
Biol. Cybern. 69, 219-228 (1993) Biological
Cybernetics
�9 Springer-Verlag 1993

Modelling of direct motor program learning in fast human arm motions
Dimitry M, Gorinevsky *

Lehrstuhl B fiir Mechanik, Technische Universitfit Mfinchen, Postfach 20 24 20, W-8000 Mfinchen, Germany

Received: 6 April 1992/Accepted in revised form: 18 January 1993

Abstract. We propose and simulate a new paradigm for
organization of motor control in fast and accurate
human arm motions. We call the paradigm "direct
motor program learning" since the control programs are
learned directly without knowing or learning the dy-
namics of a controlled system.

The idea is to approximate the dependence of the
motor control programs on the vector of the task
parameters rather than to use a model of the system
dynamics. We apply iterative learning control and scat-
tered data multivariate approximation techniques to
achieve the goal. The advantage of the paradigm is that
the control complexity depends neither on the order nor
on the nonlinearity of the system dynamics.

We simulate the direct motor program learning
paradigm in the task of point-to-point control of fast
planar human arm motions. Simulation takes into ac-
count nonlinear arm dynamics, muscle force dynamics,
delay in low-level reflex feedback, time dependence of
the feedback gains and coactivation of antagonist mus-
des. Despite highly nonlinear time-variant dynamics of
the controlled system, reasonably good motion preci-
sion is obtained over a wide range of the task parame-
ters (initial and final positions of the arm). The
simulation results demonstrate that the paradigm is
indeed viable and could be considered as a possible
explanation for the organization of motor control of
fast motions.

1 Introduction

Physiological studies of human motor control give
strong evidence that at least fast human arm motions
are open-loop controlled; see, for example, the survey
by Adamovitch et al. (1990). The most general evidence

* Present address: Robotics and Automation Laboratory, University
of Toronto, 5 King's College Road, Toronto M5S 1A4, Canada

could be derived from the fact that a reflex positional
feedback has a significant delay and a large feedback
gain cannot be achieved. Thus, though being important
for disturbance compensation, the reflex feedback alone
could hardly provide the required precision of fast
motions. A feedforward control (motor command)
should be added to the feedback. The relation of the
activation pattern of muscles to the resulting motion is
rather complex, and it is not clear how this motor
command is computed. A widespread belief is that it is
somehow learned.

Several researchers have recently simulated, or ex-
perimentally studied, some paradigms of motor control
learning, either in application to a human arm or to a
robot manipulator motion; e.g. see Kawato (1989);
Guez and Selinsky (1988); Kano and Takayama
(1990); Yabuta and Yamada (1990); Dornay et al.
(1991); Katayama and Kawato (1991) and the survey
of Sanches and Hirzinger (1991). These papers consider
some schemes for learning the inverse dynamics of the
arm. With known inverse dynamics, a feedforward con-
trol could be computed from the pre-planned arm
motion. Though providing important insights into the
problem, the cited papers use oversimplified models for
fast human arm motions. Delayed reflex feedback with
time-variant gains and nonlinear dynamics of muscle
actuation in a biological system make inverse dynamics
compensation a far more difficult problem than consid-
ered there.

In this paper we propose a new paradigm for motor
control learning of fast human arm motions. The
paradigm that we call "'direct motor program learning"
is based on a rather straightforward approach related
to some physiological ideas on (generalized)motor pro-
gram control of human movements see, e.g.
Adamovitch et al. (1990).

To explain the paradigm, let us consider a motor
control task described by a vector of parameters; for
instance, the initial and final positions of a moving arm
could be components of such a vector. Suppose that we
have already learned and stored in memory (open-loop)
motor control programs for some values of the parame-

220

ter vector. Then we can use these programs in an
approximation (interpolation) procedure to compute
control for other values of the parameters.

The direct motor program learning paradigm was
applied by Gorinevsky (1991) to the point-to-point
control of a simulated two-link manipulator with joint
elasticity. Gorinevsky (1992a) experimentally imple-
mented the paradigm to solve a manipulator path
tracking problem.

In this paper we consider how control of fast point-
to-point motions of a simulated human arm could be
organized within the paradigm. Unlike other papers on
the simulation of motor control learning, we regard an
arm model that includes highly nonlinear actuators
(muscles), reflex positional feedback featuring a signifi-
cant delay, nonlinear dynamics and time-varying gains.
It is very hard to cope with such a system using
standard automatic control approaches, even if all
parameters of the model are known precisely. It is
difficult, if possible at all, to learn the inverse dynamics
of such a "bad" object with one of the previously
proposed approaches, since a system with delayed feed-
back has infinite-dimensional state-space representa-
tion. furthermore, not all components of the state
vector are being directly measured. Our primary goal is
not to provide a more accurate explanation of the
available physiological data, but rather to demonstrate
that the proposed paradigm copes with control of such
a human arm model, which includes realistic features,
without using a mathematical model of the arm dynam-
ics. However, we hope that the results could provide a
key to better understanding of human motor control
principles.

We implement the paradigm in several steps, de-
scription of which comprises the main body of this
paper. The three steps are:

1. Compact representation of the control programs
that are needed to store the programs in a limited
memory space

2. Iterative learning of the feedforward control pro-
grams without using a model for the system dynam-
ics

3. Approximation of a vector-valued multivariate map-
ping; feedforward control program dependence on
several task parameters for the mapping values being
known at some scattered points

All three steps are further described. The layout of
the paper is as follows: In Sect. 2 we introduce input
and output parameters for the controlled o b j e c t - a
biomechanical model for human a r m - and present a
formal statement of the control problem. As a result of
discretization, we build a finite input/output representa-
tion of the control task. Section 3 considers a procedure
for adaptive learning of the motor program for a single
motion. Section 4 briefly explains a method for approx-
imating control programs over the task parameter do-
main. Section 5 describes in some detail the arm model
used in the simulation. Finally, Sect. 6 presents and
discusses the results of the simulation in learning motor
control programs for fast arm motions.

2 Representation of the control task

As a controlled system, we consider a biomechanical
model for two-joint human arm motions in a horizontal
plane. Our first objective in the model choice was to
take into account major features of human arm dynam-
ics that make it a much more complicated system than
a manipulator arm. The second objective was to use a
standard model formulation previously discussed in
other papers in order not to distract the reader's atten-
tion from the control paradigm formulation. Our
biomechanical model mostly follows the model of van
Sondern and Denier van der Gon (1990) and we formu-
late it in more detail in Sect. 5. In this section we
formulate an imput/output representation of the con-
sidered motor control task that is used in our paradigm.

2.1 General

Let us consider a two-link arm moving in a horizontal
plane. The arm has two simple rotational joints: shoul-
der and elbow. We denote by ~b ~ and tk (2) the respec-
tive joint angles that we count as the angles between the
next link and the extension of the previous link. We
assume that each of the two arm joints is powered by a
pair of equivalent muscles: an equivalent flexor and an
equivalent extensor. This muscle pair exerts a joint
torque that is defined by an activation pattern of the
muscles.

We consider a motor control task of moving the
arm fast from one given position to another. At initial
time t = 0 the arm rests, and the joint angles are ~b~))
and q~2). At final time t = T it should be resting in a
new position with joint angles (])(e l) and (k(~ 2). We assume
that to control the torque of joint i, an upper-level
input signal r is used which is distributed between the
flexor and extensor muscles of the joint so that both
muscles are nonnegatively activated. The signal ~(") is a
sum of a positional feedback and a feedforward input
(motor command) u (~ For more details of the model
see Sect. 5.

If we apply no feedforward control to the arm, it
will still move to the final position due to the reflex
feedback. However, this motion is relatively slow and
with an overshoot or undershoot. The control task is to
find two feedforward control programs u(~)(-) and
u(2)(-) for the shoulder and elbow joints so that the arm
comes to a standstill at the final point precisely at the
given time T.

Our feedforward learning paradigm uses a black-
box representation of the controlled system, so we do
not need to describe the system in detail now. The
algorithm rather needs a description of the input and
output variables.

2.2 Parameterization of the input and output

Continuous-time functions u(O(-) describing the feedfor-
ward input are defined by an infinite number of parame-
ters. We search for the solution of the control problem
among a certain family of feedforward programs de-
pending on a reasonably small number of parameters.

Let us consider Nu sampling instants

0 ~< tj ~< T, (j = 1, Nu) (1)

and feedforward control of the form
Nu

U(1)(t)= E e 2 k - l B k (t)
k= l
Nu

u(2)(t) = ~ U2kBk(t) (2)
k= l

where Uk are parameters of the control and Bk(t) are the
"shape functions". For instance, one can choose Bk to
be B-spline functions (see Gorinevsky (1992a), but here
we suppose that Bk is an indicator function for the interval
[tk_ 1, tk].

0, i f t < t k _ l o r t l>tk
Bk(t)= 1, i f t k _ l ~ < t < t k (3)

According to (1)- (3) , feedforward control programs
are piece-wise constant functions with values U2k-1
and U2k between sampling instants tk_ 1 and tk. The
feedforward controls (2) are defined by a 2Nu-
dimensional vector

U = col({ Uk }~Nu) (4)

that we further call an input or control vector of the task.
A motor command pattern for a fast human arm

movement is modeled with a train of rectangular pulses
also in a paper by Wu et al. (1992), where results of such
modeling are fit to experimental data.

We further consider arm motion at the time interval
[0, TT], Tf > T. For t > T we compute feedforward as
ue) (t) - 0, (i = 1, 2). To discretize the output of the
control task, we consider Ny equidistant sampling in-
stants Oj just after the control interval [0, T].

T <<. Oj <<. Tf, (j = l, Ny), Oj - Oj_ ~ = z (5)

Let us consider an output vector Y E l{ 2Nv

V = ~b(E)(Oy) ~b(e2)jjj= ' (6)

that consists of the sampled joint-angle deviations from
their final values. I f the arm comes to the final position
at time T without an overshoot, then vector Y is zero.
Note that within our paradigm we can consider other
forms of output vector Y, e.g., one that includes deviation
of the tip motion from a preplanned path (see Gorinevsky
1992a).

The input vector U and the output vector Y
are related by a complex non-linear mapping
H : R 2N~ ~ R 2Ny

Y = H(U) (7)

Each point of the mapping could be obtained by
applying feedforward control (1) - (4) to an arm motion
and observing the output data (5), (6).

2.3 Performance index

We can now reformulate the control problem as searching
for input U (4) so that output Y (6) is in some sense
minimal. Assuming that the controlled system is observ-

221

able, we can conclude that if the output sampling interval
z is sufficiently small, I lvl l--0 means that the arm comes
to a standstill at the desired final state. The controlled
system includes a delay and, thus, is infinite-dimensional
from the control theory viewpoint. Therefore, no control
of the form (2) can move it precisely to the desired final
state. However, we only need to solve the problem with
some (not very high) finite accuracy.

We proceed as in Gorinevsky (1991, 1992a). Let us
introduce a performance index minimization problem
that describes the task

1
IIYII 2 + IIult = - . min (8) J=~

where Q > 0 is a scalar and I1"11 denotes the Euclidean
norm of a vector.

I f the controlled system is finite-dimensional, for
Q ~ 0 the solution to (8) is close to a quadratic-optimal
solution of the terminal control problem with IIYII = 0;
however, for finite Q > 0 the problem (8) is better posed
and could be solved for an infinite-dimensional system
(see Tikhonov and Arsenin 1979; Gorinevsky 1992b).

The quadratic optimality criterion (8) is of course an
arbitrary assignment. According to some models (e.g.,
Flash and Hogan 1985; Uno et al. 1989; Dornay et al.
1991), the human arm is controlled to minimize squared
jerk, torque change rate or muscle tension change rate
rather than energy. (Jerk is the rate of acceleration
change.) Since the acceleration is proportional to the
control torque, the mentioned criteria are closely interre-
lated. Our framework can be easily adapted to other
forms of the optimality criterion (8). For instance, by
changing IIuII 2 in (8) to UTWU, where W is a convenient
tridiagonal weighting matrix, one can obtain a criterion
for a minimal squared torque change rate. Our simulation
results demonstrate that though the performance index
(8) does not explicitly include arm trajectory, it results
in sufficiently smooth and realistic arm motion.

We further consider the feedback gains, other control
parameters and the control time T (1) to be the same for
different motions. Under these conditions we can describe
our motor control task by a four-dimensional parameter
vector

p = CO1(~1), ~b(el), ~2) , ~(e2)) (9)

where ~b~ 1) and q~2) are the shoulder and elbow joint
angles at the beginning of the motion and ~b(e 1) and $~2)
are the desired joint angles at the end of the motion. Of
course, the mapping (7) depends on the task parameter
vector (9). We do not write this dependence explicitly, but
rather imply it.

Our goal is to be able to design feedforward (motor
command) programs u(i)(.), (i = 1, 2), for an arbitrary
parameter vector (9) in a given domain.

3 Learning

3.1 Iterative method

We can minimize the performance index (8) iteratively.
Let U, be a guess at the solution to (8). Let an output

222

vector (6) Y, = H (U t) be experimentally obtained by
applying the control Ut (2)-(4) during the arm motion.

We can build the next, better approximation Uo to
the solution of (8) with the Newton-Raphson method

Fd2J1-1 dJ (10)
Uo = U, - kdU2J dU

where

dJ r ~J 0J ~ Y (11)
d ~ = G ~ - ~ + ~ - ~ = G Z Y + 0 U, G=0- ~

The matrix G = ~Y/aU in (l l) is an input/output
sensitivity matrix of the controlled plant. Columns of G
mean the variation of the sampled output (7) corre-
sponding to the unit variation of the respective compo-
nent Uk of the input vector (4), i.e. variation of the
control value at the interval [t k_ i, tk]. The Hessian
matrix in (10) has the form

d2d OG T
dU 2 = QI + G r G + - ~ - Y (12)

We neglect the last term in (12) since for e "~ 1 the
solution to (8) gives IIY][,~ 1. Furthermore, if we
change the Hessian matrix in (10) to another positive-
definite matrix, this does not spoil the convergence but
only reduces its rate. So we use a modified Newton-
Raphson method of the form

U(i + 1) = U(i) _ (0I + G rG) - t(O U (i) + G Ty(i)) (13)

where the upper index denotes iteration number. Each
iteration includes trying the arm motion with control
U (~ (2)-(4) and obtaining output y(o (5), (6).

We can only use the iterative learning method (13)
if we know the input/output sensitivity matrix G for the
controlled system. Section 3.2 and Sect. 4 describe
methods for obtaining an estimate of G. The learning
algorithm (13) is conceptually close to the repetitive
control algorithms of Arimoto et al. (1984), Arimoto
(1990), Togai and Yamano (1986), Oh et al. (1988) and
Messner et al. (1991). The robustness of convergence of
the proposed iterative method and the influence of the
imprecise knowledge of G on the convergence point
have been considered by Gorinevsky (1992a).

3.2 Adapta t ion (on-line es t imat ion o f G)

As follows from Sect. 3.1, to achieve convergence of the
learning procedure to the solution of (8) we should
know the input/output sensitivity matrix G of the task.
Though we do not precisely know the plant input/out-
put properties in advance, we can try to estimate them
(or to improve an available estimate) in the course of
learning.

Let us denote

w(i) = u(i) -- U (i - 1), .7(0 - - y (i) _ y (i - 1) (1 4)

variations of the plant input and output, respectively, at
learning iteration i. We suppose that

z (i) = Gw (~ (15)

and try to improve an estimate (~(o of the matrix G
from data (14). We modify the estimate so that (15)
holds precisely for it and that for any w orthogonal to
w (~ the estimate of Gw does not change. We obtain the
following kind of stochastic approximation procedure:

w(i)T
~ (i + 1)= ~ (i) - [a(i)w(i) - -z (i)] , (16)

where fl is a small positive constant.
Local convergence of the adaptive learning al-

gorithm (13) follows from the fact that if the mapping
(7) is linearized in the vicinity of the optimum, the error
of estimate (16) does not increase. Thus the Newton-
Raphson method is convergent in the vicinity of the
extremum for any G in (13).

In fact, (16) is a variation of the recursive projec-
tion estimation algorithm popular in adaptive control
(Goodwin and Sin 1984) and (13), (16) could be con-
sidered as a one-step ahead adaptive control of the
system (7). This makes available proofs of the adaptive
control algorithm convergence applicable. To ensure
persistency of excitation, we add a small self-excitation
signal to (13).

4 Approximation

Let us assume that we already know a feedforward
vector U (2)-(4) and an input/output sensitivity matrix
G (11) for some motions, i.e. for some values of the
parameter vector (9). We can use the learned data to
build an approximation for the vector U and the matrix
G over the domain of vector p. If the computed approx-
imation for U does not provide a sufficiently small
motion error, only a few learning iterations (13) with
known approximation of G would be sufficient to
achieve the desired accuracy.

The considered approximation problem is nontriv-
ial. The typical dimension of the parameter vector
could be between 2 and 10. (In the control task that we
are considering, dim p = 4.) The dimension of vector U
could be between 10 and 100 and the dimension of
matrix G could be up to I00 x 200 = 2 �9 104. A number
of papers deal with scattered data approximation of
multivariate functions, but they mostly consider scalar-
valued functions. Such an approximation problem is
nowadays considered as a typical problem for applica-
tion of artificial neural network (ANN) approaches.
Some of the ANN schemes have evolved from scattered
data approximation methods that were developed ear-
lier. We can use any of the suitable methods within our
paradigm. A comparison made by Gorinevsky and
Connolly (1992) shows that the method described be-
low provides superior approximation accuracy and ro-
bustness to the inaccuracy of the data.

We follow McLain (1976), Foley (1986), Franke
(1986), Farwig (1987) and Renka (1988) and approxi-
mate dependencies U(p) and G(p) by fitting a multivari-
ate polynomial to the data.

First, let us consider the approximation problem for
a scalar-valued function f(p), where p e R K. Suppose

that we know function values at some given points in
the parameter space y(O=f(p(O), (i = 1 , . . . , m). The
problem is to find an estimate 33(0) for y(0) =f(p(0)). We
consider the estimate of the form

fi(o)= ~ aiy(i) (17)

where the weights a~ depend only on vectors p(O) and p(O
(i = 1 , m) and do not depend on the function
values y(i). For a vector or matrix-valued functions
U(p) and G(p) we can use estimates of the same form
(17) for each vector component or matrix entry.

We suppose that the points p(O, (i = 1 m) lie
"in the vicinity" of the point p(O). Otherwise we could
choose such points from the whole set. Let us formulate
the problem as a classical regression problem.

Let us write the Taylor expansion in the vicinity of
the point p(O):

y(i ,= f(p(O)) +
q=l

1 "~ t32f d(q~ d~~ + e(~ + e (0 (18)
-'b 2 q,r= l (~Pq C3Pr

where d (o = p(O _ p(O), e(O is an error of measuring y(O
and e (~ is a mismatch of the Taylor expansion.

In fact, we know neither f(p(o)) nor derivatives of
the function f . We can assume, however, that we know
some bounds on their values. To compute an estimate
of y(O)=f(p(O)), let us consider f(p(O)), c~fl~pq(p(O)),
82f/(Sp~p~)(p(O)), ~(o and e (~ as independent zero-
mean random variables. We further assume that we
know covariances of these variables that give an idea of
their value bounds:

<f2(p) > = ~,2

af

t,a / /

<(e(i))=> = ~6ct6~lld(;,ll6

=

(q, r = 1 , . . . , K)

(19)

where <.> denotes mathematical expectation. Parameter
has the meaning of "wavelength" of the funct ionf(p) .

This is, for a variation A p of the parameter vector (9)
so that IIApll =~ , the function value significantly
changes. Parameter ~ could be assigned a value by
considering a physical meaning of the task parameters.
Expression for ((e(~ in (19) follows from the esti-
mate of the Taylor expansion residual in (18) that have
the form

e(i) :--1 ~ ~ 3f (n(i)]l~(i)d(i)d(i) (20)
6 q, r,s = I ~Pq 63Pr ~Ps xr ,,-q --r -'s

where ~(o is a point in the vicinity of p(O and p(O).

223

Let us write (18) in the vector form as

y(O = FrD(O + e(O + e(o (21)

D (~ = col(l , dt ~ d(q i) d~i)d~ 0),

F = col (f(p(O), d_~l (p(O)), ~f apq (p(O)),

c~2f (o) (p) , . . .) (22)
ap-~ps

By introducing a matrix D = [D (1) D (m)] and
vectors Y = col(y (1) , y(m)) and 8 = coRe (1) + e (1),
. . . , e (m) + e(=)) we can represent our regression prob-
lem in the form

y r = FrD + ~r (23)

where the matrix D and vector Y are known and g and
F are unknown zero-mean vectors with known covari-
ances.

We search for the least covariance estimate of the
form

p(o)= ~ a i y (i) = y r a , a=co l ({a i}~ l)
i=1

Since y(0) =f(p(0)) = Frl, where l = col(1, 0 ,0), we
may write the estimate in the form

) 3(0) = Yra = Frl + 1"1 (24)

where ~/ is an estimation error.
Solving (23) and (24) for the vector a that provides

least-covariance zero-mean r/results in

a = (A + D r ~ D) - 'D r~'l, (25)
A = (~ r > , ~ = (FFr>

where A and W are diagonal matrices with entries
defined by (22) and (19).

A similar-looking solution to a polynomial fitting
problem was proposed by Atkeson (1991). However,
Atkeson (1991) obtained an expression of the form (25)
as a regularized solution to the ill-posed polynomial
fitting problem. Our solution is based on the stochastic
model (19) of the mapping to be approximated. There-
fore the regularization parameters have clear physical
meaning. This helps in choosing them.

Here we describe a method for fitting a quadratic
Taylor expansion to the data. However, the method
could be easily generalized for any order of the expan-
sion.

The result of (25) depends on some parameters of
(19) that describe function f (p) , i.e. the "wave length"
0t and the relative inaccuracy of the available data Z/~k.
Regression model (19) gives a very general and rough
description of the mapping to be approximated. As we
have little a priori information about the mapping, it is
quite reasonable to assume the same stochastic model
(19) for each vector component or matrix of the entry
vector and a matrix-valued function U(p) and G(p). In
this case we can compute the weight vector a (25) only
once for all components and the considered approxima-
tion method has complexity that is only linear in the

224

dimension of the approximated function. With the
parameter vector p composed of the joint angles at the
beginning and the end of the motion, it is quite natural
to choose a = 1 radian in (19). We have assumed that
the relative inaccuracy of the data is ;(/~ = 10 - 2 .

The described approximation method is local in the
sense that it supposes points p(O to lie close to p(0). In the
learning process described in Sect. 6, the points where
the function value is known are scattered over the whole
parameter vector domain and we use a fixed number of
the closest points for the approximation. The built
approximation does not smoothly depend on the
parameter vector p(0), since the set of closest points could
change as p(0) shifts. However, high precision is more
important to us than the smoothness of approximation.

5 Biomechanical model of the human arm

This section describes a biomechanical model for planar
arm motion that we used to simulate the work of the
algorithm in Sects. 2-4 . Much of the model and the
data coincide with those used by van Sondern and
Denier van der Gon (1990) but our model differs in
how the control is organized. Below is a brief model
formulation that we present for completeness' sake. It
can be omitted on the first reading.

5.1 Muscle

As stated in Sect. 2, we consider the total of four
fictitious equivalent muscles making two antagonist
pairs, each powering a single joint. The four muscles
have the same parameters and properties.

We assume that the force P exerted by a muscle is
independent of the muscle length and depends on the
muscle shortening velocity v as

~Fi(b -a/Fo)/ (v +b) , v i>0,
P = (F i(x k v) / (x - v) , v <O,

x = (k - 1)b/(1 +a/Fo) (26)

For muscle shortening (v > 0), (26) gives the Hill
equation modified to include isometric force F~ for the
current levels of the muscle activation. We use the same
parameters of the Hill equation as van Sondern and
Denier van der Gon (1990): a/Fo = 0.25 and b = 0.2 m/s.
However unlike van Sondern and Denier van der Gon,
who assumed force during muscle lengthening to be the
same as isometric, (26) assumes that for lengthening
(v < 0) the force-velocity curve is also a hyperbolic that
approaches the value of kF~ for fast lengthening and
smoothly matches the Hill curve as v tends to zero. In
simulations we set k = 1.1. This part of the force-velocity
dependence is needed to get smooth right-hand sides of
the governing differential equations of the system and
ensure that the input/output mapping (7) is smooth. The
Hill curve modification of the form (26) is used by many
authors, though real muscle behavior at lengthening is
much more complicated (see, e.g. Morgan 1990 for
discussion).

We consider the isometric force F~ to be obtained
from muscle activation signal �9 after the first-order
low-pass filtering with time constant of 40 ms. This
gives us a typical form of the muscle force twitch.

5.2 Joint control

5.2.1 Kinematics. Following van Sondern and Denier
van der Gon (1990) we assume kinematics of the mus-
cle attachment to be the same for the shoulder and
elbow joints. Let ~b be the angle between two adjoined
links; ~b = ~b (l) for the shoulder joint or q~ = ~b (2) for the
elbow. The flexor is attached to the links at the dis-
tances I and hf from the joint center and pulls along the
line passing via the attachment points. Once ~b, I and hf
are known, we can compute the mechanical advantage
df of the flexor by simple trigonometry. We consider d s
to be not less than 1 cm. The mechanical advantage de
of the extensor was taken to be constant. The kinemat-
ical data used in the simulation are the same for the two
joints: l = 32 cm, de = 2 cm and h s = 5 cm.

The torque generated in the joint by the muscle pair
can be computed as T = Pydy- Pede, where the flexor
and extensor forces Ps and Pe are computed as de-
scribed in Sect. 5.1. One can find the velocities v I and ve
of the flexor and. extensor, shortening from the joint
angular velocity ~b as v s = ~b/d s and Ve = -- ~/de.

5.2.2 Control of antagonist muscle pair. Following Feld-
man (1979) we consider the muscles powering a joint to
be controlled as a whole and an input signal to be
distributed between flexor and extensor muscles. We
assume that a single input signal Q defines the flexor and
extensor activation levels ~s and ~e (before the low-pass
filtering) as

q~f= ~a(Q/df), ~)e = - ~',~(-Q/de), (27)

where 7J~ (x) is a smooth function such that ~a (x) = 0
for x ~ - ~ , ~ (x) = x for x ~ - ~ and
~a (x) - ~ (- x) = x. We assume 7in to be a piece-wise
quadratic function of the form

x, for x > 4A

7tn(x) = (x +4A)2/(16A), for Ixl <4A (28)

0, for x ~< - 4 A

Expressions (27) and (28) mean that for large nega-
tive activation, only the extensor is activated, and for
large positive activation, only the flexor; in the middle,
smooth transition of activation levels takes place. In
stationary state the joint torque generated by the two
muscles according to (27) is just Q. For zero input Q, the
antagonist muscles exert opposite sign torques of the
magnitude A. Thus, A could be considered as a muscle
tonus parameter. In the terminology of Feldman (1979),
A is a coactivation command. If computed by a positional
reflex feedback, Q corresponds to a reciprocity command.

Presence of the muscle tonus increases dissipation in
the system due to negative slope of the Hill curve. This
stabilizes the system and prevents oscillatory behavior
that otherwise occurs in simulation due to the reflex
feedback delay.

5.2.3 Joint torque control. We consider the joint input
torque Q to consist of a delayed PD positional (reflex)
feedback and a feedforward term

Q(t) = k[cke - ~(t - ~)] - b~(t - z) + u(t) (29)

where z is the stretch-reflex feedback delay, ~b is the
measured joint angle, ~b e is the desired joint angle at the
end of the motion, k and b are reflex feedback gains
and u is a feedforward input computed as described in
Sects. 2 -4 . The input Q is further distributed between
the antagonist muscles according to (27).

Van Sondern and Denier van der Gon (1990) con-
sidered (velocity) feedback without a delay because
otherwise they have had problems with oscillations
appearing in the simulated motion. Our model takes
into account coactivation of the antagonist pair (see
Sect. 5.2.2), so the system has sufficient dissipation and
remains stable despite the delay.

Using the model of van Sondern and Denier van
der Gon (1990) we supposed the feedback stiffness to
be zero during the first 100 ms of the motion, grow
linearly to 10 Nm/rad during the next 100 ms and then
remain constant until the motion ends.

We used the relation between positional and veloc-
ity feedback and reflex delay obtained for human elbow
joint movements by Zahalak and Pramod (1985)
though we did not count the delayed acceleration feed-
back term that was included in their model. So, we
supposed that in (29) b = k . 0.12 s and r = 27ms al-
ways holds.

As to the value A of the coactivation command, we
supposed that it is 2.5 Nm during the first 100 ms of
motion, then linearly grows to 10 Nm during the next
100 ms and remains at 10 Nm thereafter. The growth of
the coactivation was instrumental in keeping the system
stable as the feedback gains grow, and correlates with a
model of Feldman (1979).

5.3 Arm dynamics

When considering the dynamics of the planar arm
motion we neglect the motion of the muscles with
respect to the arm links, and model the arm as two rigid
bodies connected by two cylindrical joints. By introduc-
ing an arm configuration vector q = col(q~ (1), ~)(2)) one
can write an equation of the arm dynamics in the form
(see Craig 1986)

M(q)~ + C(q, r = T (30)

where M(q) is an inertia matrix, vector C(q,/!) gives
Coriolis and centrifugal forces, and T is a vector of
joint torques generated by the muscles. The equations
of motion are given in more detail, together with the
parameters we used, in van Sondern and Denier van der
Gon (1990).

The complete model of the arm motion used in the
simulation includes equations of motion (30), where
torques are computed as described in Sects. 5.1 and 5.2.
As stated in Sect. 5.2, four muscle forces depend on the
states of the four respective low-pass filters. The de-
layed feedback law (29) means that we have also to

225

keep the history of the joint angles in the computer
memory during the simulation. The overall simulated
system is rather complex and nonlinear.

6 Simulation results

6.1 Learning a single motion

In the simulation we used the algorithms of Sects. 2 - 4
to control the system described in Sect. 5. We consid-
ered the feedforward control interval (1) to be T = 0.3 s
and the observation interval (5) to be Ty = 0.6 s. Figure
4 demonstrates a typical form of the piece-wise constant
feedforward input (2). The feedforward value changes
at time points 0.00, 0.06, 0.12, 0.18, 0.24, 0.27 and
0.30 s and is described by a 12-dimensional vector U
(4). We choose times of control switching without any
relation to physiological data, just so that they allow
reasonably good control of the simulated arm motions.
Two last pulses have shorter duration and are needed
to better dampen the overshoot and vibrations due to
delays in muscle activation and in the reflex feedback
loop.

To monitor how precisely the a r m comes to the
final position, we used the position measurements sam-
pled between t = T = 0.3 s and t = Tf = 0.6 s with inter-
val ~ = 0.03 s. They give us a measurement vector Y (7)
of dimension 20.

Figure 1 shows the end-point trajectory for the
learned motion from 20 ~ to 60 ~ in the shoulder joint
and from 60 ~ to 120 ~ in the elbow joint. The overshoot
is negligible and the motion smooth. Simulation shows
that the learned feedforward reduces error IIY[I more
than 20-fold. Figure 2 presents time histories of joint
angular velocities for the same motion which look
similar to those observed experimentally by other
authors.

Figure 3 displays the learned feedforward input and
the activation pattern of the muscles (combined feed-
back and feedforward) for the motion. The activation
signals could be considered as an analogue of muscle
activation level monitored via electromyography in a
respective physiological experiment. In our simulation,

f

Fig. 1. Example of an end-point trajectory for learned motion

226

6 i

4 ;/{ i:', :

0 0.2 0.4 0.6
Time

Fig. 2. Joint angular velocity history in radians per second. Solid line,
shoulder angle; dashed line, elbow angle

coact ivat ion o f the antagonis t muscles is kept constant
after the end o f the mot ion. This can part ly explain the
difference between the presented plots and the experi-
mentally recorded E M G appearance. In human ann
mot ion the coact ivat ion diminishes at the end of the
mot ion (Adamovi t ch et al. 1990).

6.2 Filling the databases

We simulated the process o f learning control for a//
mot ions in a certain domain. The simulation proceeded
as follows. First, the mot ion parameter vector p (9)
defining the mot ion trajectory was generated as a ran-
dom vector with componen t s in the domain 29 ~ ~< ~b~ ~,
~(e l) ~< 142~ 14 ~ ~< Cb(b 2), q~(e 2) ~< 158 ~

Next, the da ta for the closest values o f p (9) were
extracted f rom the databases that contain the already
learned control vector U and the sensitivity matrix G.

The data were used in an approximat ion procedure o f
Sect. 5 to find estimates for U and G. These estimates
were used and further improved in an iterative learning
procedure described in Sect. 3. The learning is s topped
when the error I I Y I I (6) o f coming to the final position
is small enough to give a mean hand deviation o f less
than 2 cm. I f more than one learning iteration is done,
the new learned control is added to the database, and if
more than four, the improved estimate for the sensitiv-
ity matrix G is also stored. Then the process repeats for
a new r andom point p in the task parameter space.

The learning process is illustrated in Fig. 4, where
the error Ilvll is shown vs a number o f the randomly
generated task parameter vector (9). A tolerable error
[Iv[I is shown by a dashed line. The error diminishes as
more data are stored in the databases. In fact, after
some 250 generated points the error is mostly within the
prescribed bounds, and points with greater error be-
come increasingly rare.

For many generated points, the approximated con-
trol gives sufficiently accurate mot ion, and no repetition
o f the mot ion is done at all. Figure 5 shows the
percentage o f the poin ts where learning was needed in
each set o f 100 consecutive r andom points. One can see
that the percentage diminishes fast.

At the end of the process shown in Figs. 4 and 5,
the learned control vectors U were stored at 150 points
and the sensitivity matrices G at 39 points, resulting in
51 kbytes o f storage memory. Figure 6 represents the
motions, for which vectors U are stored, by lines con-
necting initial and final a rm tip position.

Let us assume that for control o f a three-dimen-
sional point- to-point mot ion the density o f the stored
data in the parameter space should be the same as in

1000

500
Z

0
#.

-500

-IOOC
0

Shoulder .joint

 7_IIU 7/.
i

0.2 0.4 0.6

Time (s)

Z

#.

400

200

0

-200

-40
0

Elbow ,joint

' i

............. �9 :{i :.; : . . ia r
! . 5

I

0.2 0.4 0.6

Time (s)

Fig. 3. Pattern of the muscle activation.
Left plot, shoulder joint; right plot,
elbow. Solid line presents feedforward
joint input torque u (29) scaled as u~
(3 cm). Dashed line, flexor force, dash-
dotted line, extensor force with reversed
sign

0

0.8 + i i i i i

0 . 6 b { ! i :~ i ~:
+ :. i i :: ::

% ! i :: i i
0 . 4 ' + : . + . i : '

0 2 ~ ' ~ ~t--_~at'~ ~ ~ • ~ . ~ , i...:..+......%.. #.. :_.~.....,...+..!...~. 4

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Point number

Fig. 4. Dependence of the motion error
for the approximated control on the
number of the generated set of the
motion parameters. Vertical dotted lines
show error diminishing in learning.
Horizontal dashed line gives an accept-
able error

227

80

"~ 60

o 40

~ 20
g.

0
0 500 1000 1 5 0 0 2000

Point number

Fig. 5. Percentage of points where learning is needed among the
generated sets of the motion parameters. Solid line, learning of U;
dashed line, learning of G

the presented case. In that case we obtain that vector U
should be stored for about 1503/2~ 1800 trajectories.
This is obviously a reasonable amount. In fact, even
fewer movements should be learned since the accuracy
achieved in our simulation is significantly higher than
that of fast human movements.

Of course, fast human motions involve coordinated
work of many more muscle groups and joints than we
are considering. However, we believe that our paradigm
is backed by the synergy concept of Bernstein (1947).
According to this concept, the variability of fast coordi-
nated human motions is due to variations of a few
parameters, the number of which is much less than the
number of body degrees of freedom involved in the
motion. And for a moderate number of the task parame-
ters our paradigm provides a possible means of motor
control organization.

0.8

0.6

0.4

0.2

0

-0.2

I h i L L

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Fig. 6. Percentage of points where learning is needed among the
generated sets of the motion parameters. Solid line, learning of U;
dashed line, learning of G

6.3 Discussion o f the results

6.3.1 General. The results of this paper prove that the
proposed paradigm of direct motor program learning
can provide control of fast human arm motions. The
model used for arm motion incorporates elements re-
sembling the nonlinearities, delays and time dependen-
cies that are typical for biological systems and that make
them very difficult to control with methods convention-
ally used for control of technical systems.

The present results could help us to understand the
basic principles of motor control of fast human motions.
The paradigm could be also of practical use for robotics
and control of other complex technical systems. Some
robotic applications of the concept have been considered
in Gorinevsky (1991, 1992a), and other will be discussed
in future publications.

Though our aim was to avoid using a model for the
system dynamics, we should recognize that, in fact, the
databases for U and G that are used in the learning
process do constitute such a model. This model is specific
for a control task. The advantage of having such a
task-dependent model instead of learning a model for
system dynamics is that, in our paradigm, the amount of
data stored depends only on the number of the task
parameters and not on the complexity of the dynamics.

Unlike our paradigm, a dynamical model could be
used for control of motions other than learned. This,
however, requires extensive computations during or
before the motion. Our paradigm relies on the memory
instead, which we believe is more typical for biological
systems. One can also speculate that humans who are
able to perfectly control motions in some tasks require
additional training and experience to master a new task.
This is in line with out paradigm.

This work has left many questions open for further
research. One of them is how to organize experience
accumulated in the databases so that it could be used in
several different tasks. A possible solution is to divide
tasks into some elementary or primitive motions and
learn control of these motions with our paradigm.
Whatever the advantages and properties of the proposed
paradigm are, we do not consider it an ultimate explana-
tion or solution. The goal of this work is rather to add
a new dimension to the understanding of possible ways
of human motor control organization.

6.3.2 Algorithms. We implement our concept of direct
motor program control in the algorithms of Sects. 3 and
4 with some degree of looseness. There are several parts
and parameters of the algorithms that could be changed,
replaced or elaborated.

First, we do not discuss in Sections. 2 and 5 how to
choose the parameterization of control or, at least,
timing of the control switching. Next, it is clear that the
presented algorithms for the control learning and input/
output sensitivity estimation are not the only ones
applicable or similar to those used in nature. The
approximation algorithm of Sect. 4 is also not the only
one that could be used. However we consider it impor-
tant that all algorithms do successfully work together
and solve an otherwise very complicated control task.

228

Acknowledgements. Part of this work was completed in the Institute
for Problems of Information Transmission, USSR National Academy
of Sciences, Moscow. Another part was supported by an Alexander
von Humboldt Research Fellowship held by the author at the Insti-
tute B for Mechanics, Technical University in Munich, Germany. The
author is grateful to Professors M. Berkenblit, M. Shik, F. Pfeiffer,
and S. Edelman for helpful discussions and to an anonymous referee
for many useful suggestions.

References

Adamovitch SB, Berkenblit MB, Feldman AG (1990) Principles of
human motor control, part I (in Russian). Itogi Nauki i Tech-
niki, Ser Fiziologija Cheloveka i Zhivotnykh, Tom 43. VINITI,
Moscow

Arimoto S (1990) Learning control theory for robotic motion. Int J
Adaptive Control Signal Processing 4:543-564

Arimoto S, Kawamura S, Miyazaki F (1984) Bettering operation of
robots by learning. J Robotic Syst 1:123-140

Atkeson CG (1991) Using locally weighted regression for robot
learning. In: Proceedings of the 1991 IEEE International Confer-
ence on Robotics and Automation, Sacramento, Calif, p 963

Bernstein NA (1947) On composition of motions (in Russian). Med-
giz, Moscow

Craig JJ (1986) Introduction to robotics. Addison-Wesley, Reading,
Mass

Dornay M e t al. (1991) Simulation of optimal movements using the
minimum-muscle-tension-change model. In: Lipmann RP,
Moody JE and Touretzky DS (eds) Advances in Neural Infor-
mation Processing Systems 3. Morgan Kaufmann, San Mateo,
CA, vol 3, pp 627-634

Farwig R (1987) Multivariable interpolation of arbitrary spaced data
by moving least squares methods. J Comp Applied Math 16:79-
93

Feldman A (1979) Central and reflex mechanisms of motor control
(in Russian). Nauka, Moscow

Flash T, Hogan N (1985) The coordination of arm movements: an
experimentally confirmed mathematical model. J Neurosci
5:1688-1703

Foley TA (1986) Scattered data interpolation and approximation
with error bounds. Comp Aided Geom Design 3:163-177

Franke R (1986) Recent advances in the approximation of surfaces
from scattered data. In: Chui CK et al. (ed) Topics in multivari-
able approximation. Academic Press, Boston, pp 79-98

Goodwin GC, Sin KS (1984) Adaptive filtering, prediction and
control. Prentice-Hall, Englewood Cliffs, NJ

Gorinevsky DM (1991) Learning and approximation in database for
feed-forward control of flexible-joint manipulator. In: Proc '91
ICAR: 5th International Conf on Advanced Robotics, Pisa, pp
688 -692

Gorinevsky DM (1992a) Experiments in direct learning of feedfor-
ward control for manipulator trajectory tracking. Robotersys-
teme 8:139-147

Gorinevsky DM (1992b) On the approximate inversion of linear system
and quadratic-optimal control. Sov J Comp Syst Sci (in press)

Gorinevsky DM, Connolly TH (1992) Comparison of artificial neural
network and scattered data approximations: the inverse manipu-
lator kinematics example. Technical Report. Lehrstuhl B fiir
Mechanik, TU-Miinchen, August 1992 (also submitted to Neural
Computation)

Guez A, Selinsky J (1988) a trainable neuromorphic controller. J
Robotic Syst 5:363-388

Kano H, Takayama K (1990) Learning control of robotic manipulator
based on neurological model CMAC. In: 11th IFAC Congress,
Tallinn, pp 268-273

Katayama M, Kawato M (1991) Learning trajectory and force control
of an artificial muscle arm by parallel-hierarchical neural network
model. Advances in Neural Information Processing Systems 3.
Morgan Kaufmann, San Mateo, CA, vol 3, pp 436-442

Kawato M (1989) Adaptation and learning in control of voluntary
movement by the central nervous system (tutorial). Adv Robotics
3:229-249

McLain DH (1976) Two dimensional interpolation from random data.
Comput J 19:178-181

Messner W, Horowitz R, Kao WW, Boals M (1991) A new adaptive
learning rule. IEEE Trans Automat Contr 36:188-197

Morgan DL (1990) New insights into the behavior of muscle during
active lengthening. Biophys J 37:209-221

Oh SR, Bien Z, Suh IH (1988) An iterative learning control method
with application for the robot manipulator. IEEE J Robotics
Automation 4:508-514

Renka RJ (1988) Multivariable interpolation of large sets of scattered
data. ACM Trans Math Software 14:139-148

Sanchez VDA, Hirzinger G (1991) State-of-the-art robotic learning
control based on artificial neural networks. An overview. In:
Khatib Oet al. (ed) The robotic review 2. MIT Press, Cambridge,
Mass

Sondern JF van, Denier van der Gon JJ (1990) A simulation study of
a programme generator for centrally programmed fast two-joint
arm movement: responses to single- and double-step target dis-
placements. Biol Cybern 63:35-44

Togai M, Yamano O (1986) Learning control and its optimality. In:
Proceedings of the 1986 IEEE Conference on Robotics and
Automation, San Francisco, Calif, pp 248-253

Tikhonov AN, Arsenin VYa (1979) Methods for solution of ill-posed
problems (in Russian). Nauka, Moscow

Uno Y, Suzuki R, Kawato M (1989) Formation and control of optimal
trajectory in human multijoint arm movement - minimum torque
change model. Biol Cybern 61:89-101

Wu CH, Young KY, Hwang KS, Leman S (1992) Voluntary move-
ments for robotic control. IEEE Contr Syst Magazine 12:8-14

Yabuta T, Yamada T (1990) Possibility of neural network controller
for robot manipulators. Proceeding of the 1990 IEEE International
Conference on Robotics and Automation, Cincinnati, Ohio, pp
1686-1691

Zahalak GI, Pramod R (1985) Myoelectric response of the human
triceps brachii to displacement-controlled oscillations of the fore-
arm. Exp Brain Res 58:305-317

