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Abstract — A parametric fault modeling and diagnostics
approach of a turbofan engine is presented. The hitay engine
model is obtained as a steady state map between inp
parameters representing engine operating conditionsand
output  parameters governing engine  performance
characteristics. The fault modeling is conceptualizd as either
degraded engine performance levels or as sensorltaes and
both incipient and abrupt fault scenarios are conslered. The
fault parameters are successfully estimated using éberalized
Least Squares (GLS) techniques with data obtainedrdm
several recorded flight data. Further, a nonlinearestimation
method is introduced to improve the diagnostic pedrmance in
certain cases of large and abrupt failures.

I. INTRODUCTION

collected at each flight cycle. These are typicaliynpled
once or twice per flight, logged and transferreé tground
monitoring system and were available for the oféli
engine model development. This research was peefbras
a part of the PTM (Predictive Trend Monitoring) t&ms
development sponsored by Honeywell Engine Systerds a
Services. The engine fault model aims at facitigti
predictive maintenance of Honeywell aircraft engine
However, the research presented in this paper laéso
greater applicability — to model-based estimatiar f
trending of a broad range of aerospace systems.

Il. BASIC THEORY FOR FAULT ESTIMATION
The theoretical background of engine fault modeéng

Research in the area of engine fault diagnostiaiagnostics is presented in this section. The endault
concentrates on finding automatic diagnosis toold a simulation model is shown schematically in Fig.Ii this
improving diagnostics reliability. The traditionapproach setup, the vectors ajperating conditiondata andoutput
of automated diagnostics involves establishingoeaty of data are known at each flight cycle. The engin€lt fau
faults, based on field experience, manufacturem dat modeling involves determining tHfault parametervector.
test/flight data, and building an expert systemdentify In effect, this estimation problem requires invagtithe
potential source of failure. However, the reliahilof such model map in Fig. 1 with respect to tfeult parameter
methods depends greatly on the accuracy of thesfauvector input. The problem is compounded by the faat
identified during inspection and on the size of thé¢he data used for the estimation is distorted Img@enoise

knowledge basis. The state of the art researchngine
fault diagnostics has effectively advanced in twajon
directions. One approach combines traditional based
diagnostics method (e.g., expert systems) with rothie
techniques, such as neural networks and fuzzy [agi¢2].

The other approach uses models of engine perforenamd
is known as model-based fault diagnostics [3], Madel-
based diagnostics mainly consists of combining réstézal
knowledge with test/flight data. Here, an estimaggdtem
model is compared to a nominal system model. Thielual
or error between the two models provides a measiutiee
deviation between the estimated and nominal modats,is
used to make a decision as to whether a failurebasrred
or not. An essential requirement for
diagnostics is the development of an accurate systedel.
Reference [5] provides an excellent survey of emdiealth
monitoring systems for commercial aircrafts.

This paper presents parametric fault modeling a

diagnostics of the LF507 turbofan engine manufactury
Honeywell. LF507 is a two-spool aircraft engine disg
regional jet aircrafts, such as BAE Avro RJ85. Tymcal
faults affecting the LF507 engines and consideredhis
research include deterioration of the turbine #fficy,
combustor liner failure, leakage in the engine thlegstem
and sensor failures in the exhaust gas temperatheefault
modeling is based on minimizing the least squaresr e
between recorded flight data and a simulated engiogel.
Sensor data related to engine performance chaisiitter

along with flight condition sensor measurements ewer

model-based = f (x, p),

and that modeling error is present.

The basic approach to fault diagnostics is to renthe
map dependency on thaperating conditionvector input
and then to evaluate tHault parametervector through an
optimal statistical estimation algorithm. The fuoogl
dependency of theutputvector is linearized w.r.t. tHault
parameter vector, which leads to a least squares-type
estimation problem. The fault model obtained usihg
linear assumption is further validated againstribaelinear
functional relationship between tlmutput vector and the
fault parametersThe technical details are discussed in the
following paragraphs.

The engine model in Fig. 1 can be presented ifotme

)
where yOR™ is the model-based prediction of the vector
y, XxOR" is the vector of measured operating conditions,

n.'ﬁind pOR' is the vector of performance deterioration

parameters/sensor error parameters in the modet Th
function f (I) in the model might be unavailable in an

analytical form, but can be computable point-wisg b

operation
conditions ~™ outputs

-
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Fig. 1. Schematic diagram of engine fault simulaticodel



running a simulation. In the no-fault or nominaseawhere covarianceR asp~ N(0,R). The covariance matriR
no deterioration/failure has occurred, it is asslinieat refiects prior knowledge of intensity of fault vation
p=0. The re5|dugl,r, is computed as _the differenceencountered in the estimation problem. This conagawill
between actual engine output dgtaand estimated output be further considered as a tuning knob parametehef
¥, by assuming that no performance deterioratidoffai estimation algorithm devoid of a physical meaning.

has occurred, i.e.p =0 in (1). In other words, the residual NOw consider finding a Maximum A posteriori Estimat
(MAE) for p. With the residuak known, the Bayes-rule

Is given by yields the logarithmic distribution of the condital
r=y-f(x0 (2) "
y e ) \ probability for the faulp as
Thus, for an accurate model and no failure/detetion, —|ogP(p|r)=-logP(r | p) —logP(p) +¢ , (6)

we expect to get = DA failure or degraded pgrformance
can be modeled by the fault parameter veptdrhis vector given by N(OR). Note that in accordance with (5) and

can be estimated from the residualby inverting the Y'Y= ™. - - DA
- o . distribution of e,, the conditional probability distribution
mapf (X,[). One apparent difficulty in this approach is thep(r | p) is given by N(SpQ, )} By plugging these

nonllr_1ear|ty OT thg funct.|onf_ I_Il.) Fortunately, in many Gaussian distributions into (6) and minimizing theult we
practical applications this difficulty can be ovemwe by optain the optimal estimate pfas
linearizing (1) around the nominal model whepe=0. In p= argmin[— log P(p| r)]

case of incipient faults like performance detetiorg the
magnitude of the fault parameters (fault intenggyysually
small. For instance, a turbine efficiency drop o$tj1%
might be considered serious enough to pull off the gy gifterentiating the R.H.S. of (7) with respeotyt and

turbomachine. Thus, a sufficiently accurate appnakion ; : N
of the model in (1) is given by equating the result to zero, the optimal estimatés found

where ¢ =logP(r) does not depend op, and P(p) is

= argmin %(r -Sp'Q;*(r-Sp+ % p'Q;'p +const|

to be
N of (X, N -
y=f(x,0)+SnS=—(a P) . ) p=[R‘1+STles] 1STler. (8)
p=0 This is also know as the Generalized Least Squares

where the JacobiarsOR™! will be hereafter called the (GLS) estimate ofp. Assuming noa priori information

fault sensitivity matrix. The sensitivity matrin (3) can aboutp is available is equivalent to assuming a verydarg
be numerically estimated by @ecant method: by covarianceR in the distribution for (8) and leads to a
incrementing the argumeptand computing corresponding Maximum Likelihood Estimate (MLE). The MLE is

variation in the output vecto§ in (1). The secant estimate ﬁbtaiﬂecé from the MAE by substituting a zero Rt and
as the form

for a columnS) of the sensitivity matrixs is given by R L
sl - 10 p=[sTo, 8| "sTQin. ©
st = ! A 4) Equation (9) serves as the basis for developingiigine
S fault model and related diagnostics.

wheres is the secant step size aeél’ is the unit vector Il ENGINE FAULT MODEL DEVELOPMENT
directed along the coordinate aki§ he parametes should ) T ) )
be chosen to provide an optimal tradeoff betweem th This section presentsfault modelof the engine that is
numerical accuracy (limited i is too small) and the used for fault diagnostic system development, iaion
nonlinearity error (larger for larges). Linearization of and validation. The fault modeling involves additiof
nonlinear maps and use of sensitivities to vargftisiency ~€ngine failure modes in a modular fashion to thalthg or
deterioration parameters is well known and commonkfe no-fault engine model.

practiced in performance analysis of turbomachines. ~ The healthy engine is modeled as a sequence of
Combining (2) and (3) y|e|ds the residual as interconnected ComponentS [6] Ambient air is sdck#o
r =Spte,, (5) the engine by the inlet fan and is split at thenpig; a part

enters the compressor section while the rest isassgul.
The flow of the air is guided by inlet guide vanéigh
pressure air from the compressors enters the cdorbus
where fuel is injected through annular nozzles. bases
from the combustor expand in the gas turbine sectio
which drives the fan and the engine shafts (comicatly
arranged). Exhaust gases from the turbine alonl thie
bypassed air is expelled outside the aircraft k@ nozzle
" (5) 1 a normaly distributed random varabiatueero 215, 1 KHEUE ey of e oAt s niinene
mean and covariancQ,: & ~N(0,Q,). The numerical conyo system to maintain efficient engine opensi
value of the covariance matriQ, can be empirically during transient stages, e.g., starting periodsemgine
estimated from the residuals of a population ofiee®in  acceleration. Conditions of steady-state engineratios
the absence of faults. Assume further thain (5) is @ are measured by four parameters: altitudg fach No
normally distributed random variable with a zeroam@nd (Mach), total air temperaturelAT), engine fan speed(),

where e, is the ‘noise’ term added to refledutput
modeling error and influence of various factors not
accounted for by the model in (3). Thus, the fauddeling
and diagnostics effectively involves obtaining astireate
of the fault intensityp. We use statistically optimal
estimation, such as the Maximum A posteriori Estama
(MAE) or the Maximum Likelihood Estimate (MLE). The
basis for such approach is an assumption thattbise’ e,



and the engine performance characteristics is megidoy modeled by a normally distributed random variabke a
three outputs: engine core speell2)( exhaust gas bias~ N(ly,s, Qpias) - The numerical values of,;,s and

temperatureEGT), fuel flow (WF). Quias Were computed based on the first 50 points of each

Many of the incipient and abrupt faults that reswlthe . : . .
deterioration of engine performance can be modeied dataset. This is done (not using entire datasetayoid an.
accidental capture of minor degradation in engine

adverse changes in the parameters that affectuthinée :
performance over time — a natural phenomena for all

efficiency and bleed band efficiency. The fault relk ; ; . . :
involvesylumping parameters like gﬁiciencies tqot;;h;% engines. The bias error is implemented in the enganit
performance deterioration. Consequently, deteaichese M0del by seeding a corresponding random number and
faults can be performed by identifying deviationg o@dding the error terms to the engine outphi&:EGT and
performance parameters from their nominal values. VP Note that for the residual calculations in theitfa
addition, typical sensor failures are also considen the SCenarios, the same technique (averaging over Sist
engine fault model — specifically for exhaust ga®0CINts)isused toremove biaserrors.
temperature EGT) measurements. These are modeled The output noise covariance matriQ, is calculated

introducing an additive error term in tB&T measurement. Pased on the nominal datasets by computing theubutp
These fault parameters considered are: covariance matrix for each engine and taking amaaee
1. p, — performance loss for the high pressur@Cross the datasets. Together, the two normaltyitalited

turbine- random variablese, and bias define the sensor
2. po— Iea'kage in the bleed band system; noise/modeling error at the output of the enginel@ho

3. ps— EGTsensor measurement error. B. HP Turbine Performance Degradation (HPG)
These  faults make a  fault  parameter The fault parameter representing HPG fault is exttioh
vectorp=[p, p, ps|". The intensities of these faultbased on datasets from four engines. The effectiPf
parameters were estimated based on recorded digatfor turbine efficiency degradation results in a graciedrease
differnet engines and flights. The fault parametsstor can N the residualAN2 and gradual increases in the residuals

effectively capture the following six categoriesfalts: AEGT and AWF. Each dataset contains 1000-2000 data-

1. HP Turbine Performance Degradation points and the fault is spread over approximatélj0ldata-

2. Combustor Liner Failure points. The fault is effectively captured by a &néunction

3. Bleed Band Leakage of the parametep;. Least squares data-fitting techniques

4. Bleed System Failure are used to determine this function for each datastthen

5. EGT Sensor Drift averaged over the four engines. The slopes of hhages

6. EGT Sensor Failure in p; for the different engines were calculated as:

Both high pressure performance degradation and 1. Engine M91l: 2.0671 % /1000 data-point
combustor liner failure cause an increase in tiseual of 2. Engine M88: 1.1810 % /1000 data-point
N2, and a decrease BGT and WF. This effect is well 3. Engine M72:  0.5682 % /1000 data-point
captured by a corresponding change in the highspres 4. Engine M89: 0.7420 % /1000 data-point

turbine efficiency. Faults in the bleed band sectiause an Thus, for fault-type HPG, the fault paramefmrcan be
increase in all the three residualiN@, AEGT, AWF) and modeled as a normally distributed random numbeh wit
are effectively modeled by a bleed band efficiefagtor. mean and variance computed as:

Faulty EGT sensor measurements are taken into account B 4pg ~ N (1.13960.4488 . (10)

a corresponding additive fault parameter. . :

The faults 1,3,5 develop gradually, their inteesitgrow C- _Combustor Liner Failures (HPA) _
incrementally with time. The faults 2,4, and 6 accu Two sets of data were available to estimate the
abruptly, they become fully developed at some fligéhile cpmb_ustor liner failure. These data sets were ebetdj;lfrom
little or no fault effect was observed in the poms flight historical data and correspond to the actual ojperalt
data. cases of the failure. The exact type of the failuas

This study used snapshot data collected from engigénfirmed by the repair and overhaul analysis.. Zighows
during aircraft takeoff, when it runs at maximumwgo. the plots for Engine M83. The effect of combustimet
This data is routinely collected in the operatiord avas failure is an abrupt decrease in the residi® and abrupt
available for our study. Typically each flight (atence increases in the residuad=GT and AWF. This pattern of
each engine) was operated 3-4 times a day. Onepdata  change in the residuals is modeled by a respectiaage in
consists of snapshot measurements of engine inpait ghe fault parametep;,. The last 9 few data-points (shown
output parameters per flight. by '+’ signs in Fig. 2) represent this fault andrespond to

The details of engine fault modeling are presentad. a change inp, by 1% or more. Statistically, this
phenomenon can be represented by a normally distdb

IA:\' ﬁoifa“'F Modg! Bias Error gnd Noise ft frhodel random number with the mean and variance given by:
or determining bias error and noise (scatterhefrhode Prnpa ~ N (1497500743 . (11)

prediction, data from six different engines wasdudeach
dataset contained about 150-450 data-points. T$idu@s 5 Bleed Band Leakage (BBG)

(AN2, AEGT, AWF) are calculated for the fault-free engine : . .
model to estimate modeling errors not accountednfahe Only one set of data was available for modelingufes

engine model. A bias error was observed in thedueds ~Categorized as bleed band leakages: Engine M9dakege
(approximately constant for individual engines).isTlis in the bleed band section of the engine causescaedsing



pattern in all the three residuaidl2, AEGT andAWF. The the EGT residual. The mean and variance of the jofaitets
corresponding change in the bleed band efficieriaylt( after failure are computed as 42 deg C (removingldg

. i . o - initial offset) and 18 deg C respectively. Howewis is
parametep,) is estimated as a linear variation with time b*he statistic%l estimate bgsed upI(J)n one %lailure.cas ?

minimizing the least-squares error. The slope efdhange  Note that the EGT sensor measurement is an avefage

in p2is 0.39% per data-point for this particular dataget an array of several thermocouples and can failrinutiiple

statistical representation of the corresponding It faunumber of ways. The exact array structures andiréail

parameter p,gsc awaits further collection of data modes Werel S_Ot available _Iﬁff_ r?é)de"ngi ﬂommgriﬁﬂ?s
i B upon several discussions with field experts i a

corresponding to BEG-type faults. EGT sensor failures typically varied between —15-68

15 , deg C and +15 to +60 deg C (without recorded data t

3 confirm). Based on this knowledge, one can modal th
s I o « ... 7 failure by a random numbep4sss) Vvarying between the
R . ittt E | specified ranges.
e P L e L TRt Cal
5 m 5 0 po— IV. ENGINE FAULT MODEL VALIDATION
5 sF w w w w —q  The LF507 engine fault simulation model is devetbpe
2 o ~ e based on a linear relationship between the fautimaters
il %7 and the engine outputs. The linear approximation is
h jg: e e ettt svee ] sufficient when the estimated fault intensities aaatively
3 S i A e TN small and can be successfully used for modelingllsma
% 100 150 20 20 gradual faults. However, in case of abrupt failueesd
_af ‘ o ‘ ‘ "] faults of higher intensities, the suitability ofndiar
§ a ' : . I approximation needs to be verified against the actu
2 2 R L I VL P W A behavior of the function relating engine outputshwault
Sgp TN e TSR AA e T B e D% parameters. Amongst the three fault paramegerp, and
: p 0 s poos pos ps, the last parameter, represent®@T abrupt and gradual
15 ‘ ‘ ‘ , S faults, enters the fault model by direct additiorohe of the
2 4l f& engine outputs (specifically, tH&GT sensor measurement).
§ . This map function between the engine outputs aadéhlt
g 05r ot e e ] parameter is perfectly linear and the linear fagtimation
OFnint i Eppang i N e a0 s accurate in this case. However, the efficierasameters
50 100 150 200 250 p; and p, enter the detailed engine gas path model in a
, Sample No. complicated way. Thus, it needs to be determinedthese
Fig 2. M83:HPA fault data. Residuals and fault paeter are shown. two fault parameters affect the outputs.
E. Bleed Band Failure (BBA) Fig. 3 (a) shows a comparison of the actual inpipat

; ; function with its linear approximation used foriggttion of
The bleed band abrupt failure model is developestdba HP performance degradation. The engine input ciomdt

on seven sets of data. The residuals are genetated . i
comparing the actual engine input-output measuraneﬁgcﬁe:legtgd.rzii %"gggtékgz&ffaé%(g}?%iﬁggobgt'h

with the estimated healthy engine outputs. Focadles, the h .
estimated leakages are yof tgll1e ordepr of 20% to 25% %’HPG andp e are estimated to be in the range of 1% to

normally distributed random number with the follogi %, the HP turbine efficiency was deteriorated opat

. . : A i f 4%. The linear model outputs are geperay
mean and variance can be use to predict this tyfsslare: maximum o : .
Prosa ~ N (2145773815 . (12) interpolating/extrapolating the engine outputs % fault

over the entire range (secant step-size was classpo). It
The high variance op;gga is due to the two atypical is observed that the linear approximation matchel tie
data-points (3% and 5%). Also, observe that thennwaiue nonlinear input-output function for the estimateaulf
of the estimated fault parameter is considerabthhas intensity range. Fig. 3 (b) shows a similar congzami for
compared to the secant-step size of 1% used fonagin. estimation of bleed band leakage faults with thenesa
The secant-step size was chosen sufficiently sr@ll engine input conditions as before. Unlike HPG/HRAIS,
approximate the engine input-output map with adine the ranges for BBG and BBA faults differ. For gratiu
function. Since, it is not possible to kn@apriori the size bleed band faults, the fault parameter in the rasfgep to
of the fault using the secant-method, the modetin¢e be 12%. However, the abrupt failures are estimatelieton a
validated whenever the estimated fault intensityts gerange of up to 25%. The linear model outputs aregsed
extrapolated outside its assumed linear region. by interpolating/extrapolating the engine output% fault
F. EGT Sensor Failure (EGA) over the entire range, as secant step-size wadeglas 1%

. for estimation (secant step-size was chosen as Efon
Only one dataset was available to develop a faollute g 3 () it is observed that the linear modelides from

representing abrupt EGT sensor failure. All theid@sls e actual nonlinear function considerably for @éfhcies
showed an initial drift. This is due to an effiomloss in  oyer 1506, However, the fault model developed based
the HP turbine section causing an extra offset Qhe |inear approximation is considered adequate ther

approximately 10 deg C before the EGT sensor ilukg|iowing reason. From diagnostics viewpoint, itisually a
occurs. The last portion of the data shows an dtuagp in g g point, y



challenge to identify gradual faults (unlike abrigatlts). A of (%, p)

diagnostic algorithm capable of identifying incipifaults y = f(x,0)+Sp+g,S= . (13)
is typically successful in cases of large abrujtfes. op p=0
V. LINEAR AND NONLINEAR EAULT ESTIMATION The functiong cannot be derived analytically but is

: : o : determined by studying the nonlinear behavior o th

This section presents estimation of engine fawlted on . .
the model developed in the preceding sections. simulation modeal. Note that no matter what fogfx,p)

Initially a linear model was used, as describe8éation takes,g(x,0) anda—f’((x,O) are always zero. Unlikg, there is
II, by making a linear approximation of the engingut- 5 generic formula for calculatingg numerically.
output map. A known covariance of the fault intéesiR) Combining (2) and (13) gives us
is used for the purpose of estimation. Based orgémeral r=Sptg+e (14)
order of the fault intensities (1% for HPG/HPA, 5% oo . . .
BBG/BBA, 30 deg C for EGG/EGAR was chosen as Following a similar argument as in Section I, &ncbe
diag{l, 25, 900}. Fig. 4 shows the plots of faulimates SPOWn that the optimal estimate of the fault pateme
for a typical fault case data. The data were obthifiom Satisfies the equation
the flight computer during takeoff. The case waslier . 4 T g agT a .
classified as having HPG fault. The idea is to whether P=[R™+S Q, S] S Qy (r ‘9)+a— Q, (r--9)
the fault estimates show these failure signatures P
successfully. It is observed that the bleed-barakdge (15)
increases from sample 100 to 121 while the HP merbi Note that (15) is an implicit equation ip and in some
deterioration and EGT sensor offset estimates ®esmall. ases may require iterative equation solver (MATLAB
Thus, we observe satisfactory decoupling in thémesed commandfsolve to obtain a solution. In this work an
fault modes. Linearity approximation may be suéfiti for  approximate quadratic model of the nonlineagtis used.
diagnosis and identification of the incipient famlbde, but This model was developed by performing simulatiofhe
may lead to inaccurate estimation of the faultniey as prediction model for varying inputs and determiniag
the fault develops. A modification of the linearulia simple form of the quadratic nonlinearigythat provides a
estimation approach of Section Il was developed tfficiently accurate approximation of the nonlinea
accommodate for the nonlinearity in the functiotetieg  penavior of the model. A detailed numerical studyrid
outputs to fault parameters. _ that a very simple quadratic model suffices. We ase

Consider the residual model of Section II. Intre@l& ponlinearity model that is fixed, independent af #mbient
nonlinear term g=g(xp) to capture the nonlinear conditions and other variables that are includedthia
dependence on the fault parameter in the residwe. myector x. Moreover, it is assumed thatx,p)=g(p). In a

Thus (3) is modified to most general case, the quadratic tergrg(p) is
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characterized bymx|l)x(1+1)/2= 1&efficients. This is

because the quadratic term also has cross terxtendtve
simulations using the engine takeoff model weredute
determine which of these terms to retain in the eholl

was found that the most important term than needset
taken into account is the quadratic nonlinearitghie bleed-
loss intensity. All other quadratic terms and crgsms can
be conveniently neglected. The functigp) was therefore
chosen to be

a(p) =S, p?, (16)

actual nonlinear engine input-output function. lane
approximation of the engine map used during theatnogl
stage was found inadequate for one of the fauksaso
further improve the accuracy of the estimation atgm
and minimize cross-coupling of fault estimates,
nonlinear behavior of the engine model is investida A
simple nonlinear approximation of the model was
developed and used in a new optimal nonlinear ssith
estimation algorithm. Implementation of this aldjom
shows improvements in the fault estimate accuracjafge
bleed faults, the ones that caused inaccuracids limi¢ar

the

where the vectorS, JR®>! and is further called the estimation.
3

quadratic sensitivity of the bleed band leakagdt.falp

calculateS,, we used a best-fit least-squares method. We se

HPT deterioration and EGT sensor offset to zero \aarg
bleed-band leakage in increments in the interesiede.
We then calculate the residual error and fit a esgion
model of the form (16) to that data. The numencdle of
S,was thus determined as

s, =[0.0037 0.1529 0.3604" . (17)

Using the definition ofy(p) from (18), we get

) 0 0

%9 =l of2s, p,|0]. (18)
0 0

Substituting (16) to (18) into (15) gives the ommim
estimate op.

The nonlinear fault estimation algorithm for enginas
first validated through simulations. Since the moedr
correction is meant for cases in which there igdableed
band leakage, a distinct difference between thdteesf the
linear and the nonlinear algorithm is seen only tforse
cases. Therefore, we chose engines which had exped

a bleed-band leakage fault and compared the resilts

using the linear and nonlinear estimation algorghfor

these engines. The plots in Fig. 5 show the rebalted on
the nonlinear estimation algorithm for an engineéciwhad

an abrupt bleed band leakage failure. The correipgn
linear estimation algorithm (not shown) led to arspus

rise of approximately 12 deg C in EGT sensor offisghe

last data-point. The nonlinear estimation algoritleduces
this inaccurate estimation by half. Also, the noadr

estimation algorithm reduces the magnitude of tleed

band leakage from approximately 24% (not showrl)A%.

Not much change is observed
deterioration estimates.

VI. CONCLUSION

This paper presents a parametric fault modeling ar%

diagnostics approach for a typical turbofan engifke
benefit of parametric fault modeling is that vaddailure
signatures can be effectively captured by a selextenber
of parameters. However, a key assumption is thetioe

in the HP turbin
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