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Abstract— This paper provides stability analysis for phase
shifting active combustion control system where modulation of
the fuel flow is used to suppress thermo-acoustic instability. The
analysis is based on Krylov-Bogolubov averaged model for the
oscillations with the external periodic forcing. The amplitude
dynamics and phase dynamics are described by nonlinear first
order models. The control inputs are the amplitude and phase of
forcing (fuel modulation). The analysis demonstrates that phase
dynamics and amplitude dynamics are each unstable in the
desired target regime. Practical stabilizing control approaches
and their limitations in the presence of feedback delays are
discussed and analyzed. The analysis in this paper is verified
in detailed simulations and validated in experiments with a jet
engine scale combustor rig.

I. INTRODUCTION

Operating gas turbines in fuel-lean regime could reduce
NOX emissions and thermal load on the system. Unfor-
tunately, lean combustion creates conditions for thermo-
acoustic instability, causing undesirable pressure and thermal
oscillations in the combustion chamber. These oscillations
can be reduced by modulating fuel flow at their frequency.
The approach is known as phase shifting control since the
modulation phase must be shifted compared to the observed
oscillation phase to ensure the suppression. This paper an-
alyzes stability issues caused by the delays in the phase
shifting control loop.

The phase shifting control system considered in this work
is illustrated in Figure 1. Earlier work included similar design
and analysis elements. On the far right, the spring and
mass depicts an oscillator driven by thermo-acoustic self-
excitation mechanism. The oscillator state is measured by a
sensor (optical or acoustic pressure). The actuator, such as a
fuel flow modulation valve, applies control effort influencing
the oscillator. The sensors and the actuator are connected
to a digital control system shown on the left in Figure 1.
The sensor data is sampled and digitized, then used to
estimate the phase and amplitude of the oscillations. The
phase and amplitude control logic uses the estimated phase
and amplitude to compute the actuation parameters (the
frequency, phase and amplitude of the valve modulation).

Active combustion control systems (ACCS) using phase
shifting approach is a well developed research area. This
paper does not have space to survey it in sufficient detail.
The surveys can be found in [1], [9]. Phase shifting control is
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Fig. 1. Overview of active combustion control system

dominant in practical ACCS, see [1], [6], [9]. Among all pub-
lished ACCS work there are very few realistic scale tirbine
combustor demonstrations such as [2], [10], [12], [13], [18].
This is likely because of the cost and comprehensiveness of
the real turbomachine scale experimental work.

Another reason why full-scale combustors with active
control have not been implemented in jet engines is the lack
of reliable liquid-fuel actuators that can continuously pulse
at a very high acoustic frequencies with high authority, see
[6]. The earlier practical demonstrations of ACCS [15], [10],
[17], [18] were in rocket engines and ground turbines using
gas fuel. This work was initially motivated by our project
in a practical scale demonstration of ACCS for a jet engine
combustor using a new valve actuator with high bandwidth
and high authority, see [14].

In the experiments, it became apparent that achievable
acoustic oscillation suppression is limited by control issues
related to the delay in the phase and amplitude feedback.
These issues are fundamental, can be explained using a
simple model, and, to the best of our knowledge, were not
adequately described in the published ACCS literature.

One issue is with the phase shift error. The oscillation
frequency is influenced by the modulation and otherwise
changes with time. The transport delay in fuel lines can
be many periods of oscillation and the frequency change
can significantly modify the effective phase shift. Thus, a
feedback correction of the phase shift is necessary; this
feedback is susceptible to the loop delay.

Another issue is with the modulation amplitude control.
The experiments and simulations show that fixed amplitude
modulation with large enough control authority could reduce
the oscillations till the phase tracking is impossible. To
avoid cyclic loss of control and increase of the oscillations
the modulation amplitude must be controlled; however, the
amplitude feedback is susceptible to the feedback loop delay.

Depending on the intensity of the instability and the feed-
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back delay, it might be impossible to reduce the oscillation
amplitude substantially (by more than half). This appears to
be a fundamental issue with ACCS.

Understanding these issues requires analysis of controlled
dynamics of the amplitude and phase. The phase shifting
approach recognizes that control authority and bandwidth are
limited and attempts to drive down the oscillation amplitude
over many cycles. The cycle-to-cycle evolution of the os-
cillations can be analyzed using averaging. The averaging
approach is applicable no matter what the sensors sampling
and actuator control scheme is (our experimental work uses
sophisticated multirate sampling of measurements and actua-
tor commands). For many of the alternative published ACCS
algorithms, the averaged effect on the oscillations is not that
much different from the phase shifting control.

The fundamental limitations of the ACCS, including the
feedback delay issue were noted in [3] using frequency
domain reasoning that was focused on a specific example and
characterized the nonlinearities through a describing func-
tion. This paper shows that the limitations exist in a simple
averaged dynamics model with just two states. Related work
in [2], [4] used averaging methods for analysis of closed
loop amplitude dynamics for ACCS. This paper adopts a
simple Van der Pol model for themoacoustic oscillations
discussed in [4]. In [2], [4] the relative phase is assumed
fixed and amplitude dynamics does not include the feedback
loop delay.

The main novelty of this paper is in analysing averaged
dynamics and control of phase and amplitude of the thermo-
acoustic oscillations taking into account feedback delay. The
analysis is based on a slow time scale model for coupled
phase and amplitude dynamics of the oscillation obtained us-
ing Krylov-Bogolyubov (K-B) averaging method. The model
incorporates the self-excitation and harmonic forcing. The
detailed contributions are as follows

1) We present theoretical analysis of the phase shifting
control limitations caused by the delay in the feedback
loop. These limitations are fundamental enough to exist
even for a very simple model of the problem.

2) The paper demonstrates that the open-loop relative
phase dynamics in phase shifting control are unstable.

3) The paper shows that the open-loop amplitude dynam-
ics are unstable as well in the most desirable oscillation
suppression regime.

4) The theoretical analysis is verified in comprehensive
simulations and validated in experiments.

The paper outline is as follows. Section II derives the
averaged model for amplitude and phase control using the
K-B averaging. Section III provides the key control analysis
contributions of this paper for stability of the phase and
amplitude control with feedback delay. In Section IV we
introduce a multirate phase lock loop filter estimating the am-
plitude, frequency, and phase from the acquired process data.
Section IV described the comprehensive simulation model.
The theoretical analysis is verified in closed loop simulation.
Finally, Section VI reports the experimental results.

II. IDEALIZED MODEL FOR AMPLITUDE AND PHASE
DYNAMICS

As a starting point, we consider an idealized model for
the amplitude and phase dynamics in phase shift control.
The published ACCS work for realistic scale liquid-fuel
combustors is in control of one (main) oscillation mode using
fixed amplitude of the fuel flow modulation. A single mode
was controlled in our experiments and a single-mode model
is considered below. This is, perhaps, the simplest possible
model of ACCS retaining the salient features of the problem.
We believe that the issues identified for this simple model
are fundamental to the problem.

A. Oscillations model

A simple model for the thermo-acoustic instability is
provided by Van der Pol equation. Several earlier papers used
such a model for the combustion instability, for instance, see
[4]. Consider the following model

p̈(t) + Ω2p(t) = qint(p(t), ṗ(t)) + qext(t) + e(t), (1)
qint(p, ṗ) = µΩ(1− p2/p2c)ṗ, (2)

where p(t) is the variation of the combustion chamber
pressure and pc(t) is a scaling constant (half of the limit cycle
magnitude). The l.h.s. (left hand side) of (1) describes a har-
monic oscillator with natural frequency Ω. Three forces act
on the oscillator. The internal excitation qint (2) describes the
thermo-acoustic effects leading to instability. In accordance
to a Galerkin model described in [8], the internal excitation
corresponds to the time derivative of the heat release in the
oscillation. The time derivatives of heat release rate and ṗ
are correlated in the same way as the heat release rate and
pressure p in the Rayleigh’s criterion. For small amplitude,
p2/p2c < 1 and the energy is added at each oscillation cycle.
For large amplitude, p2/p2c > 1 and the energy is removed. A
more accurate model of thermo-acoustic effects might give
a different curve for added energy vs amplitude; yet, the
pattern of energy added at small amplitude and removed at
large amplitude would be the same.

The analysis below assumes that the excitation intensity is
small, µ≪ 1. This means that the relative amount of energy
added or subtracted at each oscillation cycle is small and it
takes many cycles for the steady oscillations to develop.

The white noise e(t) models random factors, such as the
turbulence in combustor air flow. The noise was included in
the simulations. The averaging and control analysis below
do not take the noise e(t) into account.

The external forcing function qext describes the effect of
combustor fuel flow modulation on the pressure oscillations,

qext(t) = −apc cos(wt+ ψ), (3)

where a is the normalized modulation amplitude, w is the
modulation frequency, and ψ is the modulation phase at time.

It is assumed that the forced oscillations can be described
as p(t) = Apc sin(wt+ϕ), where A, w, and ϕ are amplitude,
frequency, and phase of the oscillations. In what follows, A
and ϕ can be (slowly) time varying, while w is constant.
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B. Averaged equations

Applying the averaging method of Krylov-Bogolyubov
(K-B) [5] allows to develop analytical expressions for dy-
namics of amplitude and phase of the oscillations.

The second order system (1) has two states p, and ṗ.
To apply the K-B method consider the variable change
{p(t), ṗ(t)} → {A(t), ϕ(t)}

p = Apc sin(wt+ ϕ) (4)
ṗ = Apcw cos(wt+ ϕ) (5)

Differentiating (5) yields

p̈/pc = −Aw2 sin(wt+ϕ)−Awϕ̇ sin(wt+ϕ)+Ȧw cos(wt+ϕ)

By substituting this expression, (4), and (5) into (1), (2),
(3) we get a single equation including the terms with
Ȧ cos(wt + ϕ) and ϕ̇ sin(wt + ϕ). The first approximation
of the K-B method is obtained by collecting the direct and
the quadrature terms for the main harmonic. This can be
done by multiplying the derived equation by sin(wt + ϕ)
and cos(wt + ϕ) and computing the average (the integral)
over the oscillation period [t − 2π/w, t]. The averaging
approximation assumes that change of A and ϕ over a
single oscillation period is small and because of that A
and ϕ can be treated as constants when integrating. (For
example, the average of A sin2(wt + ψ) is computed as
1
2A.). The averaging approximation implies the assumption
that the forcing frequency w is close to the frequency of the
oscillations in the system.

The averaged dynamics equations are

Ȧw = µΩAw(1− 1

4
A2)− a cos (ψ − ϕ) , (6)

ϕ̇w = Ω2 − w2 − aA−1 sin (ψ − ϕ) , (7)

where A and ϕ are the states of the controlled system. The
amplitude a, frequency w, and phase ψ of the harmonic
forcing (3) are the control handles.

The averaged model (6), (7), allows quantifying the in-
stability, the limit cycle of the oscillations, and closed-loop
effects of phased control on the oscillation amplitude and
phase.

Averaging methods were recently used for analysis of
phase shifting control and sinusoidal disturbance rejection,
though in different formulations, in [2], [4], [11]. The
Rayleigh’s criterion that is well known in analysis of thermo-
acoustic combustion instabilities can be obtained as a special
case of the K-B averaged equation for energy. The main
novelty of this paper is in the analysis of averaged phase
dynamics (7) and the analysis of the feedback control for the
phase and amplitude including the influence of the delay.

C. Amplitude dynamics

Consider amplitude dynamics (6) for the forced oscilla-
tions and denote U = 4a cos(ψ − ϕ)/(µΩ). Then (6) yields

Ȧ =
1

4
µΩ(4A−A3 − U), (8)

where U is the new control variable. This subsection assumes
that U = const. Assuming that cos(ψ − ϕ) ≈ 1, this means
that modulation amplitude a ≈ const.

Fig. 2. Amplitude dynamics and its equilibria

The dashed line in Figure 2 illustrates amplitude dynamics
in the absence of control, for U = 0. For A < 2 we have
Ȧ > 0 and the amplitude grows. For A > 2, the amplitude
is diminishing, the rate Ȧ < 0. Thus, A = 2 is a stable limit
cycle.

Applying constant control U moves the entire Ȧ(A) curve
down. If U > Umax = 16/(3

√
3) ≈ 3.0792, then always

Ȧ < 0 and the amplitude A in (6) is driven to zero. This is
unacceptable because if A is below the noise level, tracking
of the oscillation phase becomes impossible. Section III-A
below explains that small A also leads to instability of phase
control. Thus, the goal of amplitude control is to maintain
small fixed amplitude of the sustained oscillations.

For U < Umax, there are two limit cycles (equilibria)
characterized by the positive roots of the cubic equation
4A − A3 − U = 0 (the solid line in Figure 2). As one can
see from Figure 2, the smaller of the two positive roots,
Au, corresponds to unstable limit cycle; the larger root, As,
corresponds to a stable limit cycle.

By increasing U , it is possible to reduce the stable limit
cycle amplitude As, but only so much. The smallest possible
As = 2

√
3/3 = A∗ ≈ 1.15 is achieved for U = Umax, when

As = Au = A∗. This means the fixed amplitude control
allows reducing the oscillation amplitude at most by 42%
(from A = 2 to A∗ = 1.15). More advanced feedback control
is discussed in the next section of this paper.

Figure 2 and the analysis in this subsection are based on
(8). Amplitude dynamics (8) is obtained from the Van der Pol
model, which is a grossly simplified model of the combustion
instability. Yet, the general appearance of the Ȧ(A) curve
in Figure 2 and the analysis of this subsection would hold
for more complex nonlinear models of the thermo-acoustic
instability. The conclusions would hold as well, perhaps, with
different values of the parameters and amplitudes.

D. Phase dynamics

Now consider the phase dynamics (7) assuming the base
frequency excitation, w = Ω. Assume that the excitation
phase is fixed, ψ = 0. Then phase dynamics (7) becomes

ϕ̇ =
a

Aw
sinϕ.

The state space for this equation is illustrated in Figure 3.
There are two equilibria corresponding to sinϕ = 0, the first
ϕ = 0 and the second ϕ = π. For 0 < ϕ < π, the derivative
ϕ̇ is positive and ϕ increases. For π < ϕ < 2π, the derivative
ϕ̇ is negative and ϕ decreases.
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Fig. 3. Phase dynamics and its two equilibria

The first equilibrium ϕ = 0 of the relative phase cor-
responds to maximum suppression of the instability and
is, unfortunately, unstable. The second equilibrium ϕ = π
corresponds to maximum enhancement of the instability by
the forcing function (fuel modulation) and is stable. Thus, the
phase control is a difficult problem of controlling an unstable
system.

This is a fundamental property of the problem that can
be seen from the most basic model of the externally excited
oscillator. Yet, it appears that the unstable nature of the phase
control problem was not recognized in the earlier literature.

III. CONTROL ANALYSIS

Phase shifting control requires knowledge of oscillation
amplitude and phase. Section IV describes TED (Timing
Error Detection) for the PLL (Phase Lock Loop) filter that
provides an accurate estimate of oscillation amplitude and
phase from noisy sensor data. The estimation introduces
feedback delay. In addition to that, there are unavoidable
transport delays for the fuel traveling from the modulation
valve to the nozzle through the supply lines and from the
nozzle to the combustion zone.

This section provides stability analysis of the phase shift-
ing control taking the feedback delay into account. The
averaged model (6), (7) is extended to include the delay.

A. Phase Control

The goal for controlling the phase of the fuel modulation
is to maintain the phase that allows the best suppression of
the combustion oscillations. Consider phase dynamics (7).
The strategy is to keep the excitation frequency close to the
oscillation frequency, w ≈ Ω. Assume that w = Ω. Then
ϕ = ψ is an equilibrium point for (7) and the strategy is to
keep the phase ψ such that ψ−ϕ = 0. This strategy obtains
estimates of the frequency and phase from the TED-PLL
estimator, see Section IV.

Control law: Let d be the control deadtime. At each
time sample of the control, the control logic applies a fixed
phase shift correction to the estimated combustion oscillation
phase. The commanded excitation frequency wc(t) and the
commanded excitation phase ψc are computed as

wc(t) = ŵ(t) (9)

ψc(t) = ϕ̂(t) + δ (10)

where ŵ and ϕ̂ are the oscillation frequency and the phase
estimates. The commanded excitation acts on the oscillations
in the combustion process with delay d. Assuming that ŵ =
w = const and ϕ̂(t) = ϕ(t), the actual excitation phase is

ψ(t) = ψc(t− d) + wd = ϕ(t− d) + δ + wd, (11)

If δ = −wd, then we have ψ(t) = ϕ̂(t− d) = ϕ(t) = const
and θ = ψ − ϕ = 0 as desired.

Closed loop dynamics: By substituting (11) and δ = −wd
into (7) we get

ϕ̇(t) =
Ω2 − w2

w
− a

Aw
sin(ϕ(t− d)− ϕ(t)) (12)

To analyze the stability of this system, assume that the
oscillation phase is ϕ(t) = qt+x(t), where q has the meaning
of the shift in the oscillation frequency w that is caused by
the phasing control. At the steady state we have x(t) = 0;
hence, (7) yields

q =
Ω2 − w2

w
+

a

Aw
sin (qd)

Dynamics in variations for x(t) in the vicinity of the
steady regime ϕ(t) = qt is

ẋ(t) = − a

Aw
sin (x(t− d)− x(t))

The time scaling τ = t/d makes the deadtime d unity and
yields a dynamical system x′ = −γ sin (x(τ − 1)− x(τ))
that is characterized by a single nondimensional parameter
γ = ad/(Aw).

Stability analysis: Approximate analysis of the stability
can be done by linearizing the system in the vicinity of the
solution x = const to get x′ = γx(τ)−γx(τ−1). This delay
system is of the form studied in [7]. Two conditions of its
stability can be adopted from [7]. One stability condition
is that γ < 1. Another asymptotic stability condition given
in [7] is violated. Our system is on the stability boundary.
Indeed, its characteristic equation s = γ(1− e−s) has a root
s = 0. This root described the solution x = const that is a
neutral equilibrium and thus not asympotically stable. Any
constant ϕ in (11), (12) can yield the desired phase shift
θ = ψ−ϕ = 0. Thus, we get γ < 1 as the only condition of
phase control stability that matters. In accordance with the
definition of γ, this condition can be written as

ad < Aw (13)

Stability condition (13) was derived for the linearized
system. It tightly describes the stability boundary for the
nonlinear system as well. Extensive nonlinear system simu-
lations always give an apparently stable solution for γ < 1.
Two out of the four parameters in (13) - frequency w,
and control deadtime d - describe properties of the system.
Parameters a and A are related to the control algorithm. One
important conclusion that can be made from (13) is that the
forcing (fuel modulation) intensity a must be small for small
oscillation amplitude A to ensure the phase stability.

B. Amplitude control

Assume that the phase of the fuel flow modulation is
locked to provide for the maximum suppression of the
oscillations. Then, the amplitude dynamics (8) describe the
rate of amplitude change depending on the control handle
U = 4a cos θ/(µΩ), where a is the the fuel flow modulation
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amplitude. Phase control maintains amplitude control effi-
ciency by keeping θ close to zero. The phase estimation and
control do not need to be especially precise for the amplitude
control to work. Controlling the phase shift θ to be within
±0.45 rad would keep cos θ > 0.9, which is sufficient.

Control law: The goal of amplitude control is to avoid
eliminating oscillations altogether. Instead they have to be
maintained at a small sustained level. One reason is that if
the controlled oscillation amplitude becomes smaller than
the noise, phase lock is lost and the forcing excites the
oscillations instead of reducing them. Another reason is that
phase control stability condition (13) is violated for small
oscillation amplitude A.

The simplest control strategy is to maintain a fixed mod-
ulation amplitude, U = const. Subsection II-C explains that
this strategy does not allow reducing oscillation amplitude
below the theoretically smallest stable limit cycle of A =
1.15. Ideally, one would like to control the oscillations to a
small level, e.g., 10% of the uncontrolled amplitude A = 2.
In accordance with Subsection II-C, this is only possible
by stabilizing the unstable equilibrium (unstable limit cycle)
described in Subsection II-C.

Consider the problem of feedback stabilization of equilib-
rium Au in (8). The linear feedback can be presented as

Uc(t) = Uu + F (Â(t)−Au), (14)

where F is the feedback gain and Â(t) is the estimate of the
oscillation amplitude obtained from the TED-PLL filter. The
steady state control input is Uu = 4Au − A3

u. In practice,
the exact value Uu corresponding to Au can be provided by
a slow integral term in a PI controller.

Closed loop dynamics: The commanded forcing acts on
the oscillations in the combustion process with delay d. The
actual forcing amplitude is then U(t) = Uu + F (A(t −
d)−Au). By linearizing (8) around Au and introducing the
amplitude deviation x(t) = A(t)−Au we get the dynamics
in variations

ẋ(t) = gx(t)− kx(t− d), (15)

g =
1

4
µΩ(4− 3A2

u), k =
1

4
µΩF, (16)

Stability analysis: The stability conditions for delay sys-
tems of the form (15) were studied earlier and are given by
[7] as

dg < 1, g < k <
√
g2 + ϑ2, (17)

where ϑ is a nonlinear function of the system parameters that
is described in [7] and is unimportant for this analysis. The
second condition in (17) can be satisfied by proper selection
of the feedback gain F in (16). The condition dg < 1
deserves a more detailed analysis. Note that g in (16) depends
on the target amplitude Au. In case of Au ≪ 1, substituting
g from (16) into (17) yields the condition µ < 1/(Ωd). For
example, if Ω = 2π · 800 Hz and d = 0.011 s, we get
µ < 0.018. This means the feedback control of very small
oscillation amplitude is possible only if the instability growth
rate is very weak.

IV. ESTIMATION OF OSCILLATION STATE

Implementation of the described control approaches re-
quires estimates for the amplitude and phase of the com-
bustion oscillations from the observed noisy sensor signal.
TED (Timing Error Detection) form of the PLL (Phase Lock
Loop) is used in advanced digital communication systems
for similar purpose, e.g., see [16, Chapt. 6]. Use of a
basic PLL in oscillation suppression control is discussed
in [11]. We adopted TED-PLL to deal with the multirate
data collection scheme in the experimental systems where a
buffer containing 67 samples acquired at 0.06 ms interval is
collected every 4ms.

Fig. 4. Timing Error Detection (TED) phase tracking loop

A. TED-PLL

The standard design of the TED-PLL loop is illustrated in
Figure 4. At sample k the inputs to the loop are: data time
series Y (buffer content), past frequency estimate w(k− 1),
and past phase estimate f(k − 1). The outputs are: updated
frequency estimate w(k), updated phase estimate f(k), and
amplitude estimate a(k).

The Decoder works by solving a batch linear least squares
model fit problem for data Y ,

J = min
a,f,c

∑
j

[y(tj)− a sin(vj + f)− c]2, (18)

where y(tj) are the sampled buffer data stored in Y and the
phase sequence vj = w(k−1)tj comes from the Numerically
Controlled Oscillator (NCO).

The timing correction is done by Loop Filter and Integrator
through update of w(k) and ϕ(k). This update is the key part
of the PLL. The state space formulation of this update is

w(k) = w(k − 1) + (1− α)T−1f(k), (19)
ϕ(k) = w(k − 1)T + ϕ(k − 1) + f(k), (20)

where α is the filter tuning parameter and T is the filter
update interval.

B. PLL Stability

To analyze TED-PLL tracking performance and the effects
of loop feedback gain on the convergence assume that the
buffer data Y covers exactly one sampling interval. Consider
small deviations from the stationary point w = w∗, ϕ = 0.
Assuming ideal Decoder/TED, we get f(k) = −ϕ(k). The
closed loop dynamics in variations then is[

w̃(k)
ϕ(k)

]
=

[
1 −(1− α)T−1

1 0

] [
w̃(k − 1)
ϕ(k − 1)

]
, (21)
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where w̃(k) = w(k)−w∗. The characteristic values for (21)
(the closed-loop poles) are λ1,2 = 0.5 ±

√
−0.75 + α. The

fastest PLL convergence is achieved for the tuning parameter
α = 0.75; then, λ1,2 = 0.5. For heavy filtering and slow
response, selecting α such that 0 < 1− α≪ 1, yields λ1 ≈
α and λ2 ≈ 1 − α. Our simulations and experiments used
α = 0.75.

C. Fade Detect

Fade Detect logic tests the Bayesian hypothesis that PLL
lock is lost at this cycle: the signal has faded and no oscilla-
tions are detected. The fade (null) hypothesis H0 assumes
that the data just consists of noise. The lock hypothesis
Hl assumes that the data contains oscillations and noise.
Assuming the same additive white gaussian noise for both
hypotheses yields the log-likelihood ratio

L = log
P (Hl|Y )

P (H0|Y )
= log

P (Y |Hl)P (Hl)

P (Y |H0)P (H0)

=
∥Y ∥2 − J − 2σ2τ

2σ2
,

where τ = log[P (H0)/P (Hl)] is the log-ratio of prior
probabilities for the hypotheses, J is the optimal index in
(18), and σ is the noise covariance. If L > 0 the signal is
considered locked. If the signal has faded, L ≤ 0; in that case
TED-PLL propagates the old phase and frequency estimates
to the next step without a correction. The Fade Detect logic
has a single tuning parameter r = 2σ2τ .

Fig. 5. TED PLL tracking of experimental data for acoustic sensor

D. Simulation

Further analysis and simulation demonstrate that the TED-
PLL reliably converges for up to 30% error in the initial
frequency and any initial phase error. It provides accurate
frequency and phase estimates for signal amplitude 2-3 times
smaller than the noise. For large noise, heavier filtering is
required.

The TED-PLL algorithm was implemented and used in
the experiments reported below. Figure 5 shows TED PLL
tracking of experimental data from the acoustic sensor. The
upper plot shows the frequency estimate through a 0.55 sec
segment of the data; the middle plot shows the TED phase.

The lower plot zooms in on 10 ms of the data around the
middle of the segment and shows the estimate recovered by
TED PLL along with the noisy raw signal from the sensor.

V. SIMULATION

A closed-loop simulation was developed in Simulink to
verify the presented results of the control analysis. The
experimental setup complete with the ACCS software logic
was simulated. The simulation parameters were chosen to
resemble the experimental system described further in Sec-
tion VI. The simulation included the following main blocks.

Combustion Plant.: The simulation model describes
the effects of thermo acoustic instability and fuel flow
modulation using the model (1), (2), (3). The plant model
includes the noise and delays in the acoustic and optical
sensors. The model parameters varied for several rounds of
experiments performed on different test rigs in this work.
This study used the following representative set of simulation
parameters: self-excitation intensity µ = 0.02, frequency
Ω/(2π) = 800Hz, external forcing a = gAn, where g =
15, 000 and An ≤50 psi is the amplitude of the nozzle
pressure modulation. The control deadtime was d = 11ms.
The acoustic pressure sensor gain is 3 when measuring the
oscillation pressure p(t). The simulation included state and
measurements noise.

Actuator System.: Goodrich fuel flow valve described in
[14] and its low level controls were simulated. The valve
model includes the phased pulse-width modulation of the
flow, deadtime, and filtering of the rectangular modulation
pulses in the valve.

Control System.: The control system simulation includes
the model of data acquisition. With its multirate sampling
(oversampling). The sensor data is sampled at 16.6667 KHz
rate (0.06 ms interval). Every 4ms, the buffer of the last 67
samples is processed to determine the amplitude, frequency,
and phase of the oscillations. These are further used to
compute the commanded amplitude, frequency, and phase
of the modulation commanded to the actuators. The detail
are described below.

Estimation Logic.: The TED-PLL loop was implemented
for estimation of the oscillation state (phase and amplitude)
as described in Section IV.

Feedback Control Logic.: An issue with the phase shifting
strategy, which is not discussed in the literature on the
subject, is that the fixed phase shift might not work if the
process deadtime d (between the fuel flow modulation and its
combustion impacts) is sufficiently large. This is because the
active control causes a change ∆w in oscillation frequency
that leads to the phase change ∆f = ∆wd. For example,
take deadtime d = 10 ms; then, the frequency change from
500Hz to 550Hz, ∆w = 50Hz, yields phase change of π,
which would render control unstable.

The strategy that we use to compensate for the frequency
change is to select δ in (10) as δ = −ŵd̂ + δ̃. Here ŵ and
d̂ are the estimates of the frequency and the deadtime and
δ̃ is an empirical phase change compensating for the errors
in determining w and d. Achieving δ = −wd requires that
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δ̃ = (ŵ−w)d+w̄(d̂−d)+(ŵ−w̄)(d̂−d), where w̄ is average
value of the frequency in the experiment. The first term is
small if the frequency estimate is accurate, the second term
is fixed phase error that does not change with time, and the
third term is much smaller than ∆wd provided that d̂− d is
much smaller than d. The described strategy was used in the
simulation and in the experiments.

Simulation Results: Figure 6 shows the simulation results.
The nondimensional oscillation amplitude A can be evalu-
ated from the bottom plot for acoustic pressure amplitude.
The amplitude is A = 2P/P0, where P is the observed
pressure amplitude and P0 is the steady state pressure
amplitude in the absence of control forcing. In the bottom
plot of Figure 6, P0 is the average value for the first second
of the simulation.
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Fig. 6. Closed loop simulation with PI phase shifting controller

The simulation used realistic levels of observation and
process noise that match the experimental data. In addition,
the effective feedback delay is larger than the deadtime d
by the TED-PLL estimator delay (another 6-9 ms added
to d = 11 ms). With the noise, the transients, and the
delays present in the simulation we were able to stabilize
the oscillation amplitude Au = 0.97. This is an unstable
limit cycle (we have Au < A∗), but the amplitude is not
much smaller than A∗ = 1.15.

The simulation had implemented a PI amplitude controller.
The P controller given by (14) was completed by a small
I term. Effectively the integrator accumulates the steady
state offset Uu in (14) that is required to achieve the target
amplitude. Phase control implemented in simulation followed
(9), (10).

The upper plot in Figure 6 shows the time trace of the
oscillation frequency in the simulation estimated using the
TED-PLL filter described in Section IV. The middle plot
displays the forcing control (the commanded nozzle pressure
amplitude).

Though accurate identification of µ from the experimental
data was not possible, there are indications that in experi-
ments µ might be much larger than 0.02. This means a A∗
cannot be practically stabilized in the experiments.

Discussion of simulation results.: The analysis of Sec-
tion III provides a possible explanation why most of the
published results of active combustion control experiments
show about 50% reduction in the amplitude, very rarely
more. The answer is that the combination of the control
deadtime and instability growth rate does not permit stable
control of the oscillations to smaller amplitudes.

For the system parameters Ω = 2π · 800 Hz, d =
0.011 s, and µ = 0.02) the condition dg < 1 yields
1 − 0.75A2

u < 1/(µΩd) ≈ 0.9. This holds for Au > 0.36.
The minimal theoretically achievable limit cycle amplitude
cannot be attained in practice. The transients and the noise
present in the system require that the steady amplitude has
a large domain of attraction. The theoretical limit can only
be approached with a substantial margin.

VI. EXPERIMENTS

A series of experiments were conducted with the described
phase-shifting ACCS control logic.

A. Experimental setup
Several experimental setups and test rigs were used in

this study. The experimental results described below were
obtained in March 2010 tests on a combustor rig.

Combustor test rig: The combustor rig includes a pressur-
ized flame tube providing realistic combustion conditions. It
is outfitted with a single fuel injector produced for jet engines
complete with Goodrich fuel modulation actuator described
in [14]. In the experiments, the airflow was around 1800
lbm/hr, the rig pressure 180 psia, the temperature upstream
of injector/combustor 575◦ F, and the fuel flow through
the valve 180 lbm/hr. In the experiments with this setup,
a thermo-acoustic instability was created at the frequency
around 800 Hz. Unlike most of prior active combustion
control work, our experiments were done under conditions
that realistically emulated a jet engine combustor. This makes
the control more challenging.

Actuator design and valve modulation: The Goodrich
valve used for fuel modulation is described in [14]. The valve
allows deep modulation (up to 30 %) of the fuel flow at the
frequency of up to 1000 Hz. The pulse-width modulation
applied to flow is smoothed by the fluid dynamics in the
valve. The valve actuator design, calibration, and control
present a separate set of engineering challenges that are
outside the scope of this paper. The designed actuator control
hardware and control logic were demonstrated to provide the
desirable modulation of the fuel flow.

Sensor design: As described in [14], along with the
Goodrich valve, there are several sensors integrated into the
fuel injector. The sensors are designed for the jet engine
combustor environment. The two optical combustion sensors
(CH and OH) are looking downstream into the combustion
zone. The two acoustic microphone sensors for measuring
combustion pressure oscillations are situated upstream of
air swirlers. The experiments described below, used an
additional pressure sensor at the exit of the flame tube, This
sensor corresponds to P4′ sensor in a jet engine. (P4 is the
pressure at the high pressure turbine inlet).
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Control logic: The control system implemented in the ex-
periments includes the estimation logic and feedback control
logic. It corresponds to the control system implemented in
simulation and described in Section V.

B. Experimental results

A sample of the experimental results for phase and am-
plitude control is shown in Figure 7. The experiments used
phase controller (9), (10) and the amplitude controller (14).

The bottom plot in Figure 7 shows the amplitude of the
pressure oscillations estimated from acoustic sensor signal by
TED-PLL. The upper plot shows the oscillation frequency
obtained for the same pressure signal by TED-PLL. The
middle plot shows the fuel pressure amplitude that describes
the amplitude control. The light colored dots in Figure 7
show the actual PLL data and the solid line shows the
smoothed data. We used a zero phase noncausal low-pass
filter with 31 taps for plot smoothing.
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Fig. 7. Experimental results for phase and amplitude control

The upper plot in Figure 7 shows a strong change in
the oscillation frequency with the forcing (almost 50 Hz).
The frequency change is caused by nonlinear effects that are
not captured in the simulation model; the frequency change
in upper plot in Figure 6 is much smaller. This frequency
change makes phase shifting control more challenging.

The observed thermo-acoustic oscillations were somewhat
unstable because of the turbulent flow effects that provide
a string colored noise excitation. This deviates from the
simulation model that assumes a stable limit cycle and small
white noise. This also causes periodic loss of PLL lock as
the oscillation signal fades out and in. The unstable nature
of the oscillations can be seen from the first 5 sec of the data
in the plots before the fuel flow modulation starts.

Despite all the above issues, a consistent reduction of the
oscillation amplitude was achieved with the phase shifting
control. The amplitude reduction of about 31% is visible at
the bottom plot in Figure 7. This reduction corresponds to
the nondimensional amplitude A = 1.38. (For the sustained
uncontrolled oscillations, A = 2). This is consistent with
the analysis of Section III. The conclusion is that it is

fundamentally difficult to achieve further reduction for a
liquid fuel combustor system with these parameters
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