dynamics.
The disturbances � and � in (7) were not de�ned and they
are assumed such that (8) holds.

The fault residual model (8) will be further used for de-
sign of fault detection algorithms. Variables and parame-
ters in this model can be conveniently characterized from
the available information on the nominal model and the
process data. In particular, ~y can be obtained by running
the simulation model and subtracting the model predic-
tion from the actually observed data. The shaping �lter
D(z�1) can be identi�ed from the plant normal operation
data, where f(t) � 0. Finally, the fault signature �lter
F (z�1) can be obtained by linearizing the nominal simu-
lation model (5). In this work it was conveniently done
by running the simulation twice to obtain the response of
the predicted process output with respect to a small step
change in the fault intensity f . Responses of the output
variables ~y to a step input in the sensor fault considered
in this case study are shown in Figure 3. These responses
de�ne the fault signature �lter F (z�1) in (8).
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Figure 3: Step responses of the model outputs to a two-
unit step change in the fault variable f = bTup

The fault estimation problem to be considered in the re-
mainder of the paper is as follows. Consider the system
(8), where the signal ~y is available, e(t) is a white noise
sequence, �lters F (z�1) and D(z�1) are known, and f(t)
is an unknown sequence. The problem is to estimate the
fault sequence f(t). This estimate can be further used for
decision-making, e.g., by comparing the estimated fault
intensity with a threshold.

Estimating fault intensity f(t) from the model prediction
error ~y in (8) requires specifying what an a priori infor-
mation on the estimated signal f(t) is available and what
part of the signal ~y is accessible at time t.

In this work the estimated fault time sequence is modeled
as an output of a �rst order coloring �lter driven by a
white noise independent of other signals in the system.

f(t) = �(z)�(t); �(z) =
f0

1� afz�1
; (9)

where �(z) is the �rst-order shaping �lter, the parameter
f0 has a physical meaning of the probable amplitude of
the fault and the parameter af has a meaning of the time
constant for the fault development. The two parameters
f0 and af are further viewed as engineering tuning knobs
in the fault estimator design.

4 Wiener Filtering Approach

The problem of estimating the unknown input sequence
f(t) in the system (8) from the output sequence ~y(t) is
known in the literature as a deconvolution problem. When
solving the problem, a �xed delay d of the estimation is
typically assumed, such that the output data up to time
t+d are used in estimating f(t). Solutions of the deconvo-
lution problem di�ering in complexity of computations and
formulation are presented in the papers [1, 8, 21]. All these
solutions are conceptually complicated and require deriv-
ing and solving several simultaneous Diophantine equa-
tions. To the best of the authors knowledge these solutions
are not implemented in standard software packages, such
as the Matlab Signal Processing Toolbox.

This paper pursues a non-causal Wiener �lter solution to
the deconvolution problem that does not specify the esti-
mation delay explicitly and assumes that all future infor-
mation is available. It turns out that the �lters obtained as
a result of such design use future information with rapidly
decaying weight and for all practical purposes can be trun-
cated to have a �nite delay. In this case study, as well as
in many other applications, the delay in the fault estima-
tion resulting from such a design is practically acceptable.
A big advantage of the �lter design in this paper is the
simplicity of both the concept and the computational im-
plementation.

4.1 Filtering problem
Di�erent authors might mean di�erent by a Wiener �lter
name. Some authors consider a causal �lter obtained as a
result of Wiener-Hopf factorization (projection) of a non-
causal least-square optimization equations. In other liter-
ature, as well as in this paper, Wiener �lter is a noncausal
least-square optimal �lter.

Consider the following problem of optimal smoothing

f̂ = Ly; L = argminE(kf̂ � fk2); (10)

where f̂ is an estimate of the unknown input f , L is a
sought linear operator, and E denotes mathematical ex-
pectation. The optimal operator L can be found by di�er-
entiating the expectation of the quadratic error expressed
as a contour integral of an appropriate transfer function

L(z) = V (z)F �(z�1)(W (z) + F (z�1)V (z)F �(z�1))�1; (11)

where, V = ���;W = DD�, and L, F , �, D are transfer
function matrices corresponding to the respective opera-
tors and the superscript � denotes the complex conjugate
transpose. The argument z has been omitted for these
transfer functions. The unity matrix I in (11) has size
corresponding to the dimension of f . In our case study
this is a 1 � 1 matrix and I = 1. It is assumed that none
of the transfer functions L, F , �, and D have poles on the
unit circle.
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As mentioned above, the operator L is a noncausal oper-
ator. In accordance with this, the transfer function (11)
has poles both inside and outside of the unit circle. The
transfer function L(z) can be considered as a 2-sided z-
transform of a corresponding non-causal pulse response
kernel l(t). A background on 2-sided z-transform theory
can be found in the textbook [17]. The operator L can be
implemented as a convolution with the kernel l(t).

(Ly)(t) =
1X

�=�1

l(�)y(t� �)d� (12)

4.2 FIR �lter
Since L(z) in (11) has no poles on the unit circle, the kernel
l(t) in (12) decays as t!1 and t! �1. Let r > 1 be the
largest number such that L(z) is analytical inside the ring
r�1 < jzj < r. Then, in accordance with the properties
of the 2-sided z-transform, the kernel l(t) asymptotically

decays at least as fast as r�jtj. For any practical purpose
the in�nite exponentially decaying `tails' of the kernel can
be truncated and the kernel implemented as a delayed FIR
operator. The parameter r de�nes the degree of the kernel
localization and, thus, the delay of the unknown input
estimator L.

Let the truncated FIR kernel be l(t) de�ned for tmin � t �
tmax and zero outside this interval. Then, the operator
(12) can be presented as a delayed convolution operator
with the delay of �tmin in the form

(Ly)(t+ tmin) =

tmax�tminX

�=0

�(�)y(t� �)d�; (13)

where �(t) = l(t� tmin) is a FIR convolution kernel.

Let us now discuss a computational procedure for calculat-
ing the convolution kernel �(t). This is done by computing
an inverse of the Fourier transform for the operator. The
transfer function L(z) (11) is analytical on the unit circle
(for jzj = 1) and can be computed on the unit circle as

L(ei!) = �ffF
� (�yy + F�ffF

�)
�1
; (14)

where F = F (ei!), and F � = F �(e�i!). In accordance
with (11), �ff = V (ei!) and �yy =W (ei!) have meaning
of the power spectra for the operators � in (9) and D in
(8) respectively.

The practical considerations in computing transfer func-
tion (14) on the unit circle are as follows. First, in (14),
�ff has a meaning of the spectral power of the fault sig-
nal. This spectral power is de�ned by the two tuning
knob parameters f0 and af in the model (9). The values
of these parameters can be estimated from the available
application-level knowledge of the possible fault develop-
ment scenario. Second, the Fourier transform F (ei!) of
the fault signature pulse response in (8) can be computed
directly from the pulse or step response data without even
reverting to a dynamical model for the fault signature op-
erator F . Third, the function �yy in (14) has a meaning of
the spectral power of the process variation. This spectral
power can be estimated directly from the model prediction
residual data ~y(t) collected for a normal operation of the
plant in the absence of the faults, i.e., for f(t) = 0.

Once the complex-valued function (14) is available, the
kernel l(t) can be computed as an inverse Fourier trans-
form. This can be eÆciently implemented by applying the
DFT (Discrete Fourier Transform) algorithm. To do this,
L(ei!) is computed on a regular spaced grid of the frequen-
cies !. Such DFT computation is inherently approximate.
Its accuracy would be acceptable as long as the number of
grid points is suÆciently larger than the support interval
for the truncated FIR kernel l(t).

5 Fault Detection: Application Results

AWiener �lter fault estimator designed using the method-
ology described in the previous section was applied to the
case study data shown in Figure 2. As the main step in the
estimator design, the Fourier transform (14) of the fault
estimator kernel was computed on a grid of 2048 frequency
points. This was done in accordance with the steps out-
lined in the previous section. First, the spectral power
�ff(!) = �(ei!)��(ei!) of the fault signal was computed
in accordance with (9). The two tuning knob parame-
ters in the model (9) were set to the values f0 = 0:015
and af = 0:985. Second, the Fourier transform F (ei!)
of the fault signature pulse response in (8) was computed
from the step response data in Figure 3. To do this, the
sampled-time step responses in Figure 3 were di�erentiated
to obtain the pulse responses. Then F (ei!) was obtained
by computing an FFT of these 2048 point pulse responses.
Third, the spectral power of the process variation �yy(!)
in (14) was estimated from the model prediction residual
data collected during normal operation of the plant in the
absence of the faults. The standard Matlab Signal Process-
ing Toolbox function EPA was used to obtain an estimate
of the spectrum at 256 frequency points. The spectral
power estimates between these points were obtained by
linear interpolation. The spectral power estimates for Qrd
and Qrs are illustrated in Figure 4.

The complex sequence L(ei!) (14) computed at the 2048
frequency points was used in computing an inverse FFT
to obtain an estimate of the fault estimator convolution
kernel. This estimate was further truncated by removing
the kernel weights `tails' with values less than 5 � 10�4 of
the maximum value. At �rst, the optimal fault estima-
tor kernel l(t) (11), (12) was computed as described above
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based on the model (8). Since in (8) the output vector ~y
is a six dimensional vector, l(t) 2 <6. In other words, the
kernel l(t) includes six kernels, each applied to one of the
outputs ~y and the results are added up. The multivariable
design of the optimal fault estimator kernel gives signi�-
cantly di�erent magnitudes for di�erent components of the
kernel. This is because the external disturbance has very
di�erent intensities (with respect to amplitude and delay)
for di�erent outputs, as seen in Figure 3.
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Figure 5: FIR fault estimator kernels for Qrs and Qrd

Therefore, in addition to optimal fault estimator using
complete information about the outputs, a suboptimal es-
timator was designed by using only two of the six available
outputs: Qrs and Qrd. The choice of the outputs Qrs and
Qrd was dictated by the fact that they provide small delay
in the output response to the fault. As a result the fault
estimator convolution kernels for these outputs allow ob-
taining the estimate with small delay. In order to ensure
timely detection of the fault, this delay must not be too
large. These outputs also provide a good ratio of the fault
response amplitude to the process variation (disturbance)
intensity. The output Fh in Figure 3 also has small delay,
it was, however, discarded because of the modeling errors
that can incidentally cause the residual for Fh to be large
in the absence of faults.
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Figure 6: Fault estimation for the case study with de-
signed FIR �lter kernels for Qrs and Qrd.

The two components of the suboptimal fault estimator
convolution kernel corresponding to the model prediction
residuals for Qrs and Qrd are illustrated in Figure 5. Us-
ing these kernels requires a delay of about 230 min in the
fault estimation. Such delay is reasonable in the case study
in question and still allows early detection of the fault. Be-
cause of the optimized �ltering properties of the designed
fault estimator kernels such a fault estimate is highly ac-
curate and allows avoiding false alarms.

The result of applying the designed fault estimator to the
process upset data is illustrated in Figure 6. The three
plots are the computed residuals Qrs and Qrd and the

sensor fault intensity estimate f̂(t). The conclusive evi-

dence of the fault is available when f̂(t) becomes greater
than one at t = 450. Note that because of the estimation
delay, the estimate f̂(t = 450) is available at time t = 674.
This is still more than 250 minutes earlier than the action
taken by the operator during the upset.
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