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Abstract—This paper presents an efficient computational
methodology for longitudinal and cross-sectional analysis
of extreme event statistics in large data sets. The analyzed
data are available across multiple time periods and multiple
individuals in a population. Some of the periods and
individuals might have no extreme events and some might
have much data. The extreme events are modeled with
a Pareto or exponential tail distribution. The proposed
approach to longitudinal and cross-sectional analysis of the
tail models is based on non-parametric Bayesian formula-
tion. The maximum a posteriori probability problem leads
to two convex problems for the tail parameters. Solving
one problem yields the trends for the tail decay rate across
the population and time periods. Solving another gives the
trends of the tail quantile level. The approach is illustrated
by providing analysis of 10- and 100-year extreme event
risks for extreme climate events and for peak power loads
in electrical utility data.

I. INTRODUCTION

The predictive analytics are used to model the data.
They can be also applied to finding outliers, the anoma-
lous data that defy prediction. The outliers that represent
extreme (peak) events can be used to study risks to cost,
safety, and other critical performance indicators. This
paper presents methodology for analyzing the risks of
these extreme events across the time (longitudinal study)
and the populations (cross-sectional study). In Big Data
problems, there can be thousands of one in a million peak
events. This affords detailed modeing of the extreme
statistics. Such modeling is described in this paper. Our
methodology is scalable to petabyte size data sets. The
methodology is illustrated by two examples: in power
grid data and in climate data.

The branch of statistics describing the rare peak events
corresponding to the tails of the probability distributions
is known as extreme value theory (EVT). The Fisher-
Tippett-Gnedenko theorem of EVT establishes gener-
alized extreme value (GEV) distribution as a common
limit distribution. The GEV tails are Pareto (power law),
exponential, or finite. The long tails can be estimated

using peaks over threshold (POT) method by fitting the
model to the threshold exceedance data, see [1].

There seems to be little prior work on multi-period
estimation of the tail models. One ad hoc approach
assumes that tail distribution parameters depend on time
in accordance with a given regression model. In [2], this
is a linear trend model. In [3], a more complex regres-
sion is used. The non-convex problems in [2], [3] are
computationally difficult. The multi-period model in [4]
uses a Bayesian prior for the exceedance number, but not
for the tail parameter; the non-smooth prior complicates
the computation. The multi-period formulation in [5] is
for extreme value distributions with finite tail.

Most of the earlier work on cross sectional estimation
of extreme events trends is related to climate data. A non-
parametric model of spatial dependence is developed in
[6]; it is assumed that data for neighboring points in
a square grid topology are related. A spatial parametric
model is considered in [7]. Both of these paper solve spe-
cific problems and do not formulate a scalable broadly
applicable approach.

The contributions of this paper are as follows. First,
it develops scalable methodology for longitudinal and
cross-sectional modeling of extreme events deviating
from a predictive model in Big Data. The methodology
allows for scalable parallelizable processing. As an ex-
ample, a 1 PB dataset is reduced to 2 MB of longitudinal
and cross-sectional tail model data.

Second, this paper presents a novel non-parametric
Bayesian formulation for the tail distribution parameters
as they vary across the time and the population. It
includes both the longitudinal and cross sectional model
of these parameters in a single optimal estimation setting.
This is accomplished by using Bayesian priors to filter
the raw data noise and extract the trends.

Third, we transform the tail parameter estimation
problem into two separate unconstrained convex op-
timization problems for the distribution quantile and
for the distribution tail. Once brought into this form,

1



these problems can be solved efficiently. The solution is
scalable. The non-parametric nature of the formulation
allows for flexible modeling.

Fourth, we apply our methodology to electrical power
grid data and climate data. The results yield non-trivial
conclusions about the trends of extreme events. For the
power grid data, these trends are analyzed across the
service zones of the utility. For the climate data, the
year-to-year trends of extreme temperature are analyzed
across the 12 months of the year.

II. PROBLEM FORMULATION

We consider a data set that includes multiple time
periods and multiple individuals in a population

D = {{{xtia, ytia}Mti
a=1}Ni=1}Tt=1 (1)

where scalars ytia are dependent variables and xtia ∈ <n
are independent variables (regressors). In (1), t is the
time period, i is the individual index inside the popu-
lation, a is the sample number for a given individual
and the time period, Mti is the number of samples for a
given individual in a given time period, N is the number
of the individuals in the population, and T is the total
number of time periods. We consider the impact that
individuals within the population might have on each
other. Though we assume that we are dealing with Big
Data, there is a possibility that Mti = 0, there are no
data for a given individual in a given time period. The
developed analytics should be able to handle that.

We assume that data (1) for time period t and pop-
ulation i are i.i.d. samples of an underlying conditional
probability distribution. This distribution is a mixture of
a normal distribution (the body), with probability 1−qt,i,
and a tail distribution, with probability qt,i,

ytia = xTtiaβti + (1− zti) v(n)ti + ztiv
(e)
ti , (2)

zti ∼ B(1, qt,i), (3)

v
(n)
ti ∼ N(0, σ2

ti), (4)

v
(e)
ti ∼ p(θti|xti), (5)

where B(1, qt,i) is the binomial distribution with {0, 1}
outcomes, βti ∈ <n is the regression parameter vector,
σti is the standard deviation of the normal distribution.
Distribution (2)–(5) describes both the normal (distribu-
tion body) and the tail behavior of the data.

According to the EVT, the tail probability density
p(θti|xti) can be modeled as either an exponential or
Pareto distribution. In what follows, we assume that
p(θti|xti) comes from exponential distribution with the
rate parameter θt,i. For the Pareto distribution, log v

(e)
ti

is exponentially distributed and the same analysis can be
applied with a slight modification, see [8].

In what follows, we assume that the tail intensity qt,i
is a small parameter, qt,i � 1. For the small residuals

vtia = ytia − xTtiaβti, (6)

we approximately have vtia ∼ N (the distribution body
in (4)). For large vtia, the exponent dominates the
Gaussian and we approximately have vtia ∼ Exp (the
distribution tail in (5)). The approximations described
below separately consider the distribution body and its
tail. They are the basis of the proposed approach to
estimating the regression parameters and modeling the
distribution tail. These approximations can be considered
as a special case (for qt,i � 1) of the more general
probabilistic model for a mixture of asymmetric Laplace
and Gaussian (MALG) distributions, see [9].

The modeling of the tail for vtia requires choosing a
sufficiently large threshold Ωti. The tail risk model is
defined as the probability of exceeding the threshold Ωti
by the value u.

Rtj(u) = P(vtj − Ωtj ≥ u|θt,j , qt,j) = qt,j · e−θt,ju.
(7)

This paper presents a method for analyzing the data
(1) to estimate models for the tail risk (7). We consider
combined longitudinal modeling (the dependence on
the time period t) and cross sectional modeling (the
dependence on the individual j in the population). The
end goal is to model the risks of extreme events, such
as 1-in-10 years events. This is a non-trivial problem
since such events do not happen every time period to
every individual in the population. The paper presents the
method for solving this problem for very large datasets.

Figure 1 is a flowchart of the model estimation and
risk evaluation steps that outlines the proposed method-
ology. Sections III and IV explain each of these steps
in some detail. The approach is scalable to very large
datasets since each step is highly scalable, parallelizable,
and provides substantial data reduction. For illustrative
purposes consider a data set of 1 PB size. This would
roughly correspond to T = 100 time periods, N = 1000
individuals in the population, Mtj = 107 samples in
each time period for each individual, and n = 100
regressors xtia. We assume that all non-zero numbers are
represented by a double precision type. Figure 1 shows
how the data is reduced during the processing.

III. MODEL FORMULATION

A. Robust Regression
In this section we formulate how to estimate the

model of the distribution body (2), (4). We define Cti
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Fig. 1. Flow chart of model building logic and data reduction at each
step.

as the set of indexes of the points that belong to the
distribution body for time period t and population i.
For the distribution body zti = 0, and (2), (4) yield
the distribution yti ∼ N (xTtiβti, σ

2
ti). The well-known

maximum likelihood estimation (MLE) estimates of the
model parameters β̂ti and σ̂ti are

β̂ti = arg min
βti

‖yCti −XCtiβti‖22

=
(
XT
CtiXCti

)−1
XT
CtiyCti ,

(8)

σ̂ti = card(Cti)−1/2‖yCti −XCti β̂ti‖2, (9)

where card(·) is the cardinality (size) of the data set,
yCti = {ytia|a ∈ Cti}, and XCti has rows corresponding
to xTtia, a ∈ Ctj . The estimation of βti (8) is known as
a robust regression problem, see [10], [11].

The solution (8) is quite scalable when there are
many data points, i.e., when card(Cti) is very large).
To compute the scatter matrix XT

CtiXCti when the data
matrix XCti cannot fit into memory, one can use the
following representation

XT
CtiXCti =

∑
a∈Cti

xtiax
T
tia, (10)

where each outer product xtiaxTtia is a n× n matrix. For
a moderately large number of regressors n, this matrix
fits into the memory. For a large data set, the outer prod-
uct terms can be added up using standard MapReduce
techniques to yield XT

CtiXCti . Since the scatter matrix
XT
CtiXCti fits into the memory, the standard numerical

techniques for matrix inversion can be used.
The product XT

CtiyCti in (8) is a vector in <n. It can

be represented as

XT
CtiyCti =

∑
a∈Cti

xtiaytia, (11)

where each product xtiaytia is a n× 1 vector. For a large
data set, these vectors can be added up using standard
MapReduce techniques, see [12].

B. Model, Forecast, and Residuals
Once the scatter matrix (10) and vector (11) have been

computed, one can solve for the regression model β̂ti (8)
in memory. The next step is to compute the predicted
values ŷti ∈ <Mti . The components of the vector ŷti are
a result of scalable element-wise computation

ŷtia = xTtiaβ̂ti. (12)

The above computations assume the knowledge of the
set Cti. This is the set of the distribution body indexes,
the set of indexes where zti = 0 in (2). Though the
realization of zti is hidden, the set Cti can be estimated
from the data (1) and forecast (12).

Cti = {a | Ati > |vtia|}, (13)
vtia = ytia − ŷtia, (14)

where vtia are the residuals (forecast errors) and Ati is
a threshold parameter, The selection of Ati is discussed
later on.

The standard deviation σ̂ti (9) can be computed as
σ̂2
ti = card(Cti)−1‖v̂Cti‖22. The scalable computation

method sums up the squared components of v̂Cti =
{vtia|a ∈ Cti}.

Consider the vector of residuals vti ∈ <Mti with
elements vtia. Given the forecast ŷt (12), this vector can
be computed in accordance (14) element-wise. In our 1
PB data sets example, the vector vti takes 10 TB.

The Robust Regression method uses the residuals vtia
to set the threshold Ati as a multiple of the standard
deviation σ̂ti. Given Ati, the set Cti can be computed
from (13). We then iteratively re-compute (8)–(12) with
the new Cti. The iterations have converged when Cti
stops changing, see [13]. We initialize Cti to include
the indexes of all Mti data points. This is equivalent
to initializing Ati =∞.

C. Peaks Over Threshold
Peaks over threshold (POT) is a standard EVT method

used to model the outliers, see [1]. Consider exceedances
eti ∈ <Mti for time period t and population i as

eti = {vtia − Ωti}Mti
a=1, (15)

where Ωti is a threshold that is dependent on the
empirical quantile.

3



Let us define set Tti to be the set of indexes of points
in the tail distribution (5). In the context of our problem,
the POT exceedances are just the set of non-negative
exceedances etia, which are in set Tti. We then define
Tti as

Tti = {a| etia ≥ 0}. (16)

The POT exceedances can be computed in a scalable,
parallelizable way since Tti is determined by indepen-
dently considering each exceedance etia. If we assume
that 1% of data points are POT exceedances, this reduces
the data we are processing from 10 TB to 100 GB.

We are interested in estimating the risk Rti (7) in the
regime of large residuals vtia, which correspond to large
exceedances etia. We can rewrite the problem in terms
of eti.

Rti(u) = P(eti ≥ u)

= P(eti ≥ u|eti ≥ 0) ·P(eti ≥ 0), (17)

where the conditional probability rule is used for the
second line, see [14]. In accordance with (2),

qt,i = P(eti ≥ 0). (18)

In Subsection III-E, we estimate qt,i and the tail proba-
bility density function pti(u), which is the derivative of
the cumulative density function, 1−P(eti ≥ u|etj ≥ 0).

D. Tail Exceedance Statistics

Consider the POT data set Tti. In accordance with
(7), the first multiplier in (17) follows the exponential
distribution,

eti| (eti ≥ 0, θt,i) ∼ Exp(θti). (19)

This exponential distribution MLE parameter estimate
is characterized by the zero and first order statistics of
the exceedance data. More concretely, we just need to
compute the number of non-negative exceedances nti
and mean exceedances ēti for each time period, which
are given as follows

nti = card{Tti}, (20)
ēti = meana∈Tti{etia}. (21)

Finding the mean and the number of non-negative
exceedances is a parallelizable process since each com-
ponent of the exceedance vector can be processed sepa-
rately. At this point, the problem reduces down to keep-
ing 2·T ·N double precision numbers {{ntj , ētj}Nj=1}Tt=1

for the tail exceedance statistics. In the example, the
amount of data being processed is reduced from 100
GB to 2 MB.

The second multiplier in (17) is the quantile level
parameter qt,i (18). We assume that each data point
is an independent sample of the distribution. The point
belongs to the tail with probability qt,i or not with the
probability 1− qt,i. Then, the number of the tail points
nti (20) follows the Binomial distribution

nti|qt,i ∼ B(Mti, qt,i). (22)

The tail exceedance statistics (20) and (21) are suffi-
cient for characterizing the distribution (17).

E. Non-Parametric Bayesian Tail Model

To compute the risk Rti (17), we must first estimate
tail parameters qt,i (3) and θt,i (5). We do this using the
distribution models (19) and (22).

1) Likelihood: In our longitudinal and cross-sectional
analysis setting, the right tails for different time periods
t and individuals i in the population are defined by
{qt,j , θt,j}N,Tj=1,t=1. We use maximum likelihood estima-
tion (MLE) of these parameters, see [8]. Maximizing the
log likelihoods for the two tail parameter distributions
(19) and (22) yields

θ̂t,i = arg max
θt,i≥0

T∑
t=1

N∑
j=1

ntj (log θt,j − θt,j ētj) , (23)

q̂t,i = arg max
0≤qt,i≤1

T∑
t=1

N∑
j=1

[ntj log qt,j

+(Mtj − ntj) log(1− qt,j)] .

(24)

We make the following non-linear variable change

rt,i = ψ(θt,i) = log θt,i, (25)
wt,i = φ(qt,i) = log(− log qt,i). (26)

The MLE optimization problems can be compactly
written as

maximize
rt,j

T∑
t=1

N∑
j=1

ntjΨ(rt,j ; ētj), (27)

Ψ(x; γ) = x− γex, (28)

maximize
wt,j

T∑
t=1

N∑
j=1

ntjΦ(wt,j ;Mtj/ntj − 1), (29)

Φ(x; γ) = −ex + γ log (1− exp (−ex)) .
(30)

The unconstrained convex optimization problems (27),
(29) split into independent optimization problems for
each individual i at one time period t. The optimal
estimates can be obtained by differentiating each term
in the sum (23) or (24) with respect to θt,i or qt,i} and
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solving Ψ′(rt,j ; ētj) = 0, Φ′(wt,j ;Mtj/ntj − 1) = 0.
This gives the MLE estimates

r̂t,i = − log (ēti) , (31)
ŵt,i = log log(Mti/nti). (32)

F. Tail Model

Using (25), (26) to get back to the original coordi-
nates, the estimated parameters (31), (32) are

θ̂t,i = 1/ēti, (33)
q̂t,i = nti/Mti. (34)

In our example, the tail exceedance statistic is 2 MB
of the data. The tail model (33), (34) has the same size.

G. Risk Computation

Once we have our tail model, we compute our risk ex-
ceedance probability Rti(u∗) (7), with threshold u∗. We
choose a threshold u∗ such that the average exceedance
probability is R∗. We start by aggregating all the data (1)
into one time period and one individual in the population.
We estimate q∗ and θ∗ of the POT exceedances (16). This
allows to compute u∗ for a given average exceedance
probability R∗ by solving

R∗ = q∗ · e−θ∗u∗ , (35)

u∗ = θ−1∗ log (q∗/R∗) . (36)

H. Risk Trend

The risk trend is the set of risk exceedance probabili-
ties {{Rti(u∗)}Ni=1}Tt=1 (7) for the threshold u∗ (36). In
our example, this data is 1 MB in size. The risk trend is
related to R∗ (35) as follows

1

N · T

T∑
t=1

N∑
i=1

Rti(u∗) = R∗. (37)

This is just the average risk probability over all time
periods and individuals in the population.

IV. OPTIMAL BAYESIAN FORMULATION

The MLE estimates described in Section III-E are
very noisy and might change drastically between dif-
ferent time periods and individuals. Some of the time
periods and individuals might not have any exceedance
data at all. More reasonable smoothed estimates can be
obtained by solving a Bayesian maximum a posteriori
(MAP) estimation problem. We will formulate the MAP
problem that includes non-parametric priors for the tail
that enforces the smoothness.

A. Prior Distributions

We assume the priors for θ ≡ {θt,i} and q ≡ {qt,i}
that have the form

(∆ψ)k(θ) = ψ(θtk,ik)− ψ(θt′k,i′k) ∼ ψ(χk), (38)

(∆φ)k(q) = φ(qtk,ik)− φ(qt′k,i′k) ∼ φ(ξk). (39)

where ψ(·) is given by (25), φ(·) is given by (26), The
priors (38) and (39) relate the tail rate parameters θ and
tail quantile parameters q at two indexes sets {tk,ik}
and {t′k, i′k}. They express the prior belief that the tail
parameters for the individual ik at time instance tk are
related, close, to the tail for the individual i′k at time
instance t′k. The prior distributions in (38) and (39) are
assumed to be given by χk ∼ Gamma and ξk ∼ Beta,
which are the conjugate prior distributions for (19) and
(22) respectively, see [15].

We consider a set of Np priors (38), (39),

{(∆ψ)k(θ) ∼ φ(χk), (∆φ)k(q) ∼ φ(ξk)}Np

k=1 . (40)

Section V will specify the prior structure in more detail
for particular applications. The technical aspects of the
parameter estimate computations for θt,i and qt,i in this
formulation are discussed in more detail in Subsections
IV-B and IV-C below.

The parameters for the prior distributions in (40) are
chosen as follows. For all distributions χk in (40) we
assume χk ∼ Gamma(αk + 1, αk), where αk is the k-
th prior distribution strength parameter. With the prior
Gamma distribution parameters (αk + 1, αk), the mode
of ψ(χk) (22) is zero for αk > 0. The intuition is that the
mode of (∆ψ)k(θ) being zero means that in the absence
of POT exceedance data in (22) the tail rate estimate
for time period tk and individual ik is exactly equal to
that for the time period t′k and individual i′k. For the
similar reason, all distributions ξk in (40) are assumed
to have ξk ∼ Beta(ηk, ηk(e−1)+1) in the conjugate Beta
prior distribution for (39). The Beta distribution with the
parameters (ηk, ηk(e−1)+1) means φ(ξk) (39) has zero
mode. In the absence of POT exceedance data in (19)
the quantile parameter estimates for time period tk and
individual ik is equal to that for the time period t′k and
individual i′k.

The logarithm of the probability density function for
Gamma(α+1, α) has the form αΨ(x), where Ψ is given
by (28). The logarithm of the probability density function
for Beta(η, η(e− 1) + 1) has the form ηΦ(x), where Φ
is given by (30). Under these assumptions, the log priors
for (40) can be be expressed as αkΨ ((∆ψ)k(θ); 1) and
ηkΦ ((∆φ)k(q); e− 1).
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B. Posterior Maximization

Combining the formulated log likelihoods with the log
priors for the parameters of the distribution yields the
posterior to be maximized in the MAP formulation. For
θt,j we get the following MAP problem

maximize
θt,j≥0

T∑
t=1

N∑
j=1

ntjΨ (log θt,j ; ētj)

+

Np∑
k=1

αkΨ ((∆ψ)k(θ); 1) .

(41)

The parameters αk define the ‘tightness’ of the prior. For
αk = 0, there is no prior and we get the MLE problem.
For αk =∞, the estimates are forced to be the same for
(t, j) pairs in (38), (39). For 0 < αk <∞, the estimate
is smoothed, with more smoothing for larger αk.

For qt,j the MAP problem is

maximize
0≤qt,j≤1

T∑
t=1

N∑
j=1

ntjΦ (φ(qt,j);Mtj/ntj − 1)

+

Np∑
k=1

ηkΦ ((∆φ)k(q); e− 1) .

(42)

The prior parameters ηk play the same role as αk in (41).
Using the non-linear variable change (25), the con-

strained non-convex optimization problem (41), is trans-
formed into the problems

maximize
rt,j

T∑
t=1

N∑
j=1

ntjΨ (rt,j ; ētj)

+

Np∑
k=1

αkΨ ((∆r)k; 1) ,

(43)

where in accordance with (38),

(∆r)k = rtk,ik − rt′k,i′k . (44)

Similarly, after the variable change (26), the constrained
problem (42) becomes

maximize
wt,j

T∑
t=1

N∑
j=1

ntjΦ (wt,j ;Mtj/ntj − 1)

+

Np∑
k=1

ηkΦ ((∆w)k; e− 1) .

(45)

where in accordance with (39) and similar to (44),
we have (∆w)k = wtk,ik − wt′k,i′k . The unconstrained
convex optimization problems (43) and (45) can be
solved efficiently and reliably. The solution is discussed
below.

C. Optimization Solution
The unconstrained convex problems (43), (45) can be

solved using the Newton’s iterations, see [16].
1) Quadratic Approximation: Both optimization

problems (43) and (45) maximize the index of the form

L(ξ) =

T∑
t=1

N∑
j=1

ntjf(ξt,j ; ρtj) +

Np∑
k=1

λkf((∆ξ)k; γ),

(46)

where ξt,j are the decision variables and (∆ξ)k is
defined by (44). The parameters ρtj , λk, γ and the
function f(·; ·) in (46) can be related back to problems
(43) and (45). Expanding (46) into a quadratic Taylor
series about ξ∗t,j , with ξt,j = ξ∗t,j + εt,j yields

L(ξ) ≈
T∑
t=1

N∑
j=1

ntj

(
f ′(ξ∗t,j ; ρtj)εt,j + f ′′(ξ∗t,j ; ρtj)

ε2t,j
2

)

+

Np∑
k=1

λk (f ′((∆ξ∗)k; γ) · (∆ε)k

+f ′′((∆ξ∗)k; γ) · (∆ε)2k
2

)
+ const,

(47)

where f ′ and f ′′ are the first and the second derivatives
of function f with respect to its first argument.

2) Newton Iteration: We can think of εt,j as the (t, j)
element of a matrix. Let ε be the vectorization of this
matrix. We can then write (47) as

minimize
1∑

m=0

(Fmε− dm)TBm(Fmε− dm), (48)

ε = vec {εt,j}T,Nt=1,j=1 , (49)

B0 = diag
(

vec
{
ntjf

′′(ξ∗t,j ; ρtj)
}T,N
t=1,j=1

)
, (50)

B1 = diag
(

vec {λkf ′′((∆ξ∗)k; γ)}Np

k=1

)
, (51)

d0 = vec

{
−
f ′(ξ∗t,j ; ρtj)

f ′′(ξ∗t,j ; ρtj)

}T,N
t=1,j=1

, (52)

d1 = vec
{
− f

′((∆ξ∗)k; γ)

f ′′((∆ξ∗)k; γ)

}Np

k=1

, (53)

where vec{·} denotes the vectorization operation. In
(48), F0 is the identity matrix. Matrix F1 is the sparse
‘difference’ matrix that maps the vectorized matrix (49)
into the vector (∆ε)k in accordance with (44). Matrices
B0, B1 and vectors d0, d1 depend on the expansion
center ξ∗ ≡ {ξ∗t,j}

T,N
t=1,j=1.

Differentiating the optimization index (48) with re-
spect to vector ε yields a system of linear equations.
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Solving this system for ε gives

ε = H−1
1∑

m=0

FTmBmdm, (54)

H =

1∑
m=0

FTmBmFm, (55)

where H is the Hessian of the optimization index (48).
The Hessian is extremely sparse matrix, which makes
its inversion computationally feasible even for large
problems. The quantity being multiplied by the inverse
Hessian is the gradient of the quadratic objective. Since
Fm and Bm are all sparse matrices, this multiplication
can be done efficiently for large problems.

The Newton’s method iterations go as follows. Let ξ(i)t,j
be the approximate solution at iteration i. We compute
matrices (50)–(53) using ξ∗t,j = ξ

(i)
t,j as the approximation

center. Then, the Newton’s step ε
(i)
t,j is computed from

(54). It is used to get the next iteration of the approximate
solution as

ξ
(i+1)
t,i ← ξ

(i)
t,i + ε

(i)
t,j . (56)

The iterations continue until convergence is achieved.
Since the problem is convex and smooth, the Newton’s
method iterations are guaranteed to converge. In the
examples, they converge very fast.

A rough upper bound on the number of non-zero
elements of the Hessian that needs to be inverted is
10 · T (N + 1). In our example, the tail exceedance
statistics are 2 MB of data. As a sparse matrix, the
Hessian takes approximately 10 MB with T = 100 and
N = 103. This matrix can fit into memory and thus
be inverted. The gradient will consist of an array of
T (N + 1) double precision values, which corresponds
to 1 MB.

3) Quadratic Approximation Coefficients: For the op-
timization problem (43), the matrices (50)–(53) an be
obtained by setting the function f and parameters ρtj ,
λk, γ as follows

f(x; ν) = −Ψ(x; ν) = νex − x,
ρtj = ētj , γ = 1, λk = αk.

(57)

The minus sign comes from going from a maximization
problem to a minimization problem in the Newton’s
iterations. The first and the second derivative of Ψ(x, ν)
with respect to x are given by

Ψ′(x; ν) = 1− νex, (58)
Ψ′′(x; ν) = −νex. (59)

For problem (45)

f(x; ν) = −Φ(x; ν) = ex − ν log (1− exp (−ex)) ,

ρtj = Mtj/ntj − 1, γ = e− 1, λk = ηk.
(60)

The first and the second derivative of Φ(x, ν) with
respect to x are given by

Φ′ (x; ν) = ex
(

ν

exp (ex)− 1
− 1

)
, (61)

Φ′′ (x; ν) = ex

(
ν

exp(ex) (1− ex)− 1

(exp(ex)− 1)
2 − 1

)
. (62)

V. APPLICATIONS

We apply the formulated methodology to electric
utility data and to a global temperature dataset.

A. Power Load Peak Demand

The data set from [17] includes hourly electrical power
loads and ambient temperature data for a US utility. The
loads are in the range of 1 kW to 500 MW. This data
set is 16 MB in size. The data covers a time range
of 48 consecutive months with the sampling interval
of one hour, 33,740 samples in all, and 20 different
service zones of the utility. We considered each month
as a time period and each zone as an individual in the
population, T = 48 periods and N = 20 zones in all.
The computations for the proposed analytics, performed
on single processor, take under 1 sec.

The power load has strong seasonal component.
Therefore, the chosen regressors xtia (1) are the binary
vectors that indicate the calendar month for the current
time period. More specifically, we take

xTtia =
[
m0(t) m1(t) · · · m11(t)

]
, (63)

mj(t) = 1 (mod(t, 12) = j) , (64)

where 1(·) is the indicator function. More detailed re-
gression models of the electric power load are considered
in [13], [18].

Let Ltia be the a-th sample of electric power load (in
GW) for month t and zone i. We choose the dependent
variable ytia = Ltia. We choose Ati = 3 · σ̂ti, where σ̂ti
is estimated from (9). Figure 2 shows the load profile and
forecast for the entire month of August 2004 in zone 8.

We choose the POT threshold Ωti in (15) based on
the empirical quantile of the data for each individual
aggregated across each time period. The threshold Ωti is
picked such that only 12 data points for each individual
exceed the threshold. This approximately corresponds to
the quantile level of 99.98%.
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Fig. 2. Load and forecast (in MW) for a August 2004 in zone 8.

We choose the two following prior structures (38)–
(39). For the tail rate θt,j

vec {(∆ψ)k(θ)} = col(v′, v′′), (65)

v′ = vec {ψ(θt,j)− ψ(θt−1,j)}T,Nt=2,j=1 , (66)

v′′ = vec {ψ(θt,j)− ψ(θt,0)}T,Nt=1,j=1 . (67)

For the tail quantile parameter qt,j

vec {(∆φ)k(q)} = col(w′, w′′), (68)

w′ = vec {φ(qt,j)− φ(qt−1,j)}T,Nt=2,j=1 , (69)

w′′ = vec {φ(qt,j)− φ(qt,0)}T,Nt=1,j=1 . (70)

The priors (66), (69) relate the parameters at two
sequential time periods for the same zone and express
that they are close. We assume that the priors (66) have
strength α′ and the priors (67) have strength α′′. The
priors (67), (70) relate the parameters for all zones at a
given time period and express that that they are close to
a common (average) value for all the zones. The priors
(69) have strength η′ and the priors (70) have strength η′′.
Table I summarizes the parameters α′, α′′, η′, η′′ used in
the numerical examples.

This prior structure is captured through matrix F1 in
(48). This matrix is given by

F1 =

[
0(T−1)N×T IN ⊗DT

−1N ⊗ IT ITN

]
, (71)

where ⊗ is the Kronecker product, 0K×L ∈ <K×L
is a matrix of zeros, DT ∈ <(T−1)×T is the two-
diagonal first difference matrix with −1 on the main
diagonal (except the last, zero, entry) and 1 above the
main diagonal, IK ∈ <K×K is the identity matrix, and
1L ∈ <L is a vector of ones.

After solving the convex MAP problems (43) and (45),

TABLE I
PRIOR STRENGTH PARAMETERS IN TWO EXAMPLES

α′ α′′ η′ η′′

Power Load 50 5 5000 500
Extreme Weather 500 50 5000 50

we get the estimates for θt,i and qt,i for each month t
and zone i. These allow to estimate the risk Pti(u∗) at
at threshold u∗ (36) computed as

Pti(u) = 1− (1−Rti(u))
720

. (72)

The data is sampled at an hourly rate and Rti(u∗) is the
hourly probability of exceeding threshold u∗. With 720
hours in a month, Pti(u∗) is the monthly probability of
u∗ exceeded in at least one hour. We pick u∗ that yields
an 1-in-10 years event, with R∗ = 0.1/8760 (35), for
the pooled data (all months and zones).

Figure 3 shows risk Pti(u∗) computated using the
baseline MLE estimates of θt,i and qt,i, i.e., without
the priors. Figure 4 shows risk Pti(u∗) computated
for the MAP (smoothed) estimates of θt,i and qt,i.
These smoothed estimates are much more informative
than the baseline MLE estimates. In this example, the
computational time of all processing steps in Figure 1,
performed on single processor is just under 1 sec.

The risk exceedance probability is approximately
0.8% on a monthly average, which roughly translates
to 10% on a yearly average. Figure 4 shows that that
there is an upward trend in the probability of a 1-
in-10 years event across all zones. This upward trend
can be attributed by the increasing variability of the
grid load because of the introduction of distributed
energy resources, such as solar and increasing use of
the wind power. Another possible explanation is related
to increasing trend of extreme weather events, which is
discussed in the next subsection.

B. Extreme Weather in Changing Climate

The temperature data set from [19] contains monthly
global temperature readings. Temperature measurements
range from −73.78◦C to 41.75◦C. We use this data
for a period from 1968 to 2012. The spatial resolution
of this data set is 2.5◦ latitude by 2.5◦ longitude. We
use this data for longitude between 195◦ to 300◦E and
latitude from 22.5◦ to 55◦N, which roughly corresponds
to the continental United States excluding Alaska. The
data set is 2.6 MB in size. We considered each year
as a time period and each month as an individual in
the population. There are T = 45 time periods in all,
N = 12 calendar months, and 602 different spatial
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Fig. 3. Baseline MLE estimate for risk Pti(u∗) of 10-year power
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Fig. 4. MAP estimate for risk Pti(u∗) of 10-year power load
exceedance in each service zone depending on time (months).

locations. In this example, the computational time of
all processing steps in Figure 1, performed on single
processor is under 1 sec.

As regressors xtia (1) we used the binary vectors that
indicate the calendar month for the current time period.
More specifically,

xTtia =
[
m0(i) m1(i) · · · m11(i)

]
, (73)

where mk(i) is defined in (64).
Let Ttia be the temperature in ◦C at location with

index a for year t and month i. We choose the dependent
variable ytia = Ttia. We select Ati = 1.66 · σ̂ti. Figure
5 is a sample monthly temperature time series at the
grid node location near Los Angles, CA compared to
the monthly forecast.

We choose Ωti from (15) based on quantile level of
99.91% for each individual. This means that 99.91% of
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Fig. 5. Mean monthly temperature in ◦C at Los Angeles, CA location
compared to monthly mean forecast from 2006 to 2012.

data points for each individual is below this threshold.
Using the same notation as Section V-A, we choose

the two following prior structures (38)–(39). For θt,j ,

vec {(∆ψ)k(θ)} = col(v′, v′′, v′′′), (74)

v′ = vec {ψ(θt,j)− ψ(θt−1,j)}T,Nt=2,j=1 , (75)

v′′ = vec {ψ(θt,j)− ψ(θt,j−1)}T,Nt=1,j=2 , (76)

v′′′ = vec {ψ(θt,1)− ψ(θt−1,N )}Tt=2 . (77)

The structure of the priors for qt,j is

vec {(∆φ)k(q)} = col(w′, w′′, w′′), (78)

w′ = vec {φ(qt,j)− φ(qt−1,j)}T,Nt=2,j=1 , (79)

w′′ = vec {φ(qt,j)− φ(qt,j−1)}T,Nt=1,j=2 , (80)

w′′′ = vec {φ(qt,1)− φ(qt−1,N )}Tt=2 . (81)

The priors (75) and (76), (77) have strengths α′ and
α′′, α′′ respectively. The priors (79) and (80), (81)
have strengths η′ and η′′, η′′. Table I summarizes the
parameters α′, α′′, η′, η′′ used in the numerical example.

We describe the prior structures (75)–(81) with matrix
F1. Using the same notation as in (66)–(70), we get

F1 =

 IN ⊗DT

DN ⊗ IT
V1 0(T−1)×T (N−2) V2

 , (82)

where DN ∈ <(N−1)×N is the first difference matrix,
V1 ∈ <(T−1)×T is a sparse matrix with 1 above the
main diagonal, and V2 ∈ <(T−1)×T is a sparse matrix
with −1 on the main diagonal.

Just as in Section V-A, we compare risk Rti(u∗) (7)
for the baseline MLE estimates with the risk computed
for the MAP estimates of the parameters θt,i and qt,i.
The average probability of exceeding u∗ is a 1-in-
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100 years event, with R∗ = 0.01/12. Figure 6 shows
the computation of risk Rti with the baseline MLE
parameter estimates. Figure 7 shows the computation
of risk Rti with the MAP estimates. As before, the
smoothed MAP estimates are clearly superior to and
more informative then the baseline MLE estimates.

The risk exceedance probability is approximately
0.08% on a monthly average, which roughly translates
to 1% on a yearly average. Figure 7 shows that there is a
noticeable increase in risk probability of an extreme high
temperature event in January, September, October, and
November. There is a slight or negligible change in risk
for the other months. The increasing trend in high tem-
perature risk could be attributed to the global warming
trend. The formulated combined longitudinal and cross-

sectional analysis provides the additional insight about
risk trends for different calendar months.
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