Proceedings of the American Control Conference
San Diego, California ° June 1999 :

Evaluating the Performance of Cross-Directional Control
Systems

Stephen R. Duncanf, Guy A. Dumont? and Dimitry M. Gorinevsky*

'Department of Engineering Science, University of Oxford,
Oxford OX1 3PJ, United Kingdom
Pulp and Paper Centre, University of British Columbia,
2385 East Mall, Vancouver V6T 1Z4 Canada
*Honeywell Technology Center, Honeywell, Cupertino, CA 95014

stephen.duncan@eng.ox.ac.uk

Abstract

Methods have been developed for monitoring the
performance of SISO control systems, which com-
pare the variance of the output achieved from the
plant to an estimate of the variance that could be
achieved by minimum variance control. The meth-
ods require knowledge of only the inherent delay
within the process. This paper extends these ideas
to analyze the performance of cross-directional con-
trol systems for sheet processes such as paper ma-
chines, which are large multivariable systems. Be-
cause such systems are inherently ill-conditioned, the
performance is compared against that of a general-
ized minimum variance controller designed to avoid
controlling poorly controllable spatial and dynamic
modes. The results of applying the algorithm to data
from a paper machine are presented.

1. Introduction

Control systems are designed and tuned to deliver a
specified level of performance, generally quantified in
the form of the minimization of a performance in-
dex. In practice, an important problem is the assess-
ment of the actual performance delivered by a de-
ployed control system. Recent years have witnessed
a significant activity towards the development of per-
formance monitoring tools for single-input, single-
output (SISO) control systems [1, 2, 3, 4]. Typi-
cally, those techniques involve estimating the achiev-
able performance under minimum variance or linear
quadratic control and comparing it with the achieved
variance. It is remarkable that normal operating
data, together with the knowledge of the process time
delay, are theoretically sufficient to estimate the min-
imum achievable variance. In practice, however, min-
imum variance control results in excessive control ef-
fort and poor marginal stability. Therefore a number
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of performance monitoring methods have been devel-
oped that use a detuned minimum variance controller
as benchmark. The extension of performance moni-
toring techniques to the control of distributed param-
eter systems, as exemplified by the control of paper
machines, has received relatively little attention, de-
spite the practical importance of the problem, with
the recent exception of [5, 6]. Because of the sig-
nificant costs associated with the operation of paper
machines, it is important for papermakers to maxi-
mize the return on their assets by ensuring that the
control systems for basis weight, moisture and caliper
are delivering the required performance. This paper
presents a method for developing simple and reliable
tools for evaluating the performance of an industrial
paper machine cross-directional control system.

The main result of this work is a graphical tool for
evaluating and tuning the performance of a cross-
directional (CD) control system. The tool provides
a comparison of the 2-D closed-loop variation pat-
terns achieved by the current controller and that of
the “best” performance theoretically achievable. The
calculation of the “best” performance assumes that
the spatial and dynamic characteristics of both the
actuator responses and the disturbances are separa-
ble and that the spatial responses of the actuators are
known and are spatially invariant. This assumption
is reasonable given the proliferation of model-based
control packages that include identification tools, in-
dependent of CD position, the effect of actuator spa-
tial response CD-dependency being an area on fu-
ture research. Practical limitations on actuator move-
ment that make minimum-variance control impossi-
ble to achieve in practice are accounted for as soft
constraints.

Control loop performance monitoring tools developed
for SISO control systems do not require knowledge of
the plant dynamics apart from the time delay of the



process [1, 2, 3]. In [6], a simple and very approximate
measure of CD control performance is derived in total
absence of knowledge of the dynamic and spatial re-
sponses of the system. In [5], performance measures
were derived that assumed perfect knowledge of both
dynamic and spatial responses and disturbance char-
acteristics. The method proposed here falls somewhat
in between, as it relies on knowledge of the dynamic
and spatial responses of the actuators acquired during
prior identification experiments. However, the char-
acteristics of the disturbances will be estimated on-
line from operational data.

2. General Methodology

For the purpose of this study, the process can be de-
scribed by

C(g™!)
A(g™1)

_aB(@™)
A(g™Y)

Yalt) = ¢ Gu,(t) + e(t) (1)

where y,(t) € R™ is a vector consisting of the pa-
per properties measured at m locations (databoxes)
across the sheet, u,(t) € R™ is a vector containing the
moves applied to the n actuators across the sheet, d is
the inherent delay in the system, G € R™*" is the so-
called interaction matrix describing the steady-state
spatial responses of the actuators and e(t) € R™ is a
vector containing the disturbances entering the pro-
cess at each of the m measurement positions. e(t) is
taken to be zero-mean white noise vector with covari-
ance Ele(t)e(t)T] = A € R™*™. The subscript a is
used to denote the inputs and outputs achieved by
the existing controller on the plant, while the same
quantities with subscript o will denote inputs and
outputs achievable under generalized minimum vari-
ance control. The method developed here relies on
the knowledge of A(g~'), B(¢™'), G and d obtained
from prior experiments, using the methods described
in [7]. Using these values, a real-time performance as-
sessment of the existing control system is provided by
displaying the difference between the achieved mea-
surement profiles and the optimally achievable ones,
while accounting for the limiting effect of actuator
constraints.

Computing the Optimal Unconstrained Per-
formance. Although it is possible to develop a
minimum-variance controller for the controller in (1),
this controller is known to be sensitive to modeling
errors and to result in control signals of unacceptably
large amplitude. Consequently, the optimal controller
will be a detuned version of this controller, obtained
by the introduction of two parameters p and p (see
e.g. (8]) to give

u,(t) = ~K, (q_I)YO(t) 2)
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where
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where F(g~!) and H(g™!) satisfy

Cla)=AldHF@ )+ *H@") @
With this controller, the optimal output is

- —1y-1C@™)
Yo(t) = [In + Qo(g l)] ! A(q‘l)e(t) (5)

where Q,(¢™!) is defined as the open loop transfer
function

Q.(g7!) = g(g7")GKo(g™) (6)

where g(g7!) = ¢74B(¢7*)/A(g™!). The aim of the
analysis is to express y,(t) — yo(t), the difference be-
tween the output observed on the paper machine and
the optimal output from the GMV controller, in terms
of ya(t) and u,(t), both of which are available from
the machine. Algebraic manipulations lead to

Ya(t) ~¥o(t) = Tolg™Hya(t) + So(Q’l)y(q“‘)Gua(;)

)
where are S,(¢7!) = [I,4+Q,(¢g71)] " and T,(g71) =
I, — S,(g™1)] ! respectively the sensitivity function
and complementary sensitivity function for the opti-
mal feedback loop. The CD variation in the observed
output and the optimal output can be expressed in
terms of the 20-measure, commonly used in industry,
which are E|ly,(t)||2 and E|ly.(t)|]2 respectively.

Because there may be more than 600 measuring po-
sitions across the paper machine, both S,(¢™!) and
T,(g™!) can be very large matrices. To simplify the
analysis, introduce the singular value decomposition,
G = U; VT, where ¥ = diag{o;} € R**" is a di-
agonal matrix containing the n singular values of G,
V € R™*™ is the matrix of right singular vectors and
U; € R™*™ contains the first n left singular vectors.
Using this decomposition gives

2
G(GTG + pI,) 'GT = U, diag { 02"; " } uT (8)

1
so that T,(g~!) = Urdiag{pi(¢g~*)}UT, where

_ 02B[C — AF]
~ Clp(o? + p)A+0?B) + pABF

and S,(¢"Y)g(¢™!)G = U, diag{ri(¢~1)}V7T where

pi(g™") )

- 4B -
ri(g™h) = ¢ 21 - pilg™")] (10)
Since A(g™!), B(g™'), d and G are available from a
previous identification experiment [7], the computa-
tion of (9) and (10) requires the estimation of both
F(g™') and C(¢7).



Estimating the F(g—!)-polynomial The assump-
tion that the spatial and dynamic responses of both
the actuators and the disturbances are separable, al-
lows the dynamics of the process to be described in
terms of scalar polynomials. Because MD control is
typically done at a rate of once a scan (although in-
dustrial systems are capable of MD control two or
three times per scan), MD-aggregated data will be
used to estimate F(g~!). If §,(t) and @,(t) denote
the average measurement and control settings across
the sheet the estimate of F(g!) relies on the fact
that for a process modeled by

. —aBl@™) . Cla™h),
f)=q"¢ u(t) + e(t 11
ya( ) q A(q_l) ( ) A(q_l) ( ) ( )
under a general feedback controller of the form
_ N(g™?)
a(t) = ——F——=y(t 12
() = ey 90 (12)
then the closed-loop system can be expressed as
— BFN
_+«HD-B _ (13)

Jo = Fe+ 4 4Dy aBN®

with degF = d — 1. Thus, it is only necessary to
identify the output of the process as a time-series
and to compute the first d Markov parameters to find
F(g~1). Here, the time series used to represent the
closed-loop system is modelled as white noise & fil-
tered through a Laguerre network [3]

1(t+1) AL(t) + bé(t)
Fa(t) cT1(t) + &)

where 1 is the state vector composed of the outputs
of the Laguerre filters, € is zero-mean white noise, A
and b are respectively a N x N matrix and a vector
of dimension N characterizing the Laguerre network,
and whose terms only depend on the pole of those
filters and the sampling interval and c is a vector
of dimension N containing the Laguerre spectrum of
the time series being modelled. Typically a network
with N = 10 filters is used. The vector c is easily
estimated from closed-loop data, and the coefficients
of F(g~') are obtained from

f0=17

(14)

(15)

Estimating the C(g¢~!)-polynomial To estimate
the disturbance characteristics, i.e. the C(g~!)-filter,
the MD-aggregated model in (11) is written as

w(t) = Alg™")ga(t) — ¢7*Bla™)aa(t) = C(q"l)é%)

Because A(g™!), B(¢™!) and d are assumed known,
it is straightforward to generate the sequence w(t).
C(g~') can be estimated using a simple extended
least-squares algorithm. Typically, C(g™!) will be re-
stricted to a first or second-order polynomial.

fi=cTb, fo=cTAb, f3=cTA%,...
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3. Implementation

The data is presented to the algorithm in the form of
measurements taken from a scanning gauge and the
settings of actuators at the end of each scan. The al-
gorithms corresponding to the above derivations were
implemented in MATLAB. The algorithm generates
a contour plot or color image of the squared differ-
ence between the actual and optimal variability for
a moving window of 50 scans. The results are up-
dated at the end of each scan. As described in the
next section, the algorithm was used to analyze the
performance of one paper machine that had over 600
measurement positions across the sheet and 235 ac-
tuators, so some of the matrices used in the calcu-
lations were extremely large. The algorithm needed
to be implemented carefully to avoid excessive com-
putational load. The major computational burden is
the calculation of the singular value decomposition of
the interaction matrix, G. However, G is obtained
from a separate identification experiment and in the
current implementation of the algorithm, G is not
updated online. As a result, the singular value de-
composition forms part of the setup procedure for
the algorithm and could, if necessary, be performed
offline. Once the singular value decomposition has
been performed, the online processing can be simpli-
fied by defining ¥,(t) € R™ and 0,(t) € R™ as

~ _ 1T ~ —vT

Va(£) =Urya(t)  a(t) =Viue(t)  (17)
The columns of U; span the controllable subspace
of the interaction matrix, G, so ¥,(t) contains the
spatial components of y,(t) that can be controlled
by the actuators [9]. Given that U U; = I,, then
the expression for the difference between the observed
output and the optimal output in (7) can be expressed
as

Ya(t)=Fo(t) = diag{pi(q_l)}?a(t)+dia8{h(q"l)}figgt)

In this form, when the F(g~!) and C(g¢~!) polynomi-
als are estimated at the end of each scan, the prob-
lem of generating ¥,(t) — ¥,(¢) has been reduced to a
set on n SISO filters, one for each controllable mode.
Transforming the problem into the controllable sub-
space decouples the individual modes and reduces the
computational and storage requirements of the algo-
rithm. To display the results, y,(t) — y,(t) can be re-
covered using y,o(t) — y,(t) = U1[¥a(t) — ¥.(¢)] Note
that only the controllable components of y,(t)—y.(t),
spanned by the columns of U, are being recon-
structed. Because both y,(t) and y,(t) contain the
same uncontrollable components, there will be no un-
controllable components in y,(t) — ¥o(t). In essence,
the analysis determines the portion of the disturbance
lying within the controllable subspace that could be re-
moved by the optimal controller, and is not removed
by the existing controller.



It is sometimes useful to display the "mapped” er-
ror profile GT[y,(t) — y,(t)], which allows regions of
poor control to be associated with individual actua-
tors. This can be generated directly from

GTlya(t) — yo(t)] = VE (Fa(t) — Fo(t))  (19)

4. Results

The procedure described above was tested on data
from a number of paper machines. The results pre-
sented here are from a data set consisting of 100 scans
of basis weight measurements taken at 660 databoxes
across the sheet controlled by 235 actuators on a di-
lution flow headbox. The process was operating in
closed loop with an industrial controller. No infor-
mation about the controller was used for the analysis.
Prior identification performed on the open-loop sys-
tem was used to determine the process model. The
analysis has been carried out using g = 0.001 and
p = 0.1. Figure 1 shows a contour plot of the squared
deviation from optimality over 50 scans (expressed
in the form GT[y,(t) — y,(t)]) and it can be seen
that there are a number of “streaks” of relatively
poor control, particularly in the vicinity of actuators
122 and 194. Figure 2 compares the average cross-
directional profile that the remains in the sheet after
the optimal control is applied (solid line) and the cor-
responding profile observed on the machine (dashed
line). Using the conventional 20-measure, for the ac-
tual CD profile, 20 = 0.025, while the optimal CD
profile, 26 = 0.017, which corresponds to a reduction
of about 33%. In addition, the ratio of actual MD
variance to optimal MD variance is about 2.5, indi-
cating that the existing controller is conservatively
tuned.

The results show that the difference between the CD
profiles of measured output and the optimal output
tends to occur in the higher order spatial modes, sug-
gesting that the controller implemented on the plant
has been detuned so that it does not respond to higher
order modes. This is to be expected for two main rea-
sons. Firstly, control of higher order modes requires
large actuator inputs [10, 11], which can violate con-
straints on the magnitude of the inputs. Secondly,
the controller is most sensitive to uncertainties in the
higher order modes [12], so practical controllers are
often detuned so that they do not respond to these
modes, in order to make the control system robust.

5. Handling Constraints

The calculation of the output from the optimal con-
troller has not considered any constraints on the in-
puts applied to the actuators. As the results of the
previous section have demonstrated, this means that
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Figure 1: Contour plot of squared deviation between
residual variation observed on the paper ma-
chine and the residual variation from the op-
timal controller in (3)

the major discrepancy between the measured and
optimal outputs occurs in the higher order spatial
modes. In practice, the most common form of con-
straints restricts the magnitude of the actuator in-
puts, which can be expressed in the form [13]

la(®)lleo < Umas (20)

The determination of the optimal inputs in the pres-
ence of contraints requires the solution of a quadratic
programme at each time step {14, 13], which is not
appropriate for an online implementation of a mon-
itoring system. However, actuator limits can be ac-
commodated by soft constraints, by using |ju(t){leo <
Jlu(t)|l2 and choosing the weighting parameters, y and
p, to ensure that [|u(t)]l2 < Wmee- To do this, note
that

u,(t) = —Ka(Q‘l)[Im+Q(q_’)]'l(ya(t)—g(q'l)Gua(t))

m+Qg7") ]‘

From the previous analysis, o(q“‘)[T
where

can be written as Vdiag{m,(g~!)}U{
olAH
Clp(o? + p)A + 07 B]

mi(g~") = (22)

+ pABF
50 {|u,(t)]l2 becomes
l|diag{mi(g*)}¥a (t)+diag{g(q‘1)aim¢(q“)}ﬁa(t2):|%|z

where ¥,(t) and 11,(t) are defined in (17). Given that
past values of §,(t) and i1, (t) are stored as part of the
algorithm, when new estimates of F(g~!) and C(g~!)
are determined at each time step, values of u and/or
p can be chosen automatically to ensure that the right
hand side of (23) does not exceed upmqz-
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Figure 2: Plot of average profile of CD basis weight
variations observed on machine (dashed line)
and optimal CD profile (solid line)

6. Conclusions

This paper has described a performance assessment
algorithm for CD profile control systems. The algo-
rithm that takes profiles of CD variations from the
process and combines them with the actuator set-
tings to determine the difference between the actual
level of variation observed on the sheet and an esti-
mate of the level of variation that could be achieved
using a GMV controller. This allows performance
indices for both CD and MD variations to be calcu-
lated. The algorithm has been tested on real-life data
from a system for controlling basis weight variations
on a paper machine, using a dilution headbox. As
expected, the results show that the existing control
system is unable to remove all of the higher order spa-
tial modes, in particular due to the constraints on the
inputs. Although the algorithm cannot accommodate
strict input constraints, a method is proposed which
replaces them by soft contraints. Current develop-
ments are investigating ways of tackling more general
constraints and taking better advantage of redundant
information contained in the estimates of F(¢~!) and

C(g™).
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