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Abstract

This paper introduces a mechanism for testing multivariable models employed by
model-based controllers. Although external excitation is not necessary, the data
collection includes a stage where the controller is switched to open-loop operation
(manual mode). The main idea is to measure a certain “distance” between the
closed-loop and the open-loop signals, and then trigger a flag if this “distance” is
larger than a threshold level. Moreover, a provision is made for accommodating
model uncertainty. Since no hard bounds are assumed with respect to the noise
amplitude, the model invalidation mechanism works in a probabilistic framework.
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1 Introduction

Advanced multivariable controllers in process industries are typically model-
based predictive control algorithms implemented as proprietary software. Most
of the commercially available controllers allow a user to access process data
and models, but not the details of the controller design. Hence, a practical
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performance monitoring method ought not to rely on detailed knowledge of
the controller itself.

If the process suffers an upset resulting in suboptimal operation of the plant,
it is important to know whether the problem is caused by process disturbances
or by an error in the process model used by the controller. A typical operator
reaction is to put some supervisory control loops in manual mode, wait and
see if the process variables settle down. These data, collected in open loop, can
be used for testing the model. Problems related to a bad model could be fixed
by re-identifying the entire multivariable model and re-tuning the controller.
However, this is a very expensive procedure and it should not be undertaken
unless there is certainty about the existing model being a problem.

Our goal is to provide a signal processing mechanism that deals with the sce-
nario described above to reveal if the model embedded in the controller is no
longer valid. Moreover, the mechanism shall indicate which part of the mul-
tivariable model is wrong, so that only that part of the model needs to be
re-identified. The worst-case scenario is assumed: the only data available from
the system are collected after the problem has been detected and no mea-
surable external excitation occurs during data collection. That is, the only
excitation driving the loop come from stationary stochastic process distur-
bances.

Traditional mechanisms of “model validation” (Ljung, 1999) use high excita-
tion not only to falsify the estimated model, but also to gain confidence on a
model that passes the test. In contrast we use the term “model invalidation”
to characterize simple tests, with little or no excitation, that put the plant
model on trial without aiming at increasing the confidence on this model.

The mechanisms for performance monitoring are the ones best suited for
achieving model invalidation. These excitation-free mechanisms are dedicated
to analyzing the loop performance with respect to a specific criterion like
minimum variance (Harris, 1989), or to a specific problem like valve stiction
(Hägglund, 1995; Horch, 1999) or sluggish control (Hägglund, 1999). In our
problem, the loop performance is not described by a single numerical index
and we also wish to account for a certain degree of uncertainty in the model.

The mechanism introduced in this paper compares two sets of data (time
series) associated with each output: the model output error (y(t)− ŷ(t)), col-
lected during normal operation, and the open-loop output, collected when the
controller is put in manual. In Section 2 it is shown that if the process model is
correct and the disturbance is stationary, then those two time series present the
same behaviour. Thus, we need a tool that quantifies the “distance” between
the behaviour of two independent time series. Section 3 develops such a tool,
in a probabilistic framework, along with a threshold value for rejecting the
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hypothesis that part of the model is correct. Given that in real-life modelling
errors are always present, Section 4 extends the mechanism to accommodate
for uncertainties in the closed-loop response. A simulation example is pre-
sented in Section 5, where the “actual plant” is modified to test the behaviour
of the invalidation mechanism.

2 Model Output Error

The scenario analyzed in this work is restricted to plants with unmeasurable
sources of stochastic noise:

y(t) = G(q) u(t) + H(q) e(t), (1)

where y(t) is the vector of ny output signals, u(t) is the vector of nu input
signals and {e(t)} is a vector of ne independent zero-mean Gaussian white-
noise processes. The transfer-function matrices G(q) and H(q) have dimensions
ny ×nu and ny ×ne, respectively. G(q) must be stable, but H(q) may contain
poles at z = 1.

The control action is also restricted to minimal excitation (constant reference
signals). This leads to the following structure for the control action:

u(t) = −C(q) y(t). (2)

C(q) is an unknown operator designed from a known model of the process:

ŷ(t) = Ĝ(q) u(t). (3)

From (1) and (3) we define the model output error as

ε(t) , y(t)− ŷ(t)

= [G(q)− Ĝ(q)] u(t) + H(q) e(t) (4)

= [I + Ĝ(q)C(q)][I + G(q)C(q)]−1H(q) e(t).

These expressions show that if the model is perfect (Ĝ(q) ≡ G(q)) then the
model output error presents the same dynamics as the process noise, H(q) e(t).
This fact is essential to our mechanism, as we compare two time series for each
process output: the model output error, ε(t), and the open-loop output signal,

yo(t) = H(q) e(t). (5)

It is imperative that the noise dynamics, H(q), be time invariant, at least for
the duration of the experiment. Although in practice this assumption might

3



not always hold, the development of a mechanism to test this assumption is
beyond the scope of the paper. As a minimal practical check, the user can
collect data in the following sequence: normal operating data, open-loop data,
normal operating data; and compare the noise dynamics in both regions of
closed-loop data.

The invalidation test thus becomes a trial of the assumption that, for each
process output j = 1, . . . , ny, the time series {εj(t)} and {yo

j (t)} are realiza-
tions of the same stationary process. If H(q) contains poles at z = 1, then both
time series must be differenced an appropriate amount of times for {yo

j (t)} to
become stationary (Box et al., 1994).

A closer look at the centre line in (4) reveals that, in principle, the test is
completely independent on the type of controller being used. That is, the
controller could be nonlinear, time-variant, etc. Nevertheless, under this wider
scenario the conclusions about the loop uncertainty are no longer valid. This
also applies when the reference signals are not constant. That is, changes in the
reference signals would emphasize existing plant-model mismatches, affecting
the uncertainty analysis presented here.

3 Comparison of Two Time Series

The problem statement addressed in this section is: Given two independent
time series, {z1(t)} and {z2(t)}, test the assumption that they are realizations
of the same stationary process.

This problem has been considered before and several solutions were proposed
in the literature, both in the time domain (Quenouille, 1958; Pudney et al.,
1999) and the frequency domain (Coates and Diggle, 1986; Diggle and Fisher,
1991). Another distinction between these solutions is whether they are para-
metric or nonparametric. Analyses consistently conclude that the parametric
methods are more powerful, in the sense of being able to detect smaller differ-
ences in the time series (Coates and Diggle, 1986; Diggle and Fisher, 1991).
On the other hand, the nonparametric methods are simpler as they do not
require building an auxiliary parametric model of the series.

Herein we propose a frequency-domain method based on the work by Coates
and Diggle (1986). This solution has immediate connection with the frequency-
domain characterization of loop uncertainty. The method of Coates and Diggle
is modified in our work to improve its power. Instead of deriving the prob-
ability distribution of the periodogram ordinates, we start by smoothing the
periodogram and then derive the corresponding distributions.
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3.1 Smoothed Periodogram

The periodogram of a time series {z1(t)} of length N is the set of m = b(N −
1)/2c values

I1(ωk) = (2πN)−1

∣∣∣∣∣
N∑

t=1

z1(t) e−iωkt

∣∣∣∣∣

2

, (6)

where ωk = 2πk/N , k = 1, . . . , m. It is assumed that the process generat-
ing {z1(t)} is a stationary general linear process with independent identically
distributed innovations. Therefore, asymptotically, 2I1(ω)/ E{I1(ω)} has a chi-
squared distribution with two degrees of freedom and, for l 6= k, I1(ωl) and
I1(ωk) are independent (Jenkins and Watts, 1968). It is important to empha-
size that I1(0) and I1(π) are excluded since their sampling distribution are
proportional to χ2

1 rather than χ2
2 (Coates and Diggle, 1986).

At this point our analysis deviates from that of (Coates and Diggle, 1986) as we
smooth the periodogram. Actually, prior to smoothing the periodogram it is
important to reduce large differences in amplitude at the various frequencies.
That is, one of the two time series is whitened, then the same whitening
filter, W (q), is used on the other time series. The whitening is performed
by fitting an auto-regressive model of low order to the time series, which is
then filtered through the inverse of this model (a moving average filter). This
whitening/filtering automatically differences the time series an appropriate
amount of times in those situations where H(q) contains poles at z = 1. The
order of the auto-regressive model is increased until the filtered time series
passes a whiteness test.

For our particular application, the time series containing the open-loop output
signal, {yo(t)}, is the natural choice for being initially whitened. For each
output j, the signals to be compared are:

z1(t) , Wj(q) yo
j (t), (7)

z2(t) , Wj(q) εj(t). (8)

Once the time series have been formed, their periodograms are smoothed via
the convolution of a finite-length weight function (due to the special distri-
bution of I1(0) and I1(π)) and the frequency ordinates. Our choice of weight
function is a triangular one,

Ĩ1(ωk) =
l−1∑

j=−l+1

λjI1(ωk+j), k = l, . . . , m− l + 1 (9)

λj =
l − |j|

l2
, (10)
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which emphasizes the mid-frequencies relative to the fringes.

The length of the weight function reflects the type of mismatch we expect to
detect between the periodograms I1(ω) (of (7)) and I2(ω) (of (8)). Mismatches
that occur at a small frequency range are typical in closed-loop systems, there-
fore we adopt the following filter length:

l =

⌊√
N

2

⌋
. (11)

Given Ĩ1(ω) and Ĩ2(ω), their difference at each frequency is measured by

J(ω) , ln
Ĩ1(ω)

Ĩ2(ω)
. (12)

Notice that the order in which the time series are taken in (12) is important.
The convention adopted in (7) and (8) implies that for scalar systems:

• a large positive value of J(ωk) indicates that |1 + Ĝ(eiωk)C(eiωk)| À |1 +
G(eiωk)C(eiωk)|, that is, at frequency ωk the Nyquist plot of G(eiωk)C(eiωk)
is closer to the critical point −1 than the designed Nyquist plot;

• a large negative value of J(ωk) indicates that |1 + Ĝ(eiωk)C(eiωk)| ¿ |1 +
G(eiωk)C(eiωk)|.

Loosely speaking, the former situation is associated with reduction of the
stability margin, while the latter is associated with reduction of performance.

For multivariable systems one can take the absolute value of J(ω) and limit
the analysis to the conclusion that large values imply a mismatch between
designed and actual closed-loop behaviour.

3.2 The Threshold Level

Asymptotically, νĨ1(ωk)/ E{Ĩ1(ωk)} is approximately distributed as χ2
ν (Jenk-

ins and Watts, 1968), where ν = 2/(
∑l−1

j=−l+1 λ2
j), or more specifically, using

(10), ν = 6l3/(2l2 + 1).

A very important characteristic of J(ωk) is that if {z1(t)} and {z2(t)} are
realizations of the same stationary process, then its (cumulative) distribution
function depends only on ν, and not on either ωk or the original frequency
distribution of the time series {yo(t)} and {ε(t)} (due to the pre-whitening).
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The cumulative distribution function is

F (J(ωk) < x) =
Γ(ν)

Γ2(ν/2)

∫ x

−∞

eβ ν/2

(1 + eβ)ν
dβ, (13)

where Γ(b) is the Gamma function. Expression (13) gives the probability that
J(ωk) at a particular frequency ωk is less than a certain value x. In order
to test the hypothesis that {z1(t)} and {z2(t)} are realizations of the same
stationary process, we have to consider the set of m − 2l + 2 frequencies at
which we smooth the periodogram:

J∗ , max
ω
|J(ω)| . (14)

If {z1(t)} and {z2(t)} are realizations of the same stationary process, then the
distribution function of J∗ depends only on N ; from this particular situation
we derive the function ζ:

ζ(N, α) , x |P{J∗ ≤ x |E[Ĩ1(ω)] = E[Ĩ2(ω)]} = 1− α, (15)

which provides the threshold level for testing the null hypothesis with signifi-
cance level α.

The analytical derivation of the threshold function ζ(N, α) involves the com-
putation of a large number of nested integrals, which is an extremely labour
and computationally-intensive task. A reasonably accurate approximation of
ζ can be computed via Monte Carlo simulations in a fraction of that effort.
Table 1 provides some values of ζ obtained for several values of N and two
significance levels: 1% and 5%.

N
ζ(N, α)

300 400 500 750 1000 1500

0.01 1.57 1.39 1.34 1.25 1.17 1.05
α

0.05 1.36 1.22 1.17 1.10 1.04 0.93
Table 1
Threshold levels for time series comparison

In summary, the hypothesis that {z1(t)} and {z2(t)} are realizations of the
same stationary process is not rejected as long as J∗ ≤ ζ(N, α). This test has
a probability α of committing a Type I error (false alarm). Since this type
of error should be avoided at all costs, α is typically a small value, e.g. 1%.
Hence, any violations of the threshold ζ are attributed to model uncertainty.
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4 Model Uncertainty

Consider the function J(ω) shown in Figure 1. The threshold level (dotted
lines) is violated in both directions at frequencies assumed relevant for control
purposes. Therefore it is helpful to characterize these violations in terms of
closed-loop mismatch between actual and designed behaviour. The measure
of threshold violation is computed frequency-by-frequency as

γ(ωk) ,





J(ωk)− ζ(N, α) if J(ωk) > ζ(N,α),

J(ωk) + ζ(N, α) if J(ωk) < −ζ(N, α),

0 otherwise.

(16)

  0  π/4  π/2 3π/4   π 
−2

−1

0

1

2

ω (rad/s)

J
(

ω
)

Fig. 1. Example of J(ω) (solid line) that violates the threshold at 1% significance
level (dotted lines)

Whenever the processes generating Ĩ1(ω) and Ĩ2(ω) are different, we can ex-

press these quantities as Ĩ2(ω) = ∆(ω) ˆ̃I1(ω), where E[ ˆ̃I1(ω)] = E[Ĩ1(ω)].
Therefore, for J(ωk) > ζ(N, α),

J(ωk) = ln ∆(ωk) + ln
ˆ̃I1(ωk)

Ĩ1(ωk)

≤ ln ∆(ωk) + max
ω

ln
ˆ̃I1(ω)

Ĩ1(ω)

≤
w.p. 1−α

2

ln ∆(ωk) + ζ(N,α),

(17)

where “w.p.” stands for “with probability”. The last step in (17) comes from

(15) and the fact that the distribution of ln
ˆ̃I1(ω)

Ĩ1(ω)
is symmetrical about zero.

This leads to
γ(ωk) ≤

w.p. ≥1−α
2

ln ∆(ωk). (18)
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That is, with a probability of at least 1 − α
2

we can conclude that the multi-

plicative discrepancy between Ĩ1(ωk) and Ĩ2(ωk) is at least as large as eγ(ωk).
Similar result is straightforwardly obtained when J(ωk) < −ζ(N,α):

γ(ωk) ≥
w.p. ≥1−α

2

ln ∆(ωk). (19)

The connection between ∆(ω) and model uncertainty is established for scalar
systems. For these systems the following holds:

lim
N→∞

E

[
Ĩ2(ω)

Ĩ1(ω)

]
=

∣∣∣∣∣
W [1 + ĜC][1 + GC]−1H

WH

∣∣∣∣∣

2

=

∣∣∣∣∣
1 + Ĝ(eiω)C(eiω)

1 + G(eiω)C(eiω)

∣∣∣∣∣

2

= ∆(ω),

(20)

where |1+Ĝ(eiω)C(eiω)| gives the distance from the Nyquist plot of Ĝ(eiω)C(eiω)
to the point −1. This distance, at each frequency, is part of the designed
closed-loop behaviour, where a reduction in |1 + Ĝ(eiω)C(eiω)| decreases the
stability margin at that particular frequency and a move in the opposite di-
rection tends to decrease the closed-loop performance. Hence we conclude,
with a probability of at least 1 − α

2
, that asymptotically the ratio between

|1 + G(eiωk)C(eiωk)| and |1 + Ĝ(eiωk)C(eiωk)| is at least as far from 1 as the

value
√

e−γ(ωk), at those frequencies where γ(ωk) 6= 0. Thus, as one can see,
∆(ω) gives a characterization of a feedback loop gain uncertainty.

For multivariable systems the value of γ(ω) is affected by a combination of
several transfer functions, instead of a single one (G(eiω)C(eiω)), and by the
relative ratio between the amplitudes of the individual open-loop output sig-
nals. Consequently it is not as simple to interpret the function γ(ω) when we
are dealing with more than one input or output.

It is left for the user to decide whether the closed-loop mismatch is within
expectations given the uncertainty in the model. If one decides a priori the
maximum acceptable mismatch in the closed-loop response, at each frequency,
then the model invalidation test has all information needed to diagnose the
loop and raise a flag whenever the maximum allowable mismatch is violated.
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5 Simulation Example

As an example we perform a simulation analysis on the following 2×2 process
of the form (1):

G(q) =



g11 g12

g21 g22


 =




0.0315
q2−1.458q+0.479

−0.025
q2−1.66q+0.688

−0.09
q5−0.9q4+0.2q3

−0.0385q+0.077
q2−1.54q+0.5785


 ,

H(q) =




q2−0.5q
(q−1)(q−0.7)

0

0 q2−0.9q
(q−1)(q−0.8)


 , σ2

e =



0.1 0

0 0.3


 ,

where σ2
e is the covariance matrix of the Gaussian white noise e(t). A model

Ĝ(q) is obtained as first-order plus time-delay approximations of the open-loop
step responses of G(q):

Ĝ(q) =




0.06
q2−0.96q

−0.09
q3−0.9q2

−0.12
q5−0.6q4

0.1
q4−0.9q3




Although the testing mechanism presented in this paper is aimed at model-
predictive controllers, for simplicity we decided to use the following controller:

C(q) =




5/6q4−1.3q3+0.48q2

d(q)
0.6q3−0.936q2+0.3456q

d(q)

q3−1.86q2+0.864q
d(q)

0.4q4−0.6q3+0.216q2

d(q)




d(q) = q4 − 2.0417q3 + 0.6945q2 + 0.9259q − 0.5787

This controller is designed such that Ĝ(q)C(q) is a diagonal transfer function
matrix (full decoupling) with integral action in all channels and closed-loop
step responses slightly faster then the diagonal elements of Ĝ(q). The actual
closed-loop behaviour is fairly close to the designed one.

To investigate the probability of having the model invalidated by the proposed
testing mechanism, we performed 1000 experiments applying the test as de-
scribed in Section 3 with ζ(500, 0.01). Each simulation experiment comprises
the following sequence of events:

• close the loop and wait for the signals to reach stationary behaviour;
• collect 500 points of ε(t);
• open the loop;
• collect 500 points of yo(t).
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From those 1000 experiments, 22 signalled problems at model output 1 and
16 experiments signalled problems at model output 2. The small mismatch
between G(q) and Ĝ(q) is responsible for this result since we expected to have
about 10 experiments signalling problems at each model output.

Since we take the current model as acceptable, a region of model uncer-
tainty is specified for this test: the maximum acceptable value for |γ(ωk)|
is ln |∆(ωk)| = 0.19 (see Section 4). For a scalar system this value of γ
would asymptotically correspond to a Nyquist plot uncertainty in the range
[0.91, 1.10], at all frequencies. Under this condition another 1000 experiments
were performed. As expected, the occurrences of model invalidations became
very rare: two at model output 1 and zero at model output 2.

In order to test the efficacy of the model invalidation mechanism, we simulate
an abrupt change in g12 from the original −0.025

q2−1.66q+0.688
to −0.025

q6−1.66q5+0.688q4 . This
change has no observable influence on the variance of the plant outputs but in-
creases the variance of the control movements ∆u1 and ∆u2 by approximately
25% and 50%, respectively. Another set of 1000 experiments is performed with
the new system and the same uncertainty region as described above. The mod-
elling error introduced in output 1 is successfully detected in 798 experiments
and no invalidations occur of model output 2. Typical smoothed periodograms
of the signals related to output 1 are shown in Figure 2, while Figure 3 shows
the function J(ω) for output 1.

It is thus very likely that a single experiment realization will detect the prob-
lem in output 1. It remains to be found whether ĝ11 or ĝ12 is the main contrib-
utor to the model mismatch. A solution to this problem is to leave one control
action active while freezing the other at a constant value (manual mode). Af-
ter collecting these signals the role of each control action is inverted and new
data are collected. These sets of signals are then analyzed against yo(t). For
instance, when u2 is active and u1 ≡ 0, ĝ11 and ĝ21 are not excited, therefore
plant/model mismatches can only be caused by either ĝ12 or ĝ22.

From those 798 experiments that signalled problems at model output 1, 673 of
them continued to signal similar problems with u2 active and u1 ≡ 0, whereas
2 experiments also signalled the problem with u1 active and u2 ≡ 0. Another
analysis shows that in these 2 cases the value of J∗ is larger when u2 is active
and u1 ≡ 0, leading to the conclusion that ĝ12 has a larger influence on the
mismatch between G(q) and Ĝ(q) than ĝ11 does.

As a second investigation, a sinusoid was injected at output 1, with the process
in its original value. The frequency of the sinusoid was chosen to be 0.4 rad/s,
which is similar to the frequency where the peak of J(ω) is found in Figure
3. Under this sinusoidal disturbance, the variance of output 1 increases two
times, the variance of output 2 remains the same, the variance of ∆u1 increases
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Fig. 2. Periodograms (thin lines) and their smoothed counterparts (thick lines) of
W1(q) yo

1(t) (top) and W1(q) ε1(t) (bottom)
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Fig. 3. Typical J(ω) of output 1 (solid line), as well as ζ(500, 0.01) (dotted lines)
and the maximum allowable model uncertainty (dashed lines)

six times and the variance of ∆u2 increases nine times. 1000 experiments
were performed under conditions identical to those described above, and no
occurrences of model invalidation were observed at either output.
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6 Conclusion

This article describes a novel approach to testing multivariable models em-
ployed in control systems design. The term “model invalidation” is used here
to characterize simple tests, with little excitation, that put the plant model
on trial. This is in sharp contrast to “model validation” tests, which apply
high excitation in order to “prove” that the model is good. Our testing mech-
anism is well suited to the type of data readily available from industrial sites,
especially when model-based predictive controllers are employed.

The test is based on the comparison of pairs of time series: one series is col-
lected during normal closed-loop operation and the second one is collected un-
der open-loop operation. This comparison provides means for assessing which
model outputs are incorrect, but it remains to be identified which model in-
puts are problematic. A solution is provided in Section 5, where it is suggested
that subsets of the controller outputs be inactive in order to test only parts
of the model.

Similar to other mechanisms that extract information from measured data, like
model identification and performance monitoring/assessment, deterministic
load disturbances affect the final result. Periods with changes in load should
be detected and excluded from the analysis.

The results obtained on simulation examples are very encouraging. Several as-
pects of the mechanism can be improved as the idea matures and new tests are
performed. Ultimately, our goal is to have an automated tool for monitoring
model-based controllers.
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