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Abstract. We propose and simulate a new paradigm for 
organization of motor control in fast and accurate 
human arm motions. We call the paradigm "direct 
motor program learning" since the control programs are 
learned directly without knowing or learning the dy- 
namics of a controlled system. 

The idea is to approximate the dependence of the 
motor control programs on the vector of the task 
parameters rather than to use a model of the system 
dynamics. We apply iterative learning control and scat- 
tered data multivariate approximation techniques to 
achieve the goal. The advantage of the paradigm is that 
the control complexity depends neither on the order nor 
on the nonlinearity of the system dynamics. 

We simulate the direct motor program learning 
paradigm in the task of point-to-point control of fast 
planar human arm motions. Simulation takes into ac- 
count nonlinear arm dynamics, muscle force dynamics, 
delay in low-level reflex feedback, time dependence of 
the feedback gains and coactivation of antagonist mus- 
des. Despite highly nonlinear time-variant dynamics of 
the controlled system, reasonably good motion preci- 
sion is obtained over a wide range of the task parame- 
ters (initial and final positions of the arm). The 
simulation results demonstrate that the paradigm is 
indeed viable and could be considered as a possible 
explanation for the organization of motor control of 
fast motions. 

1 Introduction 

Physiological studies of human motor control give 
strong evidence that at least fast human arm motions 
are open-loop controlled; see, for example, the survey 
by Adamovitch et al. (1990). The most general evidence 
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could be derived from the fact that a reflex positional 
feedback has a significant delay and a large feedback 
gain cannot be achieved. Thus, though being important 
for disturbance compensation, the reflex feedback alone 
could hardly provide the required precision of fast 
motions. A feedforward control (motor command) 
should be added to the feedback. The relation of the 
activation pattern of muscles to the resulting motion is 
rather complex, and it is not clear how this motor 
command is computed. A widespread belief is that it is 
somehow learned. 

Several researchers have recently simulated, or ex- 
perimentally studied, some paradigms of motor control 
learning, either in application to a human arm or to a 
robot manipulator motion; e.g. see Kawato (1989); 
Guez and Selinsky (1988); Kano and Takayama 
(1990); Yabuta and Yamada (1990); Dornay et al. 
(1991); Katayama and Kawato (1991) and the survey 
of Sanches and Hirzinger (1991). These papers consider 
some schemes for learning the inverse dynamics of the 
arm. With known inverse dynamics, a feedforward con- 
trol could be computed from the pre-planned arm 
motion. Though providing important insights into the 
problem, the cited papers use oversimplified models for 
fast human arm motions. Delayed reflex feedback with 
time-variant gains and nonlinear dynamics of muscle 
actuation in a biological system make inverse dynamics 
compensation a far more difficult problem than consid- 
ered there. 

In this paper we propose a new paradigm for motor 
control learning of fast human arm motions. The 
paradigm that we call "'direct motor program learning" 
is based on a rather straightforward approach related 
to some physiological ideas on (generalized)motor pro- 
gram control of human movements see, e.g. 
Adamovitch et al. (1990). 

To explain the paradigm, let us consider a motor 
control task described by a vector of parameters; for 
instance, the initial and final positions of a moving arm 
could be components of such a vector. Suppose that we 
have already learned and stored in memory (open-loop) 
motor control programs for some values of the parame- 
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ter vector. Then we can use these programs in an 
approximation (interpolation) procedure to compute 
control for other values of  the parameters. 

The direct motor  program learning paradigm was 
applied by Gorinevsky (1991) to the point-to-point 
control of a simulated two-link manipulator with joint 
elasticity. Gorinevsky (1992a) experimentally imple- 
mented the paradigm to solve a manipulator path 
tracking problem. 

In this paper we consider how control of fast point- 
to-point motions of  a simulated human arm could be 
organized within the paradigm. Unlike other papers on 
the simulation of  motor  control learning, we regard an 
arm model that includes highly nonlinear actuators 
(muscles), reflex positional feedback featuring a signifi- 
cant delay, nonlinear dynamics and time-varying gains. 
It is very hard to cope with such a system using 
standard automatic control approaches, even if all 
parameters of the model are known precisely. It is 
difficult, if  possible at all, to learn the inverse dynamics 
of  such a "bad"  object with one of  the previously 
proposed approaches, since a system with delayed feed- 
back has infinite-dimensional state-space representa- 
tion. furthermore, not all components of the state 
vector are being directly measured. Our primary goal is 
not to provide a more accurate explanation of  the 
available physiological data, but rather to demonstrate 
that the proposed paradigm copes with control of such 
a human arm model, which includes realistic features, 
without using a mathematical model of the arm dynam- 
ics. However, we hope that the results could provide a 
key to better understanding of  human motor control 
principles. 

We implement the paradigm in several steps, de- 
scription of  which comprises the main body of  this 
paper. The three steps are: 

1. Compact representation of the control programs 
that are needed to store the programs in a limited 
memory space 

2. Iterative learning of  the feedforward control pro- 
grams without using a model for the system dynam- 
ics 

3. Approximation of  a vector-valued multivariate map- 
ping; feedforward control program dependence on 
several task parameters for the mapping values being 
known at some scattered points 

All three steps are further described. The layout of 
the paper is as follows: In Sect. 2 we introduce input 
and output parameters for the controlled o b j e c t -  a 
biomechanical model for human a r m -  and present a 
formal statement of  the control problem. As a result of  
discretization, we build a finite input/output representa- 
tion of  the control task. Section 3 considers a procedure 
for adaptive learning of  the motor  program for a single 
motion. Section 4 briefly explains a method for approx- 
imating control programs over the task parameter do- 
main. Section 5 describes in some detail the arm model 
used in the simulation. Finally, Sect. 6 presents and 
discusses the results of  the simulation in learning motor 
control programs for fast arm motions. 

2 Representation of the control task 

As a controlled system, we consider a biomechanical 
model for two-joint human arm motions in a horizontal 
plane. Our first objective in the model choice was to 
take into account major features of human arm dynam- 
ics that make it a much more complicated system than 
a manipulator arm. The second objective was to use a 
standard model formulation previously discussed in 
other papers in order not to distract the reader's atten- 
tion from the control paradigm formulation. Our 
biomechanical model mostly follows the model of  van 
Sondern and Denier van der Gon (1990) and we formu- 
late it in more detail in Sect. 5. In this section we 
formulate an imput/output representation of the con- 
sidered motor control task that is used in our paradigm. 

2.1 General 

Let us consider a two-link arm moving in a horizontal 
plane. The arm has two simple rotational joints: shoul- 
der and elbow. We denote by ~b ~ and tk (2) the respec- 
tive joint angles that we count as the angles between the 
next link and the extension of the previous link. We 
assume that each of  the two arm joints is powered by a 
pair of  equivalent muscles: an equivalent flexor and an 
equivalent extensor. This muscle pair exerts a joint 
torque that is defined by an activation pattern of  the 
muscles. 

We consider a motor control task of  moving the 
arm fast from one given position to another. At initial 
time t = 0 the arm rests, and the joint angles are ~b~) ) 
and q~2). At final time t = T it should be resting in a 
new position with joint angles (])(e l) and (k(~ 2). We assume 
that to control the torque of joint i, an upper-level 
input signal r is used which is distributed between the 
flexor and extensor muscles of  the joint so that both 
muscles are nonnegatively activated. The signal ~(") is a 
sum of  a positional feedback and a feedforward input 
(motor  command) u (~ For  more details of  the model 
see Sect. 5. 

If  we apply no feedforward control to the arm, it 
will still move to the final position due to the reflex 
feedback. However, this motion is relatively slow and 
with an overshoot or undershoot. The control task is to 
find two feedforward control programs u(~)(-) and 
u(2)(-) for the shoulder and elbow joints so that the arm 
comes to a standstill at the final point precisely at the 
given time T. 

Our feedforward learning paradigm uses a black- 
box representation of the controlled system, so we do 
not need to describe the system in detail now. The 
algorithm rather needs a description of the input and 
output variables. 

2.2 Parameterization of the input and output 

Continuous-time functions u(O(-) describing the feedfor- 
ward input are defined by an infinite number of parame- 
ters. We search for the solution of  the control problem 
among a certain family of  feedforward programs de- 
pending on a reasonably small number of  parameters. 



Let us consider Nu sampling instants 

0 ~< tj ~< T, ( j  = 1, Nu) (1) 

and feedforward control of  the form 
Nu 

U(1)(t)= E e 2 k - l B k ( t )  
k= l  
Nu 

u(2)(t) = ~ U2kBk(t) (2) 
k= l  

where Uk are parameters of  the control and Bk(t) are the 
"shape functions". For  instance, one can choose Bk to 
be B-spline functions (see Gorinevsky (1992a), but here 
we suppose that Bk is an indicator function for the interval 
[tk_ 1, tk]. 

0, i f t < t k _ l o r  t l>tk  
Bk(t)= 1, i f t k _ l ~ < t < t k  (3) 

According to (1)- (3) ,  feedforward control programs 
are piece-wise constant functions with values U2k-1 
and U2k between sampling instants tk_ 1 and tk. The 
feedforward controls (2) are defined by a 2Nu- 
dimensional vector 

U = col({ Uk }~Nu ) (4) 

that we further call an input or control vector of  the task. 
A motor  command pattern for a fast human arm 

movement is modeled with a train of  rectangular pulses 
also in a paper by Wu et al. (1992), where results of  such 
modeling are fit to experimental data. 

We further consider arm motion at the time interval 
[0, TT ], Tf > T. For  t > T we compute feedforward as 
ue ) ( t ) -  0, (i = 1, 2). To discretize the output of  the 
control task, we consider Ny equidistant sampling in- 
stants Oj just after the control interval [0, T]. 

T <<. Oj <<. Tf, ( j  = l, Ny), Oj - Oj_ ~ = z (5) 

Let us consider an output vector Y E l{ 2Nv 

V = ~b(E)(Oy ) ~b(e2)jjj= ' (6) 

that consists of  the sampled joint-angle deviations from 
their final values. I f  the arm comes to the final position 
at time T without an overshoot, then vector Y is zero. 
Note that within our paradigm we can consider other 
forms of  output vector Y, e.g., one that includes deviation 
of  the tip motion from a preplanned path (see Gorinevsky 
1992a). 

The input vector U and the output vector Y 
are related by a complex non-linear mapping 
H : R 2N~ ~ R 2Ny 

Y = H(U) (7) 

Each point of  the mapping could be obtained by 
applying feedforward control (1 ) - (4 )  to an arm motion 
and observing the output data (5), (6). 

2.3 Performance index 

We can now reformulate the control problem as searching 
for input U (4) so that output Y (6) is in some sense 
minimal. Assuming that the controlled system is observ- 

221 

able, we can conclude that if the output  sampling interval 
z is sufficiently small, I lvl l--0 means that the arm comes 
to a standstill at the desired final state. The controlled 
system includes a delay and, thus, is infinite-dimensional 
from the control theory viewpoint. Therefore, no control 
of  the form (2) can move it precisely to the desired final 
state. However, we only need to solve the problem with 
some (not very high) finite accuracy. 

We proceed as in Gorinevsky (1991, 1992a). Let us 
introduce a performance index minimization problem 
that describes the task 

1 
IIYII 2 + IIult = - .  min (8) J=~ 

where Q > 0 is a scalar and I1"11 denotes the Euclidean 
norm of  a vector. 

I f  the controlled system is finite-dimensional, for 
Q ~ 0 the solution to (8) is close to a quadratic-optimal 
solution of  the terminal control problem with IIYII = 0; 
however, for finite Q > 0 the problem (8) is better posed 
and could be solved for an infinite-dimensional system 
(see Tikhonov and Arsenin 1979; Gorinevsky 1992b). 

The quadratic optimality criterion (8) is of  course an 
arbitrary assignment. According to some models (e.g., 
Flash and Hogan 1985; Uno et al. 1989; Dornay et al. 
1991), the human arm is controlled to minimize squared 
jerk, torque change rate or muscle tension change rate 
rather than energy. (Jerk is the rate of  acceleration 
change.) Since the acceleration is proportional to the 
control torque, the mentioned criteria are closely interre- 
lated. Our framework can be easily adapted to other 
forms of the optimality criterion (8). For  instance, by 
changing IIuII 2 in (8) to UTWU, where W is a convenient 
tridiagonal weighting matrix, one can obtain a criterion 
for a minimal squared torque change rate. Our simulation 
results demonstrate that though the performance index 
(8) does not explicitly include arm trajectory, it results 
in sufficiently smooth and realistic arm motion. 

We further consider the feedback gains, other control 
parameters and the control time T (1) to be the same for 
different motions. Under these conditions we can describe 
our motor  control task by a four-dimensional parameter 
vector 

p = CO1(~1), ~b(el), ~2) ,  ~(e2)) (9) 

where ~b~ 1) and q~2) are the shoulder and elbow joint 
angles at the beginning of  the motion and ~b(e 1) and $~2) 
are the desired joint angles at the end of  the motion. Of  
course, the mapping (7) depends on the task parameter 
vector (9). We do not write this dependence explicitly, but 
rather imply it. 

Our goal is to be able to design feedforward (motor  
command) programs u(i)(.), (i = 1, 2), for an arbitrary 
parameter vector (9) in a given domain. 

3 Learning 

3.1 Iterative method 

We can minimize the performance index (8) iteratively. 
Let U, be a guess at the solution to (8). Let an output 
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vector (6) Y, = H ( U t )  be experimentally obtained by 
applying the control Ut (2)-(4) during the arm motion. 

We can build the next, better approximation Uo to 
the solution of (8) with the Newton-Raphson method 

Fd2J1-1 dJ (10) 
Uo = U, - kdU2J dU 

where 

dJ r ~J 0J ~ Y (11) 
d ~  = G  ~ - ~ + ~ - ~ = G Z Y + 0  U, G=0- ~ 

The matrix G = ~Y/aU in (l l) is an input/output 
sensitivity matrix of the controlled plant. Columns of G 
mean the variation of the sampled output (7) corre- 
sponding to the unit variation of the respective compo- 
nent Uk of the input vector (4), i.e. variation of the 
control value at the interval [t k_  i, tk]. The Hessian 
matrix in (10) has the form 

d2d OG T 
dU 2 = QI + G r G  + - ~ -  Y (12) 

We neglect the last term in (12) since for e "~ 1 the 
solution to (8) gives IIY][ ,~ 1. Furthermore, if we 
change the Hessian matrix in (10) to another positive- 
definite matrix, this does not spoil the convergence but 
only reduces its rate. So we use a modified Newton- 
Raphson method of the form 

U(i + 1) = U(i) _ (0I  + G rG) - t(O U (i) + G Ty(i)) (13) 

where the upper index denotes iteration number. Each 
iteration includes trying the arm motion with control 
U (~ (2)-(4) and obtaining output y(o (5), (6). 

We can only use the iterative learning method (13) 
if we know the input/output sensitivity matrix G for the 
controlled system. Section 3.2 and Sect. 4 describe 
methods for obtaining an estimate of G. The learning 
algorithm (13) is conceptually close to the repetitive 
control algorithms of Arimoto et al. (1984), Arimoto 
(1990), Togai and Yamano (1986), Oh et al. (1988) and 
Messner et al. (1991). The robustness of convergence of 
the proposed iterative method and the influence of the 
imprecise knowledge of G on the convergence point 
have been considered by Gorinevsky (1992a). 

3.2 Adapta t ion  (on-line es t imat ion o f  G) 

As follows from Sect. 3.1, to achieve convergence of the 
learning procedure to the solution of (8) we should 
know the input/output sensitivity matrix G of the task. 
Though we do not precisely know the plant input/out- 
put properties in advance, we can try to estimate them 
(or to improve an available estimate) in the course of 
learning. 

Let us denote 

w(i) = u(i)  --  U ( i -  1), .7(0 - -  y ( i )  _ y ( i -  1) ( 1 4 )  

variations of the plant input and output, respectively, at 
learning iteration i. We suppose that 

z (i) = Gw (~ (15) 

and try to improve an estimate (~(o of the matrix G 
from data (14). We modify the estimate so that (15) 
holds precisely for it and that for any w orthogonal to 
w (~ the estimate of Gw does not change. We obtain the 
following kind of stochastic approximation procedure: 

w(i)T 
~ ( i +  1)= ~ ( i ) -  [a( i )w( i ) - -z ( i ) ] ,  (16) 

where fl is a small positive constant. 
Local convergence of the adaptive learning al- 

gorithm (13) follows from the fact that if the mapping 
(7) is linearized in the vicinity of the optimum, the error 
of estimate (16) does not increase. Thus the Newton- 
Raphson method is convergent in the vicinity of the 
extremum for any G in (13). 

In fact, (16) is a variation of the recursive projec- 
tion estimation algorithm popular in adaptive control 
(Goodwin and Sin 1984) and (13), (16) could be con- 
sidered as a one-step ahead adaptive control of the 
system (7). This makes available proofs of the adaptive 
control algorithm convergence applicable. To ensure 
persistency of excitation, we add a small self-excitation 
signal to (13). 

4 Approximation 

Let us assume that we already know a feedforward 
vector U (2)-(4) and an input/output sensitivity matrix 
G (11) for some motions, i.e. for some values of the 
parameter vector (9). We can use the learned data to 
build an approximation for the vector U and the matrix 
G over the domain of vector p. If the computed approx- 
imation for U does not provide a sufficiently small 
motion error, only a few learning iterations (13) with 
known approximation of G would be sufficient to 
achieve the desired accuracy. 

The considered approximation problem is nontriv- 
ial. The typical dimension of the parameter vector 
could be between 2 and 10. (In the control task that we 
are considering, dim p = 4.) The dimension of vector U 
could be between 10 and 100 and the dimension of 
matrix G could be up to I00 x 200 = 2 �9 104. A number 
of papers deal with scattered data approximation of 
multivariate functions, but they mostly consider scalar- 
valued functions. Such an approximation problem is 
nowadays considered as a typical problem for applica- 
tion of artificial neural network (ANN) approaches. 
Some of the ANN schemes have evolved from scattered 
data approximation methods that were developed ear- 
lier. We can use any of the suitable methods within our 
paradigm. A comparison made by Gorinevsky and 
Connolly (1992) shows that the method described be- 
low provides superior approximation accuracy and ro- 
bustness to the inaccuracy of the data. 

We follow McLain (1976), Foley (1986), Franke 
(1986), Farwig (1987) and Renka (1988) and approxi- 
mate dependencies U(p) and G(p) by fitting a multivari- 
ate polynomial to the data. 

First, let us consider the approximation problem for 
a scalar-valued function f(p), where p e R K. Suppose 



that we know function values at some given points in 
the parameter space y(O=f(p(O), (i = 1 , . . . ,  m). The 
problem is to find an estimate 33(0) for y(0) =f(p(0)). We 
consider the estimate of the form 

fi(o)= ~ aiy(i) (17) 

where the weights a~ depend only on vectors p(O) and p(O 
(i = 1 . . . .  , m) and do not depend on the function 
values y(i). For a vector or matrix-valued functions 
U(p) and G(p) we can use estimates of the same form 
(17) for each vector component or matrix entry. 

We suppose that the points p(O, (i = 1 . . . . .  m) lie 
"in the vicinity" of  the point p(O). Otherwise we could 
choose such points from the whole set. Let us formulate 
the problem as a classical regression problem. 

Let us write the Taylor expansion in the vicinity of 
the point p(O): 

y( i ,= f(p(O)) + 
q=l 

1 "~ t32f d(q~ d~~ + e(~ + e (0 (18) 
-'b 2 q,r= l (~Pq C3Pr 

where d (o = p(O _ p(O), e(O is an error of  measuring y(O 
and e (~ is a mismatch of  the Taylor expansion. 

In fact, we know neither f(p(o)) nor derivatives of 
the function f .  We can assume, however, that we know 
some bounds on their values. To compute an estimate 
of  y(O)=f(p(O)), let us consider f(p(O)), c~fl~pq(p(O)), 
82f/(Sp~p~)(p(O)), ~(o and e (~ as independent zero- 
mean random variables. We further assume that we 
know covariances of  these variables that give an idea of  
their value bounds: 

<f2(p) > = ~,2 

af 

t,a / / 

<(e(i))=> = ~6ct6~lld(;,ll6 

= 

(q, r = 1 , . . . , K )  

(19) 

where <.> denotes mathematical expectation. Parameter 
has the meaning of  "wavelength" of  the funct ionf(p) .  

This is, for a variation A p of the parameter vector (9) 
so that IIApll =~ ,  the function value significantly 
changes. Parameter ~ could be assigned a value by 
considering a physical meaning of  the task parameters. 
Expression for ((e(~ in (19) follows from the esti- 
mate of  the Taylor expansion residual in (18) that have 
the form 

e(i) :--1 ~ ~ 3f (n(i)]l~(i)d(i)d(i) (20) 
6 q, r,s = I ~Pq 63Pr ~Ps xr  ,,-q --r -'s 

where ~(o is a point in the vicinity of  p(O and p(O). 
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Let us write (18) in the vector form as 

y(O = FrD(O + e(O + e(o (21) 

D (~ = col(l ,  dt ~ . . . . .  d(q i) . . . . .  d~i)d~ 0 . . . .  ), 

F = col (f(p(O), d_~l (p(O)), ~f  . . . .  apq (p(O)), 

c~2f (o) ( p ) , . . . )  (22) 
ap-~ps 

By introducing a matrix D = [D (1) . . . . .  D (m)] and 
vectors Y = col(y (1) . . . .  , y(m)) and 8 = coRe (1) + e (1), 
. . . ,  e (m) + e(=)) we can represent our regression prob- 
lem in the form 

y r =  FrD + ~r  (23) 

where the matrix D and vector Y are known and g and 
F are unknown zero-mean vectors with known covari- 
ances. 

We search for the least covariance estimate of  the 
form 

p(o)= ~ a i y ( i ) = y r a ,  a=co l ({a i}~ l )  
i=1 

Since y(0) =f(p(0)) = Frl, where l = col( 1, 0 . . . .  ,0), we 
may write the estimate in the form 

) 3(0) = Yra = Frl  + 1"1 (24) 

where ~/ is an estimation error. 
Solving (23) and (24) for the vector a that provides 

least-covariance zero-mean r/results in 

a = (A + D r ~ D )  - 'D  r~'l, (25) 
A = ( ~ r > ,  ~ = (FFr> 

where A and W are diagonal matrices with entries 
defined by (22) and (19). 

A similar-looking solution to a polynomial fitting 
problem was proposed by Atkeson (1991). However, 
Atkeson (1991) obtained an expression of the form (25) 
as a regularized solution to the ill-posed polynomial 
fitting problem. Our solution is based on the stochastic 
model (19) of the mapping to be approximated. There- 
fore the regularization parameters have clear physical 
meaning. This helps in choosing them. 

Here we describe a method for fitting a quadratic 
Taylor expansion to the data. However, the method 
could be easily generalized for any order of  the expan- 
sion. 

The result of (25) depends on some parameters of  
(19) that describe function f (p) ,  i.e. the "wave length" 
0t and the relative inaccuracy of  the available data Z/~k. 
Regression model (19) gives a very general and rough 
description of  the mapping to be approximated. As we 
have little a priori information about the mapping, it is 
quite reasonable to assume the same stochastic model 
(19) for each vector component  or matrix of  the entry 
vector and a matrix-valued function U(p) and G(p). In 
this case we can compute the weight vector a (25) only 
once for all components and the considered approxima- 
tion method has complexity that is only linear in the 
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dimension of  the approximated function. With the 
parameter vector p composed of  the joint angles at the 
beginning and the end of  the motion, it is quite natural 
to choose a = 1 radian in (19). We have assumed that 
the relative inaccuracy of  the data is ;(/~ = 10 - 2 .  

The described approximation method is local in the 
sense that it supposes points p(O to lie close to p(0). In the 
learning process described in Sect. 6, the points where 
the function value is known are scattered over the whole 
parameter vector domain and we use a fixed number of  
the closest points for the approximation. The built 
approximation does not smoothly depend on the 
parameter vector p(0), since the set of  closest points could 
change as p(0) shifts. However, high precision is more 
important to us than the smoothness of  approximation. 

5 Biomechanical model of the human arm 

This section describes a biomechanical model for planar 
arm motion that we used to simulate the work of the 
algorithm in Sects. 2-4 .  Much of  the model and the 
data coincide with those used by van Sondern and 
Denier van der Gon (1990) but our model differs in 
how the control is organized. Below is a brief model 
formulation that we present for completeness' sake. It 
can be omitted on the first reading. 

5.1 Muscle 

As stated in Sect. 2, we consider the total of  four 
fictitious equivalent muscles making two antagonist 
pairs, each powering a single joint. The four muscles 
have the same parameters and properties. 

We assume that the force P exerted by a muscle is 
independent of  the muscle length and depends on the 
muscle shortening velocity v as 

~Fi(b -a/Fo)/ (v  +b) ,  v i>0, 
P = ( F  i(x k v ) / ( x - v ) ,  v <O, 

x = ( k  - 1)b/(1 +a/Fo) (26) 

For  muscle shortening (v > 0), (26) gives the Hill 
equation modified to include isometric force F~ for the 
current levels of  the muscle activation. We use the same 
parameters of  the Hill equation as van Sondern and 
Denier van der Gon ( 1990): a/Fo = 0.25 and b = 0.2 m/s. 
However unlike van Sondern and Denier van der Gon, 
who assumed force during muscle lengthening to be the 
same as isometric, (26) assumes that for lengthening 
(v < 0) the force-velocity curve is also a hyperbolic that 
approaches the value of  kF~ for fast lengthening and 
smoothly matches the Hill curve as v tends to zero. In 
simulations we set k = 1.1. This part of  the force-velocity 
dependence is needed to get smooth right-hand sides of  
the governing differential equations of  the system and 
ensure that the input/output mapping (7) is smooth. The 
Hill curve modification of  the form (26) is used by many 
authors, though real muscle behavior at lengthening is 
much more complicated (see, e.g. Morgan 1990 for 
discussion). 

We consider the isometric force F~ to be obtained 
from muscle activation signal �9 after the first-order 
low-pass filtering with time constant of  40 ms. This 
gives us a typical form of the muscle force twitch. 

5.2 Joint control 

5.2.1 Kinematics. Following van Sondern and Denier 
van der Gon (1990) we assume kinematics of the mus- 
cle attachment to be the same for the shoulder and 
elbow joints. Let ~b be the angle between two adjoined 
links; ~b = ~b (l) for the shoulder joint or q~ = ~b (2) for the 
elbow. The flexor is attached to the links at the dis- 
tances I and hf from the joint center and pulls along the 
line passing via the attachment points. Once ~b, I and hf 
are known, we can compute the mechanical advantage 
df of  the flexor by simple trigonometry. We consider d s 
to be not less than 1 cm. The mechanical advantage de 
of  the extensor was taken to be constant. The kinemat- 
ical data used in the simulation are the same for the two 
joints: l = 32 cm, de = 2 cm and h s = 5 cm. 

The torque generated in the joint by the muscle pair 
can be computed as T = Pydy- Pede, where the flexor 
and extensor forces Ps and Pe are computed as de- 
scribed in Sect. 5.1. One can find the velocities v I and ve 
of  the flexor and. extensor, shortening from the joint 
angular velocity ~b as v s = ~b/d s and Ve = -- ~/de. 

5.2.2 Control of  antagonist muscle pair. Following Feld- 
man (1979) we consider the muscles powering a joint to 
be controlled as a whole and an input signal to be 
distributed between flexor and extensor muscles. We 
assume that a single input signal Q defines the flexor and 
extensor activation levels ~s and ~e (before the low-pass 
filtering) as 

q~f= ~a(Q/df ), ~)e = - ~',~(-Q/de), (27) 

where 7J~ (x) is a smooth function such that ~a (x) = 0 
for x ~ - ~ ,  ~ (x) = x for x ~ - ~ and 
~a (x) - ~ ( - x) = x. We assume 7in to be a piece-wise 
quadratic function of the form 

x, for x > 4A 

7tn(x) = (x +4A)2/(16A), for Ixl <4A (28) 

0, for x ~< - 4 A  

Expressions (27) and (28) mean that for large nega- 
tive activation, only the extensor is activated, and for 
large positive activation, only the flexor; in the middle, 
smooth transition of  activation levels takes place. In 
stationary state the joint torque generated by the two 
muscles according to (27) is just Q. For  zero input Q, the 
antagonist muscles exert opposite sign torques of  the 
magnitude A. Thus, A could be considered as a muscle 
tonus parameter. In the terminology of  Feldman (1979), 
A is a coactivation command. If  computed by a positional 
reflex feedback, Q corresponds to a reciprocity command. 

Presence of the muscle tonus increases dissipation in 
the system due to negative slope of  the Hill curve. This 
stabilizes the system and prevents oscillatory behavior 
that otherwise occurs in simulation due to the reflex 
feedback delay. 



5.2.3 Joint torque control. We consider the joint input 
torque Q to consist of  a delayed PD positional (reflex) 
feedback and a feedforward term 

Q(t) = k[cke - ~( t  - ~)] - b~(t  - z) + u(t) (29) 

where z is the stretch-reflex feedback delay, ~b is the 
measured joint angle, ~b e is the desired joint angle at the 
end of  the motion, k and b are reflex feedback gains 
and u is a feedforward input computed as described in 
Sects. 2 -4 .  The input Q is further distributed between 
the antagonist muscles according to (27). 

Van Sondern and Denier van der Gon (1990) con- 
sidered (velocity) feedback without a delay because 
otherwise they have had problems with oscillations 
appearing in the simulated motion. Our model takes 
into account coactivation of the antagonist pair (see 
Sect. 5.2.2), so the system has sufficient dissipation and 
remains stable despite the delay. 

Using the model of van Sondern and Denier van 
der Gon (1990) we supposed the feedback stiffness to 
be zero during the first 100 ms of the motion, grow 
linearly to 10 Nm/rad during the next 100 ms and then 
remain constant until the motion ends. 

We used the relation between positional and veloc- 
ity feedback and reflex delay obtained for human elbow 
joint movements by Zahalak and Pramod (1985) 
though we did not count the delayed acceleration feed- 
back term that was included in their model. So, we 
supposed that in (29) b = k .  0.12 s and r = 27ms al- 
ways holds. 

As to the value A of  the coactivation command, we 
supposed that it is 2.5 Nm during the first 100 ms of 
motion, then linearly grows to 10 Nm during the next 
100 ms and remains at 10 Nm thereafter. The growth of  
the coactivation was instrumental in keeping the system 
stable as the feedback gains grow, and correlates with a 
model of  Feldman (1979). 

5.3 Arm  dynamics 

When considering the dynamics of  the planar arm 
motion we neglect the motion of  the muscles with 
respect to the arm links, and model the arm as two rigid 
bodies connected by two cylindrical joints. By introduc- 
ing an arm configuration vector q = col(q~ (1), ~)(2)) one 
can write an equation of the arm dynamics in the form 
(see Craig 1986) 

M(q)~ + C(q, r = T (30) 

where M(q) is an inertia matrix, vector C(q,/!) gives 
Coriolis and centrifugal forces, and T is a vector of  
joint torques generated by the muscles. The equations 
of motion are given in more detail, together with the 
parameters we used, in van Sondern and Denier van der 
Gon (1990). 

The complete model of  the arm motion used in the 
simulation includes equations of motion (30), where 
torques are computed as described in Sects. 5.1 and 5.2. 
As stated in Sect. 5.2, four muscle forces depend on the 
states of the four respective low-pass filters. The de- 
layed feedback law (29) means that we have also to 
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keep the history of  the joint angles in the computer 
memory during the simulation. The overall simulated 
system is rather complex and nonlinear. 

6 Simulation results 

6.1 Learning a single motion 

In the simulation we used the algorithms of  Sects. 2 - 4  
to control the system described in Sect. 5. We consid- 
ered the feedforward control interval (1) to be T = 0.3 s 
and the observation interval (5) to be Ty = 0.6 s. Figure 
4 demonstrates a typical form of  the piece-wise constant 
feedforward input (2). The feedforward value changes 
at time points 0.00, 0.06, 0.12, 0.18, 0.24, 0.27 and 
0.30 s and is described by a 12-dimensional vector U 
(4). We choose times of  control switching without any 
relation to physiological data, just so that they allow 
reasonably good control of  the simulated arm motions. 
Two last pulses have shorter duration and are needed 
to better dampen the overshoot and vibrations due to 
delays in muscle activation and in the reflex feedback 
loop. 

To monitor how precisely the a r m  comes to the 
final position, we used the position measurements sam- 
pled between t = T = 0.3 s and t = Tf  = 0.6 s with inter- 
val ~ = 0.03 s. They give us a measurement vector Y (7) 
of  dimension 20. 

Figure 1 shows the end-point trajectory for the 
learned motion from 20 ~ to 60 ~ in the shoulder joint 
and from 60 ~ to 120 ~ in the elbow joint. The overshoot 
is negligible and the motion smooth. Simulation shows 
that the learned feedforward reduces error IIY[I more 
than 20-fold. Figure 2 presents time histories of  joint 
angular velocities for the same motion which look 
similar to those observed experimentally by other 
authors. 

Figure 3 displays the learned feedforward input and 
the activation pattern of  the muscles (combined feed- 
back and feedforward) for the motion. The activation 
signals could be considered as an analogue of  muscle 
activation level monitored via electromyography in a 
respective physiological experiment. In our simulation, 

f 

Fig. 1. Example of an end-point trajectory for learned motion 
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Fig. 2. Joint angular velocity history in radians per second. Solid line, 
shoulder angle; dashed line, elbow angle 

coact ivat ion o f  the antagonis t  muscles is kept constant  
after the end o f  the mot ion.  This can part ly explain the 
difference between the presented plots and the experi- 
mentally recorded E M G  appearance.  In human  ann  
mot ion  the coact ivat ion diminishes at the end of  the 
mot ion  (Adamovi t ch  et al. 1990). 

6.2 Filling the databases 

We simulated the process o f  learning control  for a// 
mot ions  in a certain domain.  The simulation proceeded 
as follows. First, the mot ion  parameter  vector p (9) 
defining the mot ion  trajectory was generated as a ran- 
dom vector with componen t s  in the domain  29 ~ ~< ~b~ ~, 
~(e l) ~< 142~ 14 ~ ~< Cb(b 2), q~(e 2) ~< 158 ~ 

Next, the da ta  for  the closest values o f  p (9) were 
extracted f rom the databases  that  contain the already 
learned control  vector  U and the sensitivity matrix G. 

The data  were used in an approximat ion procedure o f  
Sect. 5 to find estimates for  U and G. These estimates 
were used and further improved in an iterative learning 
procedure described in Sect. 3. The learning is s topped 
when the error I I Y I I  (6) o f  coming to the final position 
is small enough to give a mean hand  deviation o f  less 
than 2 cm. I f  more  than one learning iteration is done, 
the new learned control  is added to the database,  and if 
more  than four, the improved estimate for the sensitiv- 
ity matrix G is also stored. Then the process repeats for 
a new r andom point  p in the task parameter  space. 

The learning process is illustrated in Fig. 4, where 
the error Ilvll is shown vs a number  o f  the randomly  
generated task parameter  vector (9). A tolerable error 
[Iv[I is shown by a dashed line. The error diminishes as 
more  data  are stored in the databases. In fact, after 
some 250 generated points the error  is mostly within the 
prescribed bounds,  and points with greater error  be- 
come increasingly rare. 

For  many  generated points, the approximated con- 
trol gives sufficiently accurate mot ion,  and no repetition 
o f  the mot ion  is done at all. Figure 5 shows the 
percentage o f  the poin ts  where learning was needed in 
each set o f  100 consecutive r andom points. One can see 
that  the percentage diminishes fast. 

At  the end of  the process shown in Figs. 4 and 5, 
the learned control  vectors U were stored at 150 points 
and the sensitivity matrices G at 39 points, resulting in 
51 kbytes o f  storage memory.  Figure 6 represents the 
motions,  for which vectors U are stored, by lines con- 
necting initial and final a rm tip position. 

Let us assume that for control  o f  a three-dimen- 
sional point- to-point  mot ion  the density o f  the stored 
data  in the parameter  space should be the same as in 
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Fig. 3. Pattern of the muscle activation. 
Left plot, shoulder joint; right plot, 
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joint input torque u (29) scaled as u~ 
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Fig. 4. Dependence of the motion error 
for the approximated control on the 
number of the generated set of the 
motion parameters. Vertical dotted lines 
show error diminishing in learning. 
Horizontal dashed line gives an accept- 
able error 
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Fig. 5. Percentage of points where learning is needed among the 
generated sets of the motion parameters. Solid line, learning of U; 
dashed line, learning of G 

the presented case. In that case we obtain that vector U 
should be stored for about 1503/2~ 1800 trajectories. 
This is obviously a reasonable amount. In fact, even 
fewer movements should be learned since the accuracy 
achieved in our simulation is significantly higher than 
that of fast human movements. 

Of course, fast human motions involve coordinated 
work of many more muscle groups and joints than we 
are considering. However, we believe that our paradigm 
is backed by the synergy concept of  Bernstein (1947). 
According to this concept, the variability of  fast coordi- 
nated human motions is due to variations of  a few 
parameters, the number of which is much less than the 
number of body degrees of  freedom involved in the 
motion. And for a moderate number of  the task parame- 
ters our paradigm provides a possible means of  motor  
control organization. 
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Fig. 6. Percentage of points where learning is needed among the 
generated sets of the motion parameters. Solid line, learning of U; 
dashed line, learning of G 

6.3 Discussion o f  the results 

6.3.1 General. The results of  this paper prove that the 
proposed paradigm of  direct motor  program learning 
can provide control of  fast human arm motions. The 
model used for arm motion incorporates elements re- 
sembling the nonlinearities, delays and time dependen- 
cies that are typical for biological systems and that make 
them very difficult to control with methods convention- 
ally used for control of  technical systems. 

The present results could help us to understand the 
basic principles of  motor  control of  fast human motions. 
The paradigm could be also of  practical use for robotics 
and control of  other complex technical systems. Some 
robotic applications of  the concept have been considered 
in Gorinevsky (1991, 1992a), and other will be discussed 
in future publications. 

Though our aim was to avoid using a model for the 
system dynamics, we should recognize that, in fact, the 
databases for U and G that are used in the learning 
process do constitute such a model. This model is specific 
for a control task. The advantage of  having such a 
task-dependent model instead of  learning a model for 
system dynamics is that, in our paradigm, the amount  of  
data stored depends only on the number of the task 
parameters and not on the complexity of the dynamics. 

Unlike our paradigm, a dynamical model could be 
used for control of  motions other than learned. This, 
however, requires extensive computations during or 
before the motion. Our paradigm relies on the memory 
instead, which we believe is more typical for biological 
systems. One can also speculate that humans who are 
able to perfectly control motions in some tasks require 
additional training and experience to master a new task. 
This is in line with out paradigm. 

This work has left many questions open for further 
research. One of  them is how to organize experience 
accumulated in the databases so that it could be used in 
several different tasks. A possible solution is to divide 
tasks into some elementary or primitive motions and 
learn control of  these motions with our paradigm. 
Whatever the advantages and properties of  the proposed 
paradigm are, we do not consider it an ultimate explana- 
tion or solution. The goal of  this work is rather to add 
a new dimension to the understanding of  possible ways 
of  human motor  control organization. 

6.3.2 Algorithms. We implement our concept of  direct 
motor  program control in the algorithms of Sects. 3 and 
4 with some degree of  looseness. There are several parts 
and parameters of the algorithms that could be changed, 
replaced or elaborated. 

First, we do not discuss in Sections. 2 and 5 how to 
choose the parameterization of  control or, at least, 
timing of the control switching. Next, it is clear that the 
presented algorithms for the control learning and input/ 
output sensitivity estimation are not the only ones 
applicable or similar to those used in nature. The 
approximation algorithm of  Sect. 4 is also not the only 
one that could be used. However we consider it impor- 
tant that all algorithms do successfully work together 
and solve an otherwise very complicated control task. 
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