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Abstract—This paper analyzes fault tolerance of spacecraft
relative navigation in Automated Rendezvous and Docking
(AR&D). The relatively low technology readiness of exist-
ing relative navigation sensors for AR&D has been carried
as one of the NASA Crew Exploration Vehicle Project’s top
tasks. Fault tolerance could be enhanced with the help of
FDIR (Fault Detection, Identification and Recovery) logic
and use of redundant sensors. Because of mass and power
constraints, it is important to choose a fault tolerant design
that provides the required reliability without adding excessive
hardware. An important design trade is determining whether
a redundant sensor can be normally unpowered and activated
only when necessary. This paper analyzes reliability trades
for such fault tolerant system. A Markov Chain model of the
system is composed of sub-models for sensor faults and for
sensor avionics states. The sensor fault sub-model parameters
are based on sensor testing data. The avionics sub-model in-
cludes FDIR states; the parameters are determined by Monte
Carlo simulations of the near field docking approach. The
integrated Markov Chain model allows the probabilities of
mission abort and a mishap to be computed. The results of
the trade study include dependence of the probabilities on the
backup sensor activation delay.
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1. INTRODUCTION

NASA’s Exploration System architecture has a requirement
for automated rendezvous and docking (AR&D) of the space-
craft. The relatively low technology readiness of existing rel-
ative navigation sensors for AR&D has been carried as one
of the NASA Crew Exploration Vehicle (CEV) Project’s top
tasks, e.g., see [6], [14].

Operating a chaser spacecraft in proximity of the target dur-
ing a docking approach is safety critical because of the col-
lision risk. The relative navigation system needs to be fault-
tolerant; a fault could lead to a mishap. From many points
of view AR&D is similar to aircraft Autoland systems, which
navigate and guide aircraft relative to a landing strip. Much
work on fault tolerant design of Autoland was done in the
1980s when these systems were first developed and intro-
duced, e.g., see [7]. By contrast, there is little prior work
on fault tolerance of AR&D navigation.

Because of spacecraft mass and power constraints, it is impor-
tant to choose a fault tolerant design providing required relia-
bility with minimum hardware. One challenge is determining
how many redundant relative navigation sensors are needed.
Another is determining whether the redundant sensors can be
kept unpowered and activated only when necessary.

We consider spacecraft relative navigation during close-range
approach. The system fault tolerance and redundancy man-
agement (FT/RM) configuration is as outlined in [23]. There
are two relative navigation sensors. Normally, the main sen-
sor is used. The backup sensor is activated if the main sensor
fails. An alternative is having both sensors operational all
the time. We assume that the inertial navigation system of the
spacecraft is fault tolerant. This paper studies (FT/RM) of rel-
ative spacecraft navigation for the described system configu-
ration. The analysis approach could be used for other FT/RM
architectures and configurations.

Looking at the relative navigation system design from the
FT/RM perspective, the first question is:



Question 1: Is the two fault tolerance requirement (Fail Op-
erational/Fail Safe) achieved?

A short answer to this question is ‘yes’. This answer is based
on our earlier study [10]. Achieving the fault tolerance re-
quires (i) being able to detect a fault of the relative navigation
sensor and (ii) having a redundancy management and fault
recovery capability. The relative sensor fault detection ap-
proach based on analytical redundancy is discussed in detail
in [10]. It relies on fault-tolerant inertial navigation. The ba-
sic idea is that an observed relative pose change must be ac-
companied by commensurate acceleration and rotation mea-
sured by the IMUs. A mismatch indicates a fault.

If a persistent fault of the relative navigation sensor is de-
tected, a backup sensor could be activated to continue opera-
tion (Fail Operational). A fault of the backup relative naviga-
tion sensor could be detected the same way. The second fail-
ure would require aborting the AR&D approach (Fail Safe).
A brief discussion of the Guidance and Control (G&C) for
the abort is contained in [10]. The analysis in this paper as-
sumes that a safe abort of the docking approach is always
possible. This simplifying assumption is introduced to re-
duce complexity and to focus on the navigation system anal-
ysis. Once the CEV G&C logic for the docking abort is estab-
lished, the analysis can be extended to include the interaction
between the navigation and G&C.

The answer to Question 1 and the above discussion of the
fault tolerance do not depend on the sensor reliability. The
main focus of this study is

Question 2: Is the AR&D mission failure probability suffi-
ciently small to be acceptable?

The answer depends on the reliability of the relative sensors.
It also depends on reliability improvements provided by the
FT/RM architecture. Establishing probabilities of mission
failures (mission abort or a mishap) requires probabilistic risk
analysis (PRA), which is the main focus of this study.

The PRA must address (i) the presence of a redundant spare
(backup sensor) (ii) the intermittent nature of sensor faults
and possibile recovery (with a delay) in sensor fault detec-
tion logic. These problem features cause logical loops and
are difficult to model with standard fault trees. A possible
approach is to use a dynamical fault tree (DFT) model. The
discussion in [21] indicates that there are several alternative
interpretations and formulations of DFT models. This could
make the approach not completely rigorous. An alterna-
tive formulation, which we use, is a continuous-time Markov
chain model. Such models are used for PRA of fault toler-
ant computer systems with stand-by spares and component
repair (reboot), e.g., see [19], [25] among many papers in this
area. More examples of modeling PRA problems with logical
loops using Markov chains can be found in [2], [4], [5], [17].

The main drawback of using Markov chains mentioned in

[21] is exponential explosion of state dimension for com-
plex models. This is not an issue herein. We develop simple
Markov chain models for system parts. One such part is a
relative navigation sensor that can experience an intermittent
failure. Another such part is the sensor avionics, which host
fault detection identification and recovery (FDIR) logic. The
partial models are integrated taking into account interactions
between the main and backup sensor and respective avionics
systems.

The integrated model has just 24 states and can be built manu-
ally. It is however preferable to automate model development
and integration. We integrate the models using off-the shelf
software. There are several software packages, a few of them
freely available, that facilitate building Markov chain models
for PRA. Some of them are surveyed in [3].

The main contribution of this paper is the trade study for fault
tolerant design of relative navigation system for AR&D. The
trade study results are useful for design of NASA CEV space-
craft. The results are detailed in Section 5 of the paper.

The PRA approach in this paper integrates the Markov chain
model of the mission from interacting, simpler sub-models.
The approach and the modeling methodology detailed in the
next sections could be considered as a separate contribution.
The model is overviewed in Section 2 of the paper. Section 3
describes the sensor fault submodel. It presents sensor test
data analysis contributing to model parameter understanding.
Section 4 describes the sensor avionics submodel, including
the FDIR logic. The section discusses a Monte Carlo simula-
tion study of relative navigation used to evaluate the parame-
ters of the avionics model.

2. MARKOV CHAIN MODEL

In this work, the system level performance of the FT/RM ar-
chitecture is modeled using a continuous time Markov chain
model. Since use of continuous Markov chain models in
engineering analysis is not standard, below is brief back-
ground. A detailed mathematical formulation of continuous-
time Markov chain models can be found in [20] among other
textbooks. In a general form, the model is described by n dis-
crete states. At time ¢, it can be at state k£ with a probability
xy(t), where >, x1(t) = 1. The probability of transition
from state j into state k # j over an infinitesimal interval of
time [t, t 4 dt] is assumed to be qx;x;(t)dt, where gi; > 0
is a constant transition rate. The probability rate of staying in
the same state j is

n
Gi=— Y

k=1,k#j

The evolution of the state vector x(t) = [21(t), ..., z,(t)]T

is given by

(t) = Qu(t) (1)



where () is a n X n transition matrix with entries g;. An
advantage of the model (1) is that the solution can be found
semi-analytically in the form

x(t) = exp (Q(t — to)) xo, 2)

where xo = x(t() is the initial probability distribution vector.
This allows models of large size to be solved. A disadvantage
is that only exponential transition probabilities are modeled.
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Figure 1. Overview of the PRA model

A continuous time Markov chain model for relative naviga-
tion FT/RM is build by integrating partial models, see Fig-
ure 1. The four partial models shown in Figure 1 are de-
scribed in detail in the subsequent sections of the paper. The
two models describe the fault condition of the main and the
backup relative navigation sensor. The models describe the
condition of the sensor heads and its relation with the envi-
ronment condition (such as glint and lighting) that can influ-
ence the sensor performance. These two Markov chains are
identical and independent.

Two more models describe the state of the avionics hardware
and software for the main and the backup sensor. The FDIR
algorithms are a part of the avionics software. The avion-
ics models for the two sensors are independent and identical,
with the exception of the initial state.

The arrows connecting the partial models in Figure 1 describe
the dependencies between the partial models. In particular,
the main sensor avionics state is influenced by the state of the
sensor head for the main sensor. (The FDIR algorithms in
the sensor avionics detect, or not, a fault of the sensor head).
Similarly, the backup sensor avionics state is influenced by
the backup sensor head state. In addition, the backup sensor
avionics state is influenced by the main sensor avionics state.
(The backup sensor is activated if the main sensor fails).

Figure 1 also shows schematically the mission outcome (the
oval in the middle). We consider three possible mission out-
comes: mission success, mission abort, and a mishap. The
solution (2) of the Markov chain is calculated on a given time
interval (over the duration of the docking approach). The
probabilities of these outcomes are evaluated in the end of
the interval. If at least one sensor head is healthy and the re-
spective sensor avionics perform nominally, then the mission

is considered a success. If both sensor heads are faulty and
these faults have been detected by the avionics, then the mis-
sion is aborted. Finally, if the sensor head is faulty but the
sensor avionics erroneously considers the sensor healthy (an
uncovered failure), then a mishap outcome is assumed.

The partial models and their assumed parameters are dis-
cussed in detail in Sections 3 and 4 of the paper. Section 5
presents the assumed set of the model parameters and consid-
ers sensitivity of the analysis results to the parameter varia-
tions.

We used an evaluation version of Mobius package from
UIUC [15] to build the model. The model is simple and could
be also integrated manually (this would be more laborious,
though) or by using one of several other software packages
available, e.g., see the survey in [3].

3. SENSOR MODEL

Consider a model for the fault condition of a relative naviga-
tion sensor. The model is illustrated in Figure 2 and includes
two states: Sensor Healthy (state #1) and Sensor Faulty (state
#2). As mentioned above, these states describe environmental
conditions that cause deterioration of the sensor performance,
such as glint and lighting.

Sensor

Healthy

Figure 2. Markov chain model for sensor fault

The model in Figure 2 is fully described by two transition
rates: the sensor failure rate g2 and sensor fault recovery
rate go1. These rates were assumed as shown in Table 1 (The
Mean Time is an inverse of the Rate).

H Transition (from — to state) ‘ Rate (sec™ 1) ‘ Mean Time H

Sensor failure (1 — 2) 3-1077 100 h

Sensor fault recovery (2 — 1) 1-1072 100 s

Table 1. Sensor fault model parameters

Table 1 can be justified as follows. The sensor failure rate is
based on the experience with AVGS units described in [11],
[14]. No sensor failures were registered in about 1000 hours
of lab and flight tests. A conservative assumption that one
failure happens every 1000 hours on average yields the rate
shown in the table. The assumed failure rate has a similar
order of magnitude to the sensor failure rates assumed in the
NASA ESAS reliability study [8] based on the relative navi-
gation sensor failures observed in Shuttle flights.



The sensor fault recovery rate characterizes mean time the
sensor is off-line because of a fault. The main sources of in-
termittent faults for optics-based sensors are environmental
factors such as glint or lighting. The lighting conditions de-
pend on the sun angle. For low Earth orbit with a 120 min
orbital period, a 100 second time interval corresponds to a 5
degree change in the sun angle. This should provide a suf-
ficient lighting environment change for the glint to go away.
The 100 second average persistency of the fault corresponds
to the sensor fault recovery rate in Table 1.

Sensor model discussion

Let us discuss the sensor failure model in more detail. An
extensive program of testing several types of relative navi-
gation sensors was carried at NASA. The tests are described
in [14]. In this work we used the sensor test data to build a
more detailed characterization of the faults. In the test, the
target is moved with respect to the sensor, which measures
the relative pose. The sensor output data are recorded along
with the ground truth data obtained with an independent high-
accuracy measurement system. The differences between the
two measurements (residuals) can be then analyzed. At each
point in time, the residual vector consists of three linear coor-
dinate residuals and three attitude angle residuals.

The low sensor failure rate in Table 1 is ascertained by having
sufficiently relaxed sensor error specifications. Tightening
these specifications would lead to a higher rate of intermittent
sensor faults. Having an FDIR logic and FT/RM architecture
in place allows trading a higher sensors fault rate against the
improvement in sensor accuracy specs. This paper analyses
the tradeoffs with respect to mission risks.

The residual data for the sensor could be characterized using
the empirical covariance matrix.

1
Q=——> mrf 3)

where 7; € RS is the j-th residual vector and N is the number
of the data points in the test set. We assume that the sensor
is not biased and the residuals have zero mean. In practice,
when tuning a navigation filter using the relative sensor data,
the residuals (observation noise) are assumed zero-mean nor-
mally distributed. One can then characterize the residual vec-
tors through the squared Mahalanobis distances

d? = roQ_lrj 4)

For the normally distributed residuals, d? should follow 32
distribution, where 6 is the number of degrees of freedom.

We processed a set of N = 256, 412 residual data vectors ob-
tained in the tests. The Mahalanobis distances (4) are shown
in Figure 3. By introducing a threshold (dashed line) and
counting a fraction of the data points above the threshold
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Figure 3. Sensor test data for determining outliers

we can estimate an empirical probability of the outlier. Fig-
ure 4 shows the results obtained for different thresholds (solid
line) together with the cumulative probability density for x2
(dashed line).

The empirical cumulative probability distribution (solid line)
in Figure 4 has heavy tail. It decays slower than the cumula-
tive probability distribution for normally distributed residuals
(dashed line). At the same time, engineering approaches to
FDIR algorithm design assume a normal distribution model
for outlier detection. There are two possible approaches to
handling this discrepancy

1. Assume that the covariance is larger than the empirical
such that all the data points are bounded by the x2 distribution
envelope. Current design follows this approach. There are no
outliers, but the sensor accuracy specifications are relaxed.

2. Assume the empirical covariance obtained from the data.
This covariance is by a factor of 20 smaller compared to the
first approach. The smaller covariance improves the accu-
racy of the navigation filter. At the same time, more outliers
(faults) in the sensors data must be detected and removed.
The drawback of the approach is that it has more reliance on
the FDIR logic to handle the outliers.

The trades between the two described approaches can be eval-
uated by using the developed PRA framework. One model
parameter that is impacted is sensor failure rate in Table 1.
Another model parameter is the sensor noise covariance,
which influences the FDIR-related performance probabilities
discussed in the next section.
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4. AVIONICS/FDIR MODEL

Consider now a Markov chain model of the avionics states for
a relative navigation sensor. Figure 5 illustrates the model for
the backup sensor. The model has four states: No Fault (state
#1) describes nominal operation of the sensor avionics hard-
ware and software, Fault Detected (state #2) is a state where
FDIR software suspends sensor output, Permanent Failure of
the Sensor (state #3) means the avionics are permanently dis-
abled (e.g., a CPU or power supply failure), Backup Sensor
Cold (state #4) describes a power-conserving stand-by state
from which the sensor could be activated.

ault Detected

WA /

Figure 5. Markov chain model for sensor avionics

Initially the backup sensor is at state #4. From this state it can
transition into two states: nominal operation state #1 (nom-
inal activation) or permanent failure state #3 (activation at-
tempt failed). These transitions are shown by dash-dotted
lines. They are conditional on the main sensor being not
healthy. If the main sensor avionics are operating nominally,
then the backup sensor is kept inactive (state #4).

The model for the main sensor avionics is the same as in Fig-
ure 5, it is just assumed that the sensor is initially in No Fault
state #1. Hence, the probability of being in state #4 is zero,
initially and subsequently.

Table 2 shows the transition rates g;; assumed for the model
in Figure 5. The transitions probabilities related to hardware
(first three lines in Table 2) were defined based on literature
and expert evaluations. The rate of permanent avionics fail-
ure (transition between states #1 and #3) is assumed similar
to what is considered in [12] for navigation system avionics.
Several causes of a system failure have probabilities of a few
points per a million hours each. We assumed the failure rate
of 10 per million hours. The backup activation failure rate
was assumed to be about three orders of magnitudes higher.
This reflects the activation time being a few seconds out of the
1000 second mission, but yielding a number of failures per
mission comparable with other causes. The assumed backup
activation rate is an inverse of the backup activation time of
5 sec. This activation time assumes that the temperature of

Transition (from state — to | Rate (sec™!) | Mean Time
state)

Avionics failure (1 — 3) 2.8-107Y 100,000 h
Backup activation failure 1-1074 10,000 s
4 —3)

Backup activation (4 — 1) 0.2 5s
Recovery for healthy sensor 0.1 10s
2—1)

Fault detection for faulty sen- 10 0.1s
sor (1 — 2)

Type 1I error: sensor healthy, 1-107° 28 h
but fault detected (1 — 2)

Type 1 error: recovery for | 2.5-107% 4,000 s
faulty sensor (2 — 1)

Table 2. Avionics fault model parameters

the backup sensor is controlled and stabilized and is mainly
time needed to boot up the sensor avionics. The backup ac-
tivation delay is a parameter of the trade study described in
the next section and 5 sec is just one of the values considered
(the nominal value).

Transitions probabilities related to FDIR (last four lines in
Table 2) were determined as a result of a Monte Carlo sim-
ulation analysis of the FDIR algorithm performance in low
Earth orbit docking approach. The FDIR algorithms and the
simulation scenario are described in our earlier paper [10]

FDIR model and Monte Carlo simulation

The Monte Carlo simulation was set up as follows. The
chaser and target spacecraft were simulated with 6 degrees
of freedom each, in low earth orbit. A visualization of the ap-
proach scenario is shown in Figure 6, and described in detail
in [10]. The spacecraft pictures and error ellipses are magni-
fied in the picture. The spacecraft dynamics were simulated
as two bodies in low Earth orbit with 6 degrees of freedom
each. Motion noise, sensor noise, and a proportional-integral-
derivative (PID) control are simulated, with the control sys-
tem using linear programming (LP) to schedule sensor firing.
The simulation generated relative navigation sensor measure-
ments. The simulation included essential components for au-
tonomous rendezvous.

The simulated relative navigation sensor had a nominal oper-
ating rate of 5 Hz, with time jitter added to simulate poten-
tial variation in the sensor’s output. It provided relative posi-
tion measurements throughout the flight, and relative attitude
measurements 70% of the time. The nominal noise of the
relative navigation sensor and the inertial navigation system
was modeled as Gaussian, with covariances equal to those ex-
pected for a typical human-rated spacecraft sensor suite. The
chosen values were for a Honeywell SIGI, found in [13], [16].
Inertial navigation measurements were simulated at 100 Hz.



Figure 6. Visualization of R-bar approach used for Monte
Carlo simulations.

The simulated docking procedure mimics the R-bar approach
of a chaser vehicle to the International Space Station [9]. Al-
ternative approaches, such as those currently proposed for the
Orion vehicle [6], are similar in terms of sensing require-
ments. The simulated approach begins at a 100 m range.
The control system uses a PID controller to track the ap-
proach path, and a linear program solver to optimally fire the
thrusters. The navigation system fuses inertial and relative
navigation data using a multi-rate Extended Kalman Filter
(EKF) as described in [24].

For the Monte Carlo analysis, 5000 random trajectories were
generated, with variation in the initial cross track position,
along track position, and orientation. Faults were injected at
a random range with random magnitude.

Several trends were observed. The smaller the random fault
magnitude, the more delay before it is detected. Regardless of
fault magnitude, the expected time to detection decays mono-
tonically after the fault onset. For smaller fault magnitudes,
on the scale of the spacing of retro-reflectors on the target
spacecraft, the distribution of time delays was close to expo-
nential. The time to detection histograms for random faults
with standard deviation of 0.7 m in each axis, and for faults
bounded to be less than 0.6 in magnitude, are shown in Fig-
ure 7 The range at which the fault occurs is randomly gener-
ated, as are the fault magnitudes. The data shown is for faults
under 0.6 m in magnitude. Although the numerical results
are specific to the parameters chosen for this simulation, they
provide one representative set of values for use in the avion-
ics fault model, validate the choice of time delay models, and
provide reasonable Type I and Type II error probabilities for
the FDIR algorithm.

5. ANALYSIS RESULTS

The PRA study was carried out by running the integrated
Markov chain model for a fixed interval of time and evaluat-
ing the probabilities of the three mission outcomes (success,
abort, mishap) in the end. The used simulation duration of
1000 seconds is representative.

For the nominal case parameters in Table 1 and Table 2, the
mission abort probability is 8.3 - 1072 and the mishap prob-
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Figure 7. Time delay from fault onset to fault detection in
Monte Carlo simulations of a spacecraft approach.
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Figure 8. Nominal case results depending on the backup
activation time

ability is 3.4 - 10~7. The abort probability below 0.01 can
be considered acceptable. The mission mishap probability
below 10~ is acceptable, cite [8]. Figure 8 shows how the
system performance characterization (the two probabilities)
varies when the backup sensor activation delay varies from
zero (hot stand-by) to infinity (no backup sensor). The un-
reliability numbers (abort and mishap probabilities) stay ac-
ceptable through the range of activation delays. In particular,
for the assumed model parameters the system with no backup
sensor (infinite activation delay) has acceptable performance.

A sensitivity analysis was performed by varying each of the
parameters in Table 2 an order of magnitude and observing
the change in the system performance characterization. A
strong dependence on FDIR performance parameters (which
were obtained as a result of Monte Carlo study) was ob-
served. The sensitivity to other problem parameters is rela-
tively small. Of all FDIR parameters, the highest sensitivity
is to the Type I error rate (false positive probability). The mis-
sion abort probability increases two orders of magnitude per
order of magnitude increase of the Type I error rate. Changes
in other parameters influence the results to a lesser extent.



The sensitivity to the FDIR parameters is high; at the same
time, accuracy of computing these parameters is not very
high. The FDIR parameters obtained in the Monte Carlo
simulation study are sensitive to many simulation parameters
which, in turn, are known only roughly. Therefore we felt
compelled to consider FDIR parameters that are shifted into
the unfavorable direction. Such Markov chain transition pa-
rameters for FDIR model are shown in Table 3. We will call
these worst-case parameters.

Transition (from state — to | Rate (sec™') | Mean Time
state)

Fault detection for faulty 0.1 10s
sensor (1 — 2)

Type II error:  sensor 5-1071 2,000 s
healthy, but fault detected

1—2)

Type I error: recovery for 0.001 1,000 s
faulty sensor (2 — 1)

Table 3. Worst case avionics fault model parameters

In addition to the above described results, we considered a
‘worst-case’ FDIR performance for parameters in Table 3.
(The remaining model parameters are in Tables 1 and 2).
The worst-case parameters yield mission abort probability of
2-10~% and the mishap probability of 2.9 - 1078, The results
for different backup sensor activation delays in the worst-case
parameter set are shown in Figure 9. One can observe that the
mission abort probability has a knee point for backup activa-
tion delay of 20-30 s. Decreasing the activation delay below
this number does not visibly improve the mishap probability.

The mishap probability decreases for large activation delay.
This is somewhat counterintuitive and is because the abort
probability increases much more. The mishap is caused by
uncovered failures of the backup sensor. In cases when the
mission is aborted because of the main sensor failure, the
backup sensor is not activated and there is no chance for a
mishap. Thus, the mishap probablity decreases if more faults
of the main sensor are detected.

The sensitivity analysis for the worst-case data set shows little
sensitivity to fault detection rate and Type II FDIR error rate
(false positives). The performance could become critically
bad for (i) slow FDIR recovery, and (ii) a large rate of Type
I FDIR errors (false negatives). This finding provides impor-
tant requirements to the FDIR algorithm design and tuning.

The overall finding is that the considered FT/RM architec-
ture provides acceptable performance even for the worst-case
parameters as long as the backup activation delay does not
exceed 20-30 sec. In that case mission abort probability is
less than 0.01 and mishap probability is less than 1076,

MISSION ABORT PROBABILITY
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Figure 9. Worst case results depending on the backup acti-
vation time

Study limitations

The most important limitation of the above analysis results is
that the abort guidance and control (G&C) logic is not con-
sidered. This is because the study focus was on the relative
navigation system and the G&C logic design for CEV AR&D
was not yet available at the time of this study. In fact the abort
G&C logic needs to be considered in interaction with relative
navigation. Our PRA model assumed that abort is always
possible if a sensor is lost. In fact, this might be untrue in the
immediate vicinity of the target, depending on the approach
speed. The PRA model also implicitly assumed that once the
backup sensor is activated it will come up on-line in time for
the docking. This might be untrue in the end of the approach
and depends on the G&C logic.

The reported study was necessarily limited in scope. The
mentioned limitations provide possible directions of enhanc-
ing the developed PRA model and improving the analysis.

6. CONCLUSIONS

This paper presented a probabilistic risk assessment study
for redundant relative navigation sensors in automated ren-
dezvous and docking of CEV spacecraft. An architecture
with a single off-line backup sensor was considered. The
backup activation delay is one of the study parameters. The
summary of the findings is as follows

1. The considered configuration with one active relative nav-
igation sensor and one cold backup sensor appears to ensure
an acceptable risk of mission abort or mishap for backup ac-
tivation delay of 20 sec or less.

2. For the worst-case model parameters, the mission abort
probability does not exceed 0.01 in the 1000 seconds of the
final approach. In all studied cases the mishap probability is
less than 3.5 - 10~7. This is true for backup sensor activation



delay less that 20 sec. This finding does not consider abort
guidance and control.

3. The results (specific probability numbers) strongly depend
on the Markov chain model of the FDIR performance. (The
previous conclusions assume the worst-case model.) The
Monte Carlo simulation study undertaken to quantify FDIR
performance parameters in the model was quite sensitive to
configuration and tuning of the FDIR algorithms. This em-
phasizes the importance of FDIR in the overall system design.
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