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Abstract— In this paper, we present a model-based approach
for estimating fault conditions in an aircraft. We formulate
fault estimation as a convex optimization problem, where
estimates are obtained by solving a constrained quadratic
program (QP). A moving horizon framework is used to enable
recursive implementation of the constrained QP of fixed size.
The estimation scheme takes into account a priori known
monotonicity constraints on the faults. Monotonicity implies
that the fault conditions can only deteriorate with time. We
validate the proposed estimation scheme on a detailed nonlinear
simulation model of the Aerosonde unmanned aerial vehicle
(UAV) in the presence of winds and turbulence. An excellent
performance of the developed approach is demonstrated.

I. I NTRODUCTION

Model-based fault estimation algorithms have been studied
in the controls community for the past two decades; see
survey papers [1], [2], [3]. These diagnostic methods involve
analysis ofresiduals, also referred to as theparity variables.
The residuals reflect a discrepancy between measured vari-
ables and their model-based predictions. A non-zero residual
serves as a fault indicator. The techniques for generating
residuals have been developed for a variety of quantitative
models, such as parametric models and state space models,
as well as qualitative models like expert systems. Recently,
there has also been considerable research on fault diagnosis
for nonlinear systems [4], [5], [6].

This work focuses on model-based fault estimation in
an aircraft. Reliable methods for accurate online estimation
of developing fault conditions are of great significance in
aerospace and other safety critical systems. Several papers
have looked at aircraft failure detection through residual
analysis. A basic method is to check the residuals against a
threshold. More sophisticated approaches to aircraft param-
eter estimation based on recursive least squares and Kalman
filtering are described in [7], [8], [9]. This paper extends
the earlier results by taking into account a knowledge of
constraints on the fault parameters. In particular, we incorpo-
rate monotonicity constraints which express the deterioration
as irreversible. To find statistically optimal constrained esti-
mates of the incipient faults from the given residuals, we use
convex optimization methods. A recursive formulation for
the constrained convex problems is implemented by using
a moving horizon estimation(MHE) approach. For more
details of the theory of moving horizon estimation, see [10],
[11].

To the best of the authors knowledge, constrained recursive
convex programs have not previously been used for fault

estimation in an aircraft. One possible reason is that, previ-
ously, it was not possible to solve such problems reliably
in a fraction of a second on an avionics hardware. The
earlier related work on optimization-based MHE was in
chemical engineering applications (process plants), where the
sample time of many seconds or even minutes is acceptable.
In this paper we demonstrate that an off-the-shelf solver
allows achieving200 − 500 millisecond update on a PC in
a realistic aircraft application. The computation time can be
further reduced by1− 2 orders of magnitude by developing
specialized solvers.

The aircraft considered in this paper is the Aerosonde
unmanned aerial vehicle (UAV). A detailed nonlinear simula-
tion model used for control design of the UAV can be read-
ily re-used to implement the proposed estimation scheme.
Various faults related to structural damage and propulsion
system degradation are modelled as changes in the aircraft
lift and drag coefficients. These faults are seeded in the flight
simulation. The diagnostic algorithms are then verified by
comparing the on-line fault estimates to the seeded faults.

II. T ECHNICAL PROBLEM STATEMENT

We begin by formulating the fault estimation problem
for an aircraft. A nonlinear six-degree-of-freedom (6-DOF)
aircraft dynamics model used for design and validation of
GN&C (Guidance, Navigation, and Control) system of an
aircraft generally has the form

ṗ = φ(v),
v̇ = ψ(p, v, ζ, u(t), w(t), f), (1)

where p and v denote the vectors of (linear and angular)
coordinates and velocities respectively,i.e., p = (latitude,
longitude, altitude, roll angle, pitch angle, yaw angle), and
v = (velocity north, velocity east, velocity down, roll rate,
pitch rate, yaw rate). The vectoru(t) consists of control
inputs;ζ is the vector of auxiliary parameters;w(t) denotes
the input disturbance, caused usually by wind gusts;f is
the fault parameter vector (in a nominal conditionf = 0).
The functionsφ and ψ are static nonlinear maps. Detailed
nonlinear dynamical models of the form (1) are commonly
developed for control design and analysis of the aircraft. In
the estimation framework we assume that the state variables,
control inputs, and the auxiliary parameters are available
either directly from sensors on the aircraft, or they can be
calculated from such sensor data. Our goal is to estimate
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the faults from these observations. This is explained in the
sequel.

A. Prediction Residuals

Model-based fault estimation schemes involve residual
generation followed by some type of residual analysis. The 6-
DOF aircraft model allows us to use six (linear and angular)
acceleration residuals. The residuals are computed as the
difference between the actually observed accelerations of the
aircraft and the accelerations predicted by the dynamic model
assuming that that there are no faults

y(|f = 0) = a− â, (2)

wherey ∈ Rm is the vector of acceleration residuals. The
notation y(|f), where f ∈ Rp is the vector of faults, is
used to emphasize the fault dependence of the residuals.
The vectorsa and â denote the observed and predicted
accelerations respectively. If the prediction model accurately
describes the aircraft operation and there are no faults, the
residuals should be zero. A non-zero residual indicates that
the aircraft dynamics deviate from the nominal model. This
may correspond to performance deterioration in the system.

The residuals can also be caused by disturbances. In partic-
ular, turbulence effects caused by wind gusts are commonly
encountered in an actual aircraft flight. Full knowledge of the
wind speed measurements is not a realistic assumption. In
our estimation framework, we assume that a low pass filtered
knowledge of the windŝw is available, where

ŵ = F (s)w, (3)

and

F (s) =
1

τs + 1
(4)

is a low pass filter. The time constant of the filter is used as a
tuning parameter during estimation. The estimation scheme
has less demands on wind speed measurement system and as
a consequence, is more practical, if it yields reliable estimates
for a higher value of the time constant.

In many cases (including the application example in Sec-
tion IV) there are no accurate accelerometers on board the
aircraft. In that case the observed accelerations in (2) can be
obtained by differentiating the velocities of the aircraft,i.e.,

a = Fa(s)sv, (5)

wheres is the Laplace operator andFa(s) is an appropriate
smoothing (low-pass) filter. The filterFa(s) might have the
same form as the filter (4) but with a different time constant.
The filter Fa(s) should prevent amplification of the noise
signal caused by differentiation and wind gusts.

The accelerationŝa in (2) are obtained from the prediction
model, which uses essentially the same blocks as the aircraft
GN&C simulation model (1). The prediction model is how-
ever an instantaneous input-output map, which is schemati-
cally shown in Figure 1. The model takes parametric sensor
data (aircraft states, aircraft controls, auxiliary parameters,
low pass filtered wind speed measurementsŵ), and the fault

Fault inputs 

Predicted

AccelerationsPrediction Model 
Sensor data 

Fig. 1. Schematic diagram of a prediction model

vector as its inputs. The output of the prediction model is
the vector of predicted accelerations of the aircraft. To match
the smoothed differentiation of the observed acceleration (5),
the output of the prediction model is also low-pass filtered
to obtainâ as

â = Fa(s)ϕ(p, v, ζ, u, ŵ; f = 0), (6)

whereϕ denotes the aircraft prediction model map.

B. Fault Sensitivity of Prediction Residuals

The sensitivity of prediction residuals to various faults
plays a key role in our estimation scheme. The faults usually
enter the aircraft dynamics in a non-linear manner. As a
consequence, the prediction model mapϕ is in general
non-linear. In most cases however, the magnitude of the
underlying faults is small,i.e., the change in underlying
aircraft dynamics caused by the faults is relatively small
under most operating conditions. We can thus make the
fundamental assumption that the prediction model can be
linearized around the nominal mapϕ with f = 0. Using this
linear approximation, we get a linear relationship between
the residual and the fault that can be conveniently expressed
as

y(|f) = S f + e, (7)

whereS ∈ Rm×p is called the fault sensitivity matrix or the
matrix of fault signatures. The noise terme in (7) accounts
for modeling and sensor measurement errors. Note that if
e = 0, i.e., no noise and no modeling errors, then the residual
in the absence of faulty(|0) = 0. This will indicate nominal
system operation.

Notice that commonly there is no analytical map available
for the full nonlinear aircraft model. The simulation modelψ
in (1) and the prediction modelϕ in (6) are only available as
computational blocks. We therefore use a secant estimate of
the sensitivity matrixS. The fault sensitivities are computed
by first calculating the difference between the predicted
accelerations with a given fault input and the predicted
accelerations with zero fault input. The difference is then
normalized by the input fault magnitude to obtain the fault
sensitivity for a given fault,i.e., sensitivity of theith fault
is given as

Sfi =
ϕ(·|fi)− ϕ(·|0)

|fi| , (8)

whereϕ(·|fi) is the predicted acceleration in the presence of
fault i andϕ(·|0) is the predicted acceleration with zero fault
input. To compute the fault signatures forp faults, we need
to run (p + 1) copies of the prediction model in parallel;
one for each of thep faults and an additional to obtain



ϕ(·|0). The computation of the sensitivity matrixS may be
performed on-line or off-line depending upon the application
in hand. The described approach is related to (but different
from) the practice of using a bank of Kalman filters for fault
identification [13].

The fault estimation problem is to find the unknown fault
parametersf, given the prediction residualsy and the matrix
of fault signaturesS.

III. FAULT ESTIMATION VIA CONVEX OPTIMIZATION

We present an optimization-based statistical estimation
approach for diagnostics in aircraft. The fault estimation
scheme relies on residuals generated by detailed model of
the aircraft under consideration, and the fault signatures of
the computed residuals. The statistical estimation approach is
based on numerical optimization of a log-likelihood function.

To derive the likelihood function, we assume thate in (7)
is an uncorrelated normally distributed noise sequence with
zero mean and covarianceQ, i.e.,

e v N(0, Q). (9)

This noise statistics might not be realistic ase could include
the modeling error part. Yet, this is a convenient assumption
that is commonly taken in such problems because it leads to
a least-squares type estimation. The covarianceQ in (9) is
used as a tuning parameter for the estimation algorithm.

A. Fault Evolution Model

To obtain a statistically optimal estimate of the unknown
faults, we complement the linear residual model (7) with
a statistical model of the unknown fault sequence. The
proposed fault estimation scheme is applicable to a variety
of fault models that arise in different application areas. For
details of various fault models that can be accommodated in
the proposed scheme, see [14].

In this paper, we are concerned with faults that aremono-
tonic, i.e., they only increase (or decrease) with time. Such
faults arise in a variety of applications. In the Aerosonde
UAV example that is described in this paper, we model
parameters related to the structural damage of the aircraft.
Monotonicity in this context implies that the damage can
only get worse during the course of the flight. We introduce
the following fault evolution model in whichγ(t) is an
uncorrelated exponentially distributed noise sequence that
models the monotonic fault parameters

f(t + 1) = f(t) + γ(t). (10)

The probability density of the exponentially distributed noise
is given as

p(z) =
{

1
λe−z/λ z ≥ 0

0 z < 0,
(11)

whereλ is the parameter of the exponential distribution.

B. Maximum A Posteriori Probability (MAP) Estimation

To obtain a statistically optimal estimate of the unknown
fault parameters, such as themaximum likelihood(ML) or the
maximum a posteriori probability(MAP) estimate, we make
use of the concept of conditional probability. For any two
random variablesf andy, the conditional probability is de-
notedP (f |y), with the corresponding conditional probability
density represented bypf |y. It is natural to think in terms of
conditional probabilities when we have dynamical models
of the form (7). For such discrete time Markov processes,
the known prediction residual completely determines the
unknown future fault evolution up to the random disturbances
given by e. This dependence is accurately captured by the
conditional probability density function.

Maximum a posteriori probability (MAP) estimation can
be considered as a Bayesian version of maximum likelihood
estimation, with a prior probability density on the underlying
parameterf. We assumef (the fault vector to be estimated)
and y (the observed residuals) to be random variables. In
the MAP estimation method, our estimate off, given the
observationy, is given by

f̂map = argmaxfpf |y (12)

= argmaxf (py|f .pf ), (13)

where (13) is obtained by direct application of the Bayes
rule to (12). The second term in the above equation,pf ,
can be interpreted as taking our prior knowledge of the fault
parameters into account. Taking negative logarithms, we can
express the MAP estimate as

f̂map = argminf (− log py|f − log pf ). (14)

The second term in the objective penalizes estimates off
that are unlikely, according to the prior density (i.e., f with
pf small). Substituting the assumed gaussian distribution of
the noisee, and the exponential distribution of the noiseγ,
we obtain the objective function

J(ti, tf ) =
1

2
(y − Sf)

T
Q
−1

(y − Sf) +

tf∑
t=ti

1

λ
(f(t + 1)− f(t))

(15)

which is to be minimized to obtain̂fmap. Here ti and tf
denote the beginning and end of the batch for the min-
imization of the objective. Since the assumed exponential
distribution of the underlying fault vector according to (11)
satisfiespf (z) = 0 for z < 0, the minimization is subject to
the constraints

f(t + 1) ≥ f(t). (16)

The fault estimates are, thus, obtained by minimizing the
quadratic negative log-likelihood function (15) subject to
the linear constraints (16). This is a constrained quadratic
programming (QP) problem. Such problems fall in the
broader category of convex optimization problems. Efficient
algorithms are available to compute reliable solutions of
convex problems. We make use of interior point methods to



solve the constrained QP problem in an embedded setting,
and obtain on-line estimates of the unknown faults.

C. MAP Moving Horizon Estimation

The MAP estimate of the unknown fault parameters can
be computed by solving a constrained quadratic program-
ming problem. The size of the QP problem determines the
computational efficiency of the estimation scheme. In most
aerospace applications, reliable estimates are needed in real
time to enable any prognostic measures. The data availability
rates in aircrafts might be on an order of a few hundred
milliseconds. If the estimation scheme takes into account all
the available data at any instant, the size of the QP will
grow making the problem computationally intractable within
a few minutes. In most instances, we require an embedded
filter that can only have limited on-board memory allocation.
As a result, storing all the available data for estimation is
infeasible.

To overcome memory limitations and ensure efficient es-
timation, we use a moving horizon (MH) estimation scheme
that allows us to solve a fixed size QP at every step by
enabling forgetting of the past data. This results in a Kalman
filter type recursive formulation that is suitable for embedded
implementation. The fixed step size is determined by the
length of the moving horizon. The horizon length is chosen
large enough to allow sufficient statistical averaging of the
noise in the data but small enough to enable fast solution of
the QP problem.

In MHE, we need to formalize a way of forgetting the past
data. LetN denote the choice of the length of the moving
horizon. At each moving step in the embedded filter, we
leave out the oldest current measurement while accepting an
incoming new measurement. Letf(k) be the estimate of the
point k in the current horizon, andf(k|N−) be the estimate
of the same point computed in the previous horizon. We im-
pose a quadratic penalty on the deviation of the initial point
estimate of each window from the estimate of that initial
point computed in the previous window. Mathematically, we
can express the MH MAP estimation problem with initial
condition handover as

f̂map = argminf
1
2 (f(ti)− f(ti|N−))T R−1(f(ti)− f(ti|N−))
+J(ti, tf )] .

(17)

If t denotes the current sampling time thenti = t−N + 1
and tf = t. The choice of the covarianceR depends on
our confidence in the past estimate of the initial point of
the current window and is used as a tuning parameter in the
estimation scheme.

IV. A PPLICATION TO AEROSONDEUAV

We demonstrate the proposed MH MAP estimation
scheme by detecting some representative faults during the
flight of the Aerosonde UAV. This small low cost au-
tonomous plane can be used for a variety of remote sensing
applications, particulary weather data acquisition. For details
of the Aerosonde development history, design and opera-
tional specifications, see [12]. The simulation model used

0 50 100 150 200 250 300
0

2

x 10
−4 LATITUDE [rad]

0 50 100 150 200 250 300
0

1

2

x 10
−4 LONGITUDE [rad]

0 50 100 150 200 250 300

198

200

ALTITUDE [m]

0 50 100 150 200 250 300

−10
0

10
20

VELOCITY NORTH [m/s]

0 50 100 150 200 250 300
−20

0
20

VELOCITY EAST [m/s]

0 50 100 150 200 250 300
0

0.5
1

VELOCITY DOWN [m/s]

0 50 100 150 200 250 300

−0.2
0

0.2

BANK ANGLE [rad]

0 50 100 150 200 250 300
0

0.05

PITCH ANGLE [rad]

0 50 100 150 200 250 300
0

5

HEADING ANGLE [rad]

0 50 100 150 200 250 300
−0.1

0
0.1

ROLL RATE p [rad/s]

0 50 100 150 200 250 300
0

0.02
0.04

PITCH RATE q [rad/s]

0 50 100 150 200 250 300
−0.1

0
0.1

YAW RATE r [rad/s]

0 50 100 150 200 250 300
1.99

1.995
2

FUEL MASS [kg]

0 50 100 150 200 250 300

520

540

ENGINE SPEED ω [rad/s]

Fig. 2. Aerosonde UAV states

for Aerosonde was developed using the AeroSim Blockset,
which is a Matlab/Simulink block library [15]. This non-
linear 6-DOF Aerosonde dynamics model is commercially
available at [15]. The detail of the Aerosonde simulation
model and a thorough description of the constituent blocks
used in its development is available in these references. Here
we only give a brief overview for completeness.

The nonlinear6-DOF Aerosonde model has the form (1).
The Aerosonde control vector isu(t) = (flap, elevator,
aileron, rudder, throttle, mixture, ignition). The first four
terms represent aerodynamic controls and the last three are
the propulsion controls. The simulation model allows as input
a vector of user specified background wind velocitiesw(t)
in the navigation (North-East-Down) frame. All positions are
measured in meters, linear velocities in meters/second, angles
in radians, angular rates in radians/second. The overall state
vectorx for the Aerosonde is

x =
[

p v ζ
]T

,

whereζ = (mf , ωe) is the vector of auxiliary parameters for
the Aerosonde.mf is the fuel mass (in kilograms) andωe is
the engine speed. The aircraft states during the300 second
flight are shown in Figure 2.

We simulate the aircraft dynamics, kinematics, guidance
and control, and propulsion in the presence of winds and tur-
bulence. The aerodynamic force and moment are computed
using a linear combination of the aerodynamic derivatives.
The propulsion system of the Aerosonde UAV includes
a piston engine and a fixed pitch propeller. The aircraft
inertia parameters (mass, CG position, moment of inertia) are
computed taking into account the fuel usage. The simulation
also considers changes in gravity and earth magnetic field
with aircraft position.

A state-feedback model predictive control (MPC) guidance
scheme is used as part of the aircraft control (autopilot).
The MPC guidance scheme solves a constrained quadratic
programming problem at a sample time of two seconds
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Fig. 3. UAV Trajectory in North-East Plane

to compute the yaw rate command. A simple PI altitude
hold controller is a part of the autopilot. The details of the
autopilot are not relevant here. The only important thing to
note is that the aircraft can track a given trajectory in the
presence of winds. This allows us to seed various faults
during different flight regimes to validate our estimation
algorithms. We use the autopilot to guide the aircraft to fly
in an almost closed path. The aircraft trajectory in Figure
3 shows that the controller performs fairly well even in the
presence of winds to follow the given north-east waypoints.

The aircraft simulation applies von Karman turbulence
shaping filters for longitudinal, lateral and vertical compo-
nents to three white noise sources. The von Karman filter
parameters depend upon the background wind magnitude and
the current aircraft altitude. Wind shear effects are considered
on the angular velocities and accelerations for pitch and yaw.

The aircraft dynamical model has a set of ordinary differ-
ential equations (ODEs) that are numerically integrated. The
ODE system is stiff due to the different time scales, and large
differences (several orders of magnitude) in the magnitude of
the variables in the simulation. The PC based simulation runs
for 300 seconds with a fixed step Runge-Kutta integration
of ODEs. The fixed step size is50 milliseconds (ms). The
sensor and control data is sampled at a500 ms sampling
interval before being used for estimation. The diagnostic
algorithms are embedded in the simulation for online fault
estimation.

A. Modeled Faults

The MH MAP estimation algorithm offers great flexibility
in the estimation of parametric faults. We can estimate
constant, step, monotonic, and non-monotonic faults using
this algorithm. The only limiting factor is the observability
of the unknown faults through available sensor data. The
faults chosen in this example pertain to the changes in the
lift and drag coefficients of each wing. The ability to simul-
taneously estimate these changes in the wing aerodynamic
coefficients can help us detect evolving structural damage to
the aircraft. These chosen parameters are thus representative
of a variety of real fault scenarios. The fault vector consists
of the following four faults that need to be estimated by the
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Fig. 4. Wind Velocity in Inertial Frame

proposed scheme:

f =




Right Wing Lift Loss
Right Wing Drag Increase

Left Wing Lift Loss
Left Wing Drag Increase


 ,

where the lift loss and drag increase are introduced as a
percentage change in the lift and drag coefficients of the
UAV.

The standard Aerosonde model developed using the
Aerosim block set assumes aerodynamic symmetry,i.e.,
the total computed aerodynamic force is applied at the
longitudinal axis of the aircraft. To model the faults in the
simulation, the calculation of the aerodynamic force was
modified. The modified version computes the aerodynamic
force for each wing separately. The point of application
of the total aerodynamic force of each wing is assumed
at the center of each wing. The calculations for the total
aerodynamic moment were also modified to take into account
the aerodynamic forces at each wing.

In addition to these four faults, some other fault parameters
that may be easily modeled may include propulsion loss dur-
ing the UAV flight. Introducing a change in the pitch moment
of the aircraft can correspond to tail/actuator damage, and it
can be modeled readily in the current simulation.

B. Simulation results

The nonlinear simulation is carried out in the presence of
strong winds. The wind speeds are of the order of20 − 25
percent of the aircraft speed. The wind gusts combined with
the turbulence effects are shown in Figure 4. A10 second
low pass filtered knowledge of the wind speeds is provided
to the estimation scheme,i.e., τ = 10 for the filter in (3). The
estimation algorithms assume no knowledge of wind angular
rates which are very difficult to measure.

Figure 5 shows the linear and angular acceleration resid-
uals for the Aerosonde computed using (2). The linear
acceleration residuals(ax, ay, az) are measured inm/s2, and
the angular acceleration residuals(αx, αy, αz) are measured
in rad/s2. The time constant for the low pass filterFa(s)
in (5) and (6) used to smooth the prediction residuals is4
seconds. The time constant of the low pass smoother affects
the speed of the estimation response and its noise rejection
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properties. A higher value of time constant implies slow
detection of fault parameters but yields better noise rejection.

The fault signatures for each of the four faults are com-
puted online using (8). The fault signatures don’t need to be
computed at the data sampling rate. We can substantially
reduce the burden on the embedded filter by computing
the fault signatures only once for each flight regime, and
reusing them until the aircraft enters a different regime. Due
to the presence of substantial winds in the simulation, we
compute the fault signatures every500 ms to obtain accurate
fault estimates during different flight maneuvers. The fault
sensitivity for percentage change in right wing lift coefficient
is shown in Figure 6.

The residuals and fault signatures serve as input to the
moving horizon maximum a posteriori probability (MH
MAP) estimation scheme. The estimation algorithm solves
the quadratic programming problem (17) with linear con-
straints (16) at each step for the four monotonic faults. A
moving horizon window size ofN = 50 is used in this
example. The estimation update is every500 ms, The fault
estimates obtained using the proposed MH MAP estimation
scheme are shown in Figure 7. The estimation algorithms
clearly recover the seeded faults quickly and accurately even
in the presence of strong winds.

V. CONCLUSION

In this paper we present a statistical estimation approach
for online estimation of the unknown time varying fault
parameters. The fault parameters are a priori known to
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be monotonic. The estimates are obtained by solving a
linearly constrained quadratic programming problem at each
step. The approach is validated through application to the
Aerosonde unmanned aerial vehicle.
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