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Abstract — A parametric fault modeling and diagnostics 
approach of a turbofan engine is presented. The healthy engine 
model is obtained as a steady state map between input 
parameters representing engine operating conditions and 
output parameters governing engine performance 
characteristics. The fault modeling is conceptualized as either 
degraded engine performance levels or as sensor failures and 
both incipient and abrupt fault scenarios are considered. The 
fault parameters are successfully estimated using Generalized 
Least Squares (GLS) techniques with data obtained from 
several recorded flight data. Further, a nonlinear estimation  
method is introduced to improve the diagnostic performance in 
certain cases of large and abrupt failures. 

I. INTRODUCTION 

esearch in the area of engine fault diagnostics 
concentrates on finding automatic diagnosis tools and 

improving diagnostics reliability. The traditional approach 
of automated diagnostics involves establishing a library of 
faults, based on field experience, manufacturer data or 
test/flight data, and building an expert system to identify 
potential source of failure. However, the reliability of such 
methods depends greatly on the accuracy of the faults 
identified during inspection and on the size of the 
knowledge basis. The state of the art research in engine 
fault diagnostics has effectively advanced in two major 
directions. One approach combines traditional rule-based 
diagnostics method (e.g., expert systems) with other AI 
techniques, such as neural networks and fuzzy logic [1], [2]. 
The other approach uses models of engine performance and 
is known as model-based fault diagnostics [3], [4]. Model-
based diagnostics mainly consists of combining theoretical 
knowledge with test/flight data. Here, an estimated system 
model is compared to a nominal system model. The residual 
or error between the two models provides a measure of the 
deviation between the estimated and nominal models, and is 
used to make a decision as to whether a failure has occurred 
or not. An essential requirement for model-based 
diagnostics is the development of an accurate system model. 
Reference [5] provides an excellent survey of engine health 
monitoring systems for commercial aircrafts. 

This paper presents parametric fault modeling and 
diagnostics of the LF507 turbofan engine manufactured by 
Honeywell. LF507 is a two-spool aircraft engine used at 
regional jet aircrafts, such as BAE Avro RJ85. The typical 
faults affecting the LF507 engines and considered in this 
research include deterioration of the turbine efficiency, 
combustor liner failure, leakage in the engine bleed system 
and sensor failures in the exhaust gas temperature. The fault 
modeling is based on minimizing the least squares error 
between recorded flight data and a simulated engine model. 
Sensor data related to engine performance characteristics 
along with flight condition sensor measurements were 

collected at each flight cycle. These are typically sampled 
once or twice per flight, logged and transferred to a ground 
monitoring system and were available for the off-line 
engine model development. This research was performed as 
a part of the PTM (Predictive Trend Monitoring) system 
development sponsored by Honeywell Engine Systems and 
Services. The engine fault model aims at facilitating 
predictive maintenance of Honeywell aircraft engines. 
However, the research presented in this paper also has 
greater applicability – to model-based estimation for 
trending of a broad range of aerospace systems. 

II. BASIC THEORY FOR FAULT ESTIMATION 

The theoretical background of engine fault modeling and 
diagnostics is presented in this section. The engine fault 
simulation model is shown schematically in Fig. 1. In this 
setup, the vectors of operating condition data and output 
data are known at each flight cycle. The engine fault 
modeling involves determining the fault parameter vector. 
In effect, this estimation problem requires inverting the 
model map in Fig. 1 with respect to the fault parameter 
vector input. The problem is compounded by the fact that 
the data used for the estimation is distorted by sensor noise 
and that modeling error is present.  

 The basic approach to fault diagnostics is to remove the 
map dependency on the operating condition vector input 
and then to evaluate the fault parameter vector through an 
optimal statistical estimation algorithm. The functional 
dependency of the output vector is linearized w.r.t. the fault 
parameter vector, which leads to a least squares-type 
estimation problem. The fault model obtained using the 
linear assumption is further validated against the nonlinear 
functional relationship between the output vector and the 
fault parameters. The technical details are discussed in the 
following paragraphs.  

The engine model in Fig. 1 can be presented in the form  
),(ˆ pxfy = , (1) 

where my R∈ˆ  is the model-based prediction of the vector 

y, nx R∈  is the vector of measured operating conditions, 

and lp R∈  is the vector of performance deterioration 
parameters/sensor error parameters in the model. The 
function ),( ⋅⋅f  in the model might be unavailable in an 
analytical form, but can be computable point-wise by 
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Fig. 1. Schematic diagram of engine fault simulation model. 
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running a simulation. In the no-fault or nominal case, where 
no deterioration/failure has occurred, it is assumed that 

0=p . The residual, r, is computed as the difference 
between actual engine output data y, and estimated output 
ŷ , by assuming that no performance deterioration/failure 
has occurred, i.e., 0=p  in (1). In other words, the residual 
is given by  

)0,(xfyr −= . (2) 
Thus, for an accurate model and no failure/deterioration, 

we expect to get 0=r . A failure or degraded performance 
can be modeled by the fault parameter vector p. This vector 
can be estimated from the residual r by inverting the 
map ),( ⋅xf . One apparent difficulty in this approach is the 
nonlinearity of the function ),(⋅⋅f . Fortunately, in many 
practical applications this difficulty can be overcome by 
linearizing (1) around the nominal model where 0=p . In 
case of incipient faults like performance deterioration, the 
magnitude of the fault parameters (fault intensity) is usually 
small. For instance, a turbine efficiency drop of just 1% 
might be considered serious enough to pull off the 
turbomachine. Thus, a sufficiently accurate approximation 
of the model in (1) is given by  

0

),(
 ,)0,(ˆ

=∂
∂=+=

p
p

pxf
SSpxfy , (3) 

where the Jacobian lmS ×∈ R  will be hereafter called the 
fault sensitivity matrix. The sensitivity matrix S in (3) can 
be numerically estimated by a secant method: by 
incrementing the argument p and computing corresponding 
variation in the output vector ŷ  in (1). The secant estimate 

for a column )( jS  of the sensitivity matrix S is given by  

,
)0,(,( )(

)(  −
≈

s

xfsexf
S

j
j  (4) 

where s is the secant step size and )( je  is the unit vector 
directed along the coordinate axis j. The parameter s should 
be chosen to provide an optimal tradeoff between the 
numerical accuracy (limited if s is too small) and the 
nonlinearity error (larger for larger s). Linearization of 
nonlinear maps and use of sensitivities to various efficiency 
deterioration parameters is well known and commonly 
practiced in performance analysis of turbomachines. 

Combining (2) and (3) yields the residual as 

oeSpr += , (5) 
where eo is the ‘noise’ term added to reflect output 
modeling error and influence of various factors not 
accounted for by the model in (3). Thus, the fault modeling 
and diagnostics effectively involves obtaining an estimate 
of the fault intensity p. We use statistically optimal 
estimation, such as the Maximum A posteriori Estimate 
(MAE) or the Maximum Likelihood Estimate (MLE). The 
basis for such approach is an assumption that the ‘noise’ eo 
in (5) is a normally distributed random variable with zero 
mean and covariance Qo: ),0(~ oo QNe . The numerical 
value of the covariance matrix Qo can be empirically 
estimated from the residuals of a population of engines in 
the absence of faults. Assume further that p in (5) is a 
normally distributed random variable with a zero mean and 

covariance R as ),0(~ RNp . The covariance matrix R 
reflects prior knowledge of intensity of fault variation 
encountered in the estimation problem. This covariance will 
be further considered as a tuning knob parameter of the 
estimation algorithm devoid of a physical meaning.   

Now consider finding a Maximum A posteriori Estimate 
(MAE) for p. With the residual r known, the Bayes-rule 
yields the logarithmic distribution of the conditional 
probability for the fault p as  

c pPprPrpP +−−=− )( log)|( log)|( log , (6) 
where )(log rPc =  does not depend on p, and )( pP  is 
given by N(0,R). Note that in accordance with (5) and 
distribution of eo, the conditional probability distribution 

( )prP |  is given by ),( oQSpN . By plugging these 
Gaussian distributions into (6) and minimizing the result we 
obtain the optimal estimate of p as 

[ ]

( ) ( )  ++−−=

−=

−− const
2

1

2

1
minarg

)|(logminargˆ

11 pQpSprQSpr

rpPp

o
T

o
T
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By differentiating the R.H.S. of (7) with respect to p and 
equating the result to zero, the optimal estimate p̂  is found 
to be  

[ ] rQSSQSRp o
T

o
T 1111ˆ −−−− += . (8) 

This is also know as the Generalized Least Squares 
(GLS) estimate of p. Assuming no a priori information 
about p is available is equivalent to assuming a very large 
covariance R in the distribution for (8) and leads to a 
Maximum Likelihood Estimate (MLE). The MLE is 
obtained from the MAE by substituting a zero for R-1 and 
has the form 

[ ] rQSSQSp o
T

o
T 111ˆ −−−= . (9) 

Equation (9) serves as the basis for developing the engine 
fault model and related diagnostics.  

III. ENGINE FAULT MODEL DEVELOPMENT 

This section presents a fault model of the engine that is 
used for fault diagnostic system development, verification 
and validation. The fault modeling involves addition of 
engine failure modes in a modular fashion to the healthy or 
the no-fault engine model.  

The healthy engine is modeled as a sequence of 
interconnected components [6]. Ambient air is sucked into 
the engine by the inlet fan and is split at the plenum; a part 
enters the compressor section while the rest is bypassed. 
The flow of the air is guided by inlet guide vanes. High 
pressure air from the compressors enters the combustor 
where fuel is injected through annular nozzles. Hot gases 
from the combustor expand in the gas turbine section, 
which drives the fan and the engine shafts (concentrically 
arranged). Exhaust gases from the turbine along with the 
bypassed air is expelled outside the aircraft via the nozzle 
and the kinetic energy of the exhaust is available as the 
engine thrust. The bleed band section is used by the engine 
control system to maintain efficient engine operations 
during transient stages, e.g., starting periods of engine 
acceleration. Conditions of steady-state engine operation 
are measured by four parameters: altitude (h), Mach No 
(Mach), total air temperature (TAT), engine fan speed (N1), 
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and the engine performance characteristics is measured by 
three outputs: engine core speed (N2), exhaust gas 
temperature (EGT), fuel flow (WF). 

Many of the incipient and abrupt faults that result in the 
deterioration of engine performance can be modeled as 
adverse changes in the parameters that affect the turbine 
efficiency and bleed band efficiency. The fault modeling 
involves lumping parameters like efficiencies to capture 
performance deterioration. Consequently, detection of these 
faults can be performed by identifying deviations of 
performance parameters from their nominal values. In 
addition, typical sensor failures are also considered in the 
engine fault model – specifically for exhaust gas 
temperature (EGT) measurements. These are modeled by 
introducing an additive error term in the EGT measurement. 
These fault parameters considered are: 

1. p1 – performance loss for the high pressure 
turbine; 

2. p2 – leakage in the bleed band system; 
3. p3 –  EGT sensor measurement error. 

These faults make a fault parameter 
vector [ ]Tpppp 321= . The intensities of these fault 
parameters were estimated based on recorded flight data for 
differnet engines and flights. The fault parameter vector can 
effectively capture the following six categories of faults: 

1. HP Turbine Performance Degradation  
2. Combustor Liner Failure 
3. Bleed Band Leakage 
4. Bleed System Failure 
5. EGT Sensor Drift 
6. EGT Sensor Failure 
Both high pressure performance degradation and 

combustor liner failure cause an increase in the residual of 
N2, and a decrease in EGT and WF. This effect is well 
captured by a corresponding change in the high pressure 
turbine efficiency. Faults in the bleed band section cause an 
increase in all the three residuals (∆N2, ∆EGT, ∆WF) and 
are effectively modeled by a bleed band efficiency factor. 
Faulty EGT sensor measurements are taken into account by 
a corresponding additive fault parameter.  

The faults 1,3,5 develop gradually, their intensities grow 
incrementally with time. The faults 2,4, and 6 occur 
abruptly, they become fully developed at some flight, while 
little or no fault effect was observed in the previous flight 
data.  

This study used snapshot data collected from engine 
during aircraft takeoff, when it runs at maximum power. 
This data is routinely collected in the operation and was 
available for our study. Typically each flight (and hence 
each engine) was operated 3-4 times a day. One data-point 
consists of snapshot measurements of engine input and 
output parameters per flight. 

The details of engine fault modeling are presented next. 

A. No-fault Model Bias Error and Noise 
For determining bias error and noise (scatter) of the model 
prediction, data from six different engines was used. Each 
dataset contained about 150-450 data-points. The residuals 
(∆N2, ∆EGT, ∆WF) are calculated for the fault-free engine 
model to estimate modeling errors not accounted for in the 
engine model. A bias error was observed in the residuals 
(approximately constant for individual engines). This is 

modeled by a normally distributed random variable as 
),(~ biasbias QNbias µ . The numerical values of biasµ  and 

biasQ  were computed based on the first 50 points of each 
dataset. This is done (not using entire datasets) to avoid an 
accidental capture of minor degradation in engine 
performance over time – a natural phenomena for all 
engines. The bias error is implemented in the engine fault 
model by seeding a corresponding random number and 
adding the error terms to the engine outputs: N2, EGT and 
WF. Note that for the residual calculations in the fault 
scenarios, the same technique (averaging over first 50 
points) is used to remove bias errors.  

The output noise covariance matrix, Qo, is calculated 
based on the nominal datasets by computing the output 
covariance matrix for each engine and taking an average 
across the datasets. Together, the two normally distributed 
random variables eo and bias define the sensor 
noise/modeling error at the output of the engine model.  

B. HP Turbine Performance Degradation (HPG) 
The fault parameter representing HPG fault is estimated 

based on datasets from four engines. The effect of HP 
turbine efficiency degradation results in a gradual decrease 
in the residual ∆N2 and gradual increases in the residuals 
∆EGT and ∆WF. Each dataset contains 1000-2000 data-
points and the fault is spread over approximately 1000 data-
points. The fault is effectively captured by a linear function 
of the parameter p1. Least squares data-fitting techniques 
are used to determine this function for each dataset and then 
averaged over the four engines. The slopes of the changes 
in p1 for the different engines were calculated as: 

1. Engine M91:  2.0671  % /1000 data-point 
2. Engine M88:  1.1810  % /1000 data-point 
3. Engine M72:  0.5682  % /1000 data-point 
4. Engine M89:  0.7420  % /1000 data-point 

Thus, for fault-type HPG, the fault parameter p1 can be 
modeled as a normally distributed random number with 
mean and variance computed as: 

)4488.0,1396.1(~,1 Np HPG . (10) 

C. Combustor Liner Failures (HPA) 
Two sets of data were available to estimate the 

combustor liner failure. These data sets were extracted from 
historical data and correspond to the actual operational 
cases of the failure. The exact type of the failure was 
confirmed by the repair and overhaul analysis.  Fig. 2 shows 
the plots for Engine M83. The effect of combustor liner 
failure is an abrupt decrease in the residual ∆N2 and abrupt 
increases in the residuals ∆EGT and ∆WF. This pattern of 
change in the residuals is modeled by a respective change in 
the fault parameter p1.  The last 9 few data-points (shown 
by ‘+’ signs in Fig. 2) represent this fault and correspond to 
a change in p1 by 1% or more. Statistically, this 
phenomenon can be represented by a normally distributed 
random number with the mean and variance given by: 

)0743.0,4975.1(~,1 Np HPA . (11) 

D. Bleed Band Leakage (BBG) 
Only one set of data was available for modeling failures 
categorized as bleed band leakages: Engine M94. A leakage 
in the bleed band section of the engine causes an increasing 
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pattern in all the three residuals ∆N2, ∆EGT and ∆WF. The 
corresponding change in the bleed band efficiency (fault 
parameter p2) is estimated as a linear variation with time by 
minimizing the least-squares error. The slope of the change 
in p2 is 0.39% per data-point for this particular dataset. A 
statistical representation of the corresponding fault 
parameter p2,BBG awaits further collection of data 
corresponding to BBG-type faults.  

E. Bleed Band Failure (BBA) 

The bleed band abrupt failure model is developed based 
on seven sets of data. The residuals are generated by 
comparing the actual engine input-output measurements 
with the estimated healthy engine outputs. For all cases, the 
estimated leakages are of the order of 20% to 25% A 
normally distributed random number with the following 
mean and variance can be use to predict this type of failure: 

)815.73,457.21(~,1 Np BBA . (12) 
The high variance of p1,BBA is due to the two atypical 

data-points (3% and 5%). Also, observe that the mean value 
of the estimated fault parameter is considerably high as 
compared to the secant-step size of 1% used for estimation. 
The secant-step size was chosen sufficiently small to 
approximate the engine input-output map with a linear 
function. Since, it is not possible to know a priori the size 
of the fault using the secant-method, the model needs to be 
validated whenever the estimated fault intensity gets 
extrapolated outside its assumed linear region.  

F. EGT Sensor Failure (EGA) 

Only one dataset was available to develop a fault module 
representing abrupt EGT sensor failure. All the residuals 
showed an initial drift. This is due to an efficiency loss in 
the HP turbine section causing an extra offset of 
approximately 10 deg C before the EGT sensor failure 
occurs. The last portion of the data shows an abrupt jump in 

the EGT residual. The mean and variance of the data-points 
after failure are computed as 42 deg C (removing 10 deg 
initial offset) and 18 deg C respectively. However, this is 
the statistical estimate based upon one failure case. 

Note that the EGT sensor measurement is an average of 
an array of several thermocouples and can fail in a multiple 
number of ways. The exact array structures and failure 
modes were not available for modeling. However, based 
upon several discussions with field experts it was noted that 
EGT sensor failures typically varied between –15 to –60 
deg C and +15 to +60 deg C (without recorded data to 
confirm). Based on this knowledge, one can model this 
failure by a random number (p3,EGA) varying between the 
specified ranges. 

IV. ENGINE FAULT MODEL VALIDATION  

The LF507 engine fault simulation model is developed 
based on a linear relationship between the fault parameters 
and the engine outputs. The linear approximation is 
sufficient when the estimated fault intensities are relatively 
small and can be successfully used for modeling small 
gradual faults. However, in case of abrupt failures and 
faults of higher intensities, the suitability of linear 
approximation needs to be verified against the actual 
behavior of the function relating engine outputs with fault 
parameters. Amongst the three fault parameters p1, p2 and 
p3, the last parameter, representing EGT abrupt and gradual 
faults, enters the fault model by direct addition to one of the 
engine outputs (specifically, the EGT sensor measurement). 
This map function between the engine outputs and the fault 
parameter is perfectly linear and the linear fault estimation 
is accurate in this case. However, the efficiency parameters 
p1 and p2 enter the detailed engine gas path model in a 
complicated way. Thus, it needs to be determined how these 
two fault parameters affect the outputs.  

Fig. 3 (a) shows a comparison of the actual input-output 
function with its linear approximation used for estimation of 
HP performance degradation. The engine input conditions 
are selected as a typical takeoff data-point: h = 1000 ft, 
Mach = 0.2, TAT = 10 deg C and N1 = 90%. Since both 
p1,HPG and p1,HPA are estimated to be in the range of 1% to 
2%, the HP turbine efficiency was deteriorated up to a 
maximum of 4%. The linear model outputs are generated by 
interpolating/extrapolating the engine outputs at 1% fault 
over the entire range (secant step-size was chosen as 1%). It 
is observed that the linear approximation matches well the 
nonlinear input-output function for the estimated fault 
intensity range. Fig. 3 (b) shows a similar comparison for 
estimation of bleed band leakage faults with the same 
engine input conditions as before. Unlike HPG/HPA faults, 
the ranges for BBG and BBA faults differ. For gradual 
bleed band faults, the fault parameter in the range of up to 
12%. However, the abrupt failures are estimated to lie in a 
range of up to 25%. The linear model outputs are generated 
by interpolating/extrapolating the engine outputs at 1% fault 
over the entire range, as secant step-size was selected as 1% 
for estimation (secant step-size was chosen as 1%). From 
Fig. 3 (b) it is observed that the linear model deviates from 
the actual nonlinear function considerably for efficiencies 
over 15%. However, the fault model developed based on 
the linear approximation is considered adequate for the 
following reason. From diagnostics viewpoint, it is usually a 
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challenge to identify gradual faults (unlike abrupt faults). A 
diagnostic algorithm capable of identifying incipient faults 
is typically successful in cases of large abrupt failures.   

V. LINEAR AND NONLINEAR FAULT ESTIMATION 
This section presents estimation of engine faults based on 

the model developed in the preceding sections.  
Initially a linear model was used, as described in Section 

II, by making a linear approximation of the engine input-
output map. A known covariance of the fault intensities (R) 
is used for the purpose of estimation. Based on the general 
order of the fault intensities (1% for HPG/HPA, 5% 
BBG/BBA, 30 deg C for EGG/EGA) R was chosen as 
diag{1, 25, 900}. Fig. 4 shows the plots of fault estimates 
for a typical fault case data. The data were obtained from 
the flight computer during takeoff.  The case was earlier 
classified as having HPG fault. The idea is to see whether 
the fault estimates show these failure signatures 
successfully. It is observed that the bleed-band leakage 
increases from sample 100 to 121 while the HP turbine 
deterioration and EGT sensor offset estimates remain small. 
Thus, we observe satisfactory decoupling in the estimated 
fault modes. Linearity approximation may be sufficient for 
diagnosis and identification of the incipient fault mode, but 
may lead to inaccurate estimation of the fault intensity as 
the fault develops. A modification of the linear fault 
estimation approach of Section II was developed to 
accommodate for the nonlinearity in the function relating 
outputs to fault parameters.  

Consider the residual model of Section II. Introduce a 
nonlinear term g=g(x,p) to capture the nonlinear 
dependence on the fault parameter in the residual map. 
Thus (3) is modified to 

0

),(
 ,)0,(ˆ

=∂
∂

=++=
p

p

pxf
SgSpxfy . (13) 

The function g cannot be derived analytically but is 
determined by studying the nonlinear behavior of the 
simulation model. Note that no matter what form g(x,p)  

takes, g(x,0) and )0,(x
x
g

∂
∂ are always zero. Unlike S, there is 

no generic formula for calculating g numerically. 
Combining (2) and (13) gives us 

oegSpr ++= . (14) 
Following a similar argument as in Section II, it can be 

shown that the optimal estimate of the fault parameter 
satisfies the equation 

[ ]  −−
∂
∂

+−+= −−−−− )ˆ()(ˆ 11111 gpSrQ
p

g
grQSSQSRp o

T

o
T

o
T

..

 (15) 
Note that (15) is an implicit equation in p̂  and in some 
cases may require iterative equation solver (MATLAB 
command fsolve) to obtain a solution. In this work an 
approximate quadratic model of the nonlinearity g is used. 
This model was developed by performing simulations of the 
prediction model for varying inputs and determining a 
simple form of the quadratic nonlinearity g that provides a 
sufficiently accurate approximation of the nonlinear 
behavior of the model. A detailed numerical study found 
that a very simple quadratic model suffices. We use a 
nonlinearity model that is fixed, independent of the ambient 
conditions and other variables that are included in the 
vector x. Moreover, it is assumed that g(x,p)=g(p). In a 
most general case, the quadratic term g=g(p) is 
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Fig 4. Engine M72: Linear fault estimation of HPG fault data. 
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characterized by 182/)1()( =+×× llm coefficients. This is 
because the quadratic term also has cross terms.  Extensive 
simulations using the engine takeoff model were used to 
determine which of these terms to retain in the model. It 
was found that the most important term than needs to be 
taken into account is the quadratic nonlinearity in the bleed-
loss intensity. All other quadratic terms and cross-terms can 
be conveniently neglected. The function g(p) was therefore 
chosen to be 

2
2)( pSpg = , (16) 

where the vector 13
2

×∈ RS  and is further called the 
quadratic sensitivity of the bleed band leakage fault. To 
calculate S2, we used a best-fit least-squares method. We set 
HPT deterioration and EGT sensor offset to zero and vary 
bleed-band leakage in increments in the interested range. 
We then calculate the residual error and fit a regression 
model of the form (16) to that data. The numerical value of 
S2 was thus determined as  

[ ]TS 3608.01529.00037.02 = . (17) 
Using the definition of g(p) from (18), we get =
∂
∂

0

0

0

2

0

0

0

22 pS
p

g
. (18) 

Substituting (16) to (18) into (15) gives the optimal 
estimate of p. 

The nonlinear fault estimation algorithm for engine was 
first validated through simulations. Since the nonlinear 
correction is meant for cases in which there is large bleed 
band leakage, a distinct difference between the results of the 
linear and the nonlinear algorithm is seen only for those 
cases. Therefore, we chose engines which had experienced 
a bleed-band leakage fault and compared the results of 
using the linear and nonlinear estimation algorithms for 
these engines. The plots in Fig. 5 show the results based on 
the nonlinear estimation algorithm for an engine which had 
an abrupt bleed band leakage failure. The corresponding 
linear estimation algorithm (not shown) led to a spurious 
rise of approximately 12 deg C in EGT sensor offset in the 
last data-point. The nonlinear estimation algorithm reduces 
this inaccurate estimation by half. Also, the nonlinear 
estimation algorithm reduces the magnitude of the bleed-
band leakage from approximately 24% (not shown) to 17%. 
Not much change is observed in the HP turbine 
deterioration estimates. 

VI. CONCLUSION 
This paper presents a parametric fault modeling and 

diagnostics approach for a typical turbofan engine. The 
benefit of parametric fault modeling is that various failure 
signatures can be effectively captured by a selected number 
of parameters. However, a key assumption is that certain 
kinds of engine failures will result in specific changes in the 
parameters being monitored. The residual modeling was 
based on minimization of the least squares error between 
actual and estimated data. Fault parameters were estimated 
using a linear approximation of the map relating the fault 
parameters and the residuals. Faults of both abrupt and 
gradual nature were successfully modeled using this 
technique. The developed fault model was validated against 

actual nonlinear engine input-output function. Linear 
approximation of the engine map used during the modeling 
stage was found inadequate for one of the fault cases. To 
further improve the accuracy of the estimation algorithm 
and minimize cross-coupling of fault estimates, the 
nonlinear behavior of the engine model is investigated. A 
simple nonlinear approximation of the model was 
developed and used in a new optimal nonlinear stochastic 
estimation algorithm. Implementation of this algorithm 
shows improvements in the fault estimate accuracy for large 
bleed faults, the ones that caused inaccuracies with linear 
estimation. 
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Fig 5. Engine M23: Nonlinear fault estimation of BBA fault data. 


