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Abstract

This paper describes a case study of model-based diagnos-
tics system development for an aircraft Auxiliary Power Unit
(APU) turbine system. The off-line diagnostics algorithms
described in the paper work with historical data of a flight
cycle. The diagnostics algorithms use detailed turbine en-
gine systems models and fault model knowledge available to
an engine manufacturer. The developed algorithms provide
fault condition estimates and allow for consistent detection
of incipient performance faults and abnormal conditions.

1 Introduction

This paper provides a case study in development of model-
based diagnostics algorithms for a small turbomachine used
in aerospace applications. Being a safety-critical system, it is
an industry standard that an electronic control unit of a tur-
bomachine includes build-in-test and fault diagnostics func-
tionality. This paper is focused on a different application
– diagnostics of incipient faults. Such faults often exhibit
themselves as a deterioration trend in the turbomachine per-
formance and eventually lead to a need to perform expensive
repair and overhaul activities. Timely detection of incipi-
ent faults enables preventive maintenance and has significant
economic importance.

Accurate and reliable detection and parameter estimation of
incipient faults requires detailed and thorough understand-
ing and knowledge of the equipment. Such understanding
is available to Honeywell as a turbine engine manufacturer
in the form of detailed design and control analysis models.
This paper describes diagnostics algorithms based on such
detailed models of the engine performance and dynamics.
Model-based approaches to diagnostics of controlled systems
have been discussed in many papers, e.g., see the surveys in
[10, 7, 3, 4]. The choice of a particular technical approach
for diagnostics in a particular application is defined by prac-
tical engineering considerations such as reliability, availabil-
ity of models, availability of data, available computational
resources, development and support cost. Some of the appli-
cations of model-based diagnostics to larger turbomachines
are discussed in [2, 8].

Though the approach described is sufficiently general, the
focus of this paper is the Honeywell Auxiliary Power Unit
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(APU) 331-400 that is used in Airbus 320 aircraft. The APU
is a small turbomachine, auxiliary to the main propulsion
engines. It is connected to an electrical generator and pro-
vides power when aircraft is on the ground. It also provides
compressed bleed air that is being used by several aircraft
subsystems; the most important use is for starting the main
propulsion engines of the aircraft.

APUs and small propulsion engines developed, manufac-
tured, and supported by Honeywell are as complex as large
propulsion engines but much more cost sensitive. This
presents several unique challenges in terms of developing
practical diagnostics system for such engines. First, there are
few on-line sensors. Thus, diagnostics of many faults have to
be performed through indirect measurement data. Second,
there is a much larger fleet of operating engines per service
personnel compared to larger propulsion engines. This makes
saving human expert labor on inspection of the engine phys-
ical state a much more important business issue. There is
therefore, a business need for an automated computer- based
diagnostics system. Since the main goal of the diagnostic
system is to automate on-ground inspection of the engine,
using engine data logged through a flight cycle does not im-
pose any system performance limitations. The data can be
used in a batch mode, there is no need to process the data
on-line as it arrives. This is also consistent with the goal of
detecting incipient faults. Even if such fault is detected, the
engine service can be performed only at the end of the flight
cycle, on the ground.

An important feature of the APU diagnostics is that the tur-
bine shaft speed is mostly maintained constant by the con-
trol system and changes only during the APU start. Further,
the full load on the machine is usually exercised only once
or twice in every flight cycle, i.e., when the APU performs
the main engine start and has to operate under maximal
load. The performance deterioration could become most vis-
ible and can be estimated most reliably at the time of the
speed or load transient. The data for the fault estimation is
available as a batch after the flight cycle. The fault estima-
tion is performed off-line using this data. In the application
example of this paper, the particular segment of data used
in the identification covers the time of the APU start.

2 Modeling

This paper distinguishes between two types of models that
are closely interrelated but functionally different. The first
one is a simulation model that is used for control and diag-
nostic system development, verification and validation. The
second one is a prediction model that uses the system input
data to predict the outputs.
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Figure 1: Component-level model of the engine showing
the faults discussed in the paper.

The engine is modeled as a sequence of interconnected com-
ponents as shown in Figure 1. The displayed connection of
the main blocks roughly corresponds to continuity of gas flow
and power transmission through the main shaft of the APU.

Ambient air entering the engine is split at the plenum, a
part enters the main compressor, and the remainder enters
the load compressor. The flow of air through the load com-
pressor is regulated by inlet guide vanes. High-pressure air
from the main compressor enters the combustor, where fuel
is injected through annular nozzles. Hot gases from the com-
bustor expand in the gas turbine, which drives the engine
shaft. Part of this useful work is expended by the main com-
pressor. The remaining part of the useful shaft work is ex-
pended by the load compressor to provide bleed air and is
partially available at the generator to meet electrical needs
of an aircraft. Exhaust air from turbine is expelled outside
the aircraft.

The controller shown as a block with a double-line boundary
regulates the fuel flow through the engine combustor. The
skewed parallelograms indicate some of the faults considered
in the model. The simulation model, unlike the prediction
model, does not include controller and uses the measured fuel
flow as one of the inputs.

2.1 Fault Modeling

Many of the incipient faults that result in the deterioration of
the engine performance can be modeled as adverse changes in
the parameters that affect compressor efficiency, turbine effi-
ciency and parasitic torque on the shaft. The current model
uses lumped parameters like efficiencies to capture perfor-
mance deterioration. Consequently, incipient fault detection
can be performed by identifying deviation of the performance
parameter from its nominal values. One of the longer-term
goals of our work is to incorporate additional models of the
material deterioration, surface erosion, and aerodynamical ef-
fects to gain deeper insight into the root cause of performance
deterioration. Such detailed modeling enables to reason the
cause of the performance deterioration without removing and
disassembling the engine.

In this work, the faults were modeled as parameter changes
that are constant over the data collection batch. The skewed
parallelograms in Figure 1 indicate the faults included in the
model in this project. These fault parameters are

• p1 – performance loss for the power section.

• p2 – performance loss for the load compressor (LC).

• p3 – constant parasitic torque drag on the main shaft.

• p4 – fuel system nozzle degradation flow reduction

These fault parameters make a fault parameter vector p =
[p1 p2 p3 p4]

T . The same fault descriptions were used in
the simulation model and in the prediction model, though the
values of the fault parameters seeded in the simulation model
were not available to the diagnostics algorithms employing
the prediction model. The algorithms had to estimate the
fault parameters from the available output data.

2.2 Two-time scale dynamics

The component-level model in Figure 1 describes heat and
mass transfer in the gas flow through the engine (gas path
dynamics) as well as the load balance on and acceleration
of the main shaft (shaft dynamics). The time constants of
the gas path dynamics are on the order of milliseconds. The
shaft dynamics are much slower and have sub-second scale.
The system with such different time scales is a “stiff” system
from the point of view of the computer simulation software.
Mathematically, the system can be described as a singularly
perturbed system of the form

ẋ = f(x, z, w, t; p), (1)

εż = g(x, z, w, t; p), (2)

y = h(x, z; p), (3)

where x collects the state vector components corresponding
to the slow dynamics, z is a part of the state vector cor-
responding to the fast dynamics, vector y describes the ob-
servations (readings of the available sensors), and vector w
collects the external system inputs, including the control in-
put (fuel flow). The small parameter ε describes the ratio of
the time scales between the slow and fast dynamics. In our
case, ε ≈ 10−3. The vector p describes fault model parame-
ters. Changes in these parameters are indicative of incipient
faults.

A typical component based model of a turbine engine, has a
single slow state x = N , the r.p.m. speed of the engine main
shaft. The fast states z includes gas pressures, temperatures
and mass flows in the gas path. The inputs w of the model
(1)–(3) include measured parameters such as fuel flow in the
combustor, ambient pressure and the temperature, electrical
and pneumatic load data and some additional sensor mea-
surements. The outputs y include engine speed, exhaust gas
temperature (EGT), and readings of load compressor dis-
charge temperature and pressure sensors. Note that the slow
state x = N is measured directly. The observation equation
(3) can be presented in a more specific form.

y =

[
x

Cz

]
, (4)

where C is an observation matrix on an appropriate size se-
lecting the measured components of the vector z

The initial diagnostics algorithm development to follow is
based on the deterministic model of the form (1)–(4). The al-
gorithms developed for such deterministic model have certain
robustness – resilience – to the sensor noise and measurement
error as demonstrated below.

To achieve a statistically optimal estimation of the fault pa-
rameters from the noisy data, the noise has to be introduced



in the model and taken into account when developing the di-
agnostics algorithms. To this end, the observation equations
(3), (4) can be modified to include a colored noise sequence
vector ξ = ξ(t).

y = h(x, z; p) + ξ =

[
x

Cz

]
+ ξ (5)

The assumed statistical characteristics of the noise ξ are dis-
cussed further on in the paper.

2.3 Prediction model, residual computation

Since the gas path dynamics are two-three orders of mag-
nitude faster than the shaft dynamics, the system (1)–(3)
can be analyzed as a singularly perturbed system. It is well
known (e.g., see [11]) that if the fast dynamics in the singu-
larly perturbed system are stable, then (except for a possible
initial transient) its solution is always close to the slow mo-
tion manifold obtained by setting ε = 0 in the perturbed sys-
tem. The stability of the gas path dynamics is always main-
tained in the turbomachine by keeping the system away from
the instabilities in the gas path dynamics like the regimes
leading to a stall or surge.

For the system (1)–(3) this means a little precision is lost
by replacing the differential equation (2) with the following
algebraic equation

0 = g(x, z, w, t; p), (6)

The fast variable z in (1) and (3) at each point in time should
be resolved from (6) as an explicit function of x and w. Fast
and accurate solution of the algebraic equation (6) is an im-
portant part of fault estimation algorithm.

The differential algebraic equation system (1), (3), (6) has
only dynamical variables x corresponding to the slow dy-
namics. It also includes static maps corresponding to the
explicit function (6). For the 331-400 APU as well as for
most other turbomachines with a single shaft, the slow vari-
able x is a scalar – the engine shaft speed. A possibility of
handling first-order dynamics only greatly simplifies develop-
ment of the diagnostics algorithms as described in the next
subsection.

As mentioned above, a small engine has an extremely lim-
ited number of sensors that can be used for detection and
estimation of faults. The accuracy of the estimation can be
however improved by using the dynamical information in the
data. Since the slow variable x = N is measured directly,
the fault estimation is performed by complementing the ob-
servation vector y in (3), (4) with the derivative ẋ. The
next subsection discusses how the engine acceleration Ṅ ≡ ẋ
can be estimated directly from the engine speed data. An
extended observation vector includes the acceleration. By
using (1) and (3) it can be computed as

[
ẋ
y

]
=

[
f(x, z, w, t; p)
h(x, z, w; p)

]
, (7)

where in accordance with (4) x = x(t) is directly measured.
Further, the input vector w = w(t) in r.h.s. (7) is a part of the
available data, and z = z(t; p) can be computed as an explicit
function from (6) given x(t) and w(t). Thus, the r.h.s. of
(7) can be computed from the available data provided the

fault parameters p are known. For p = 0, the r.h.s. of (7)
gives the prediction model. The prediction model output can
be compared against the extended observation vector in the
l.h.s. (7) to detect presence of the faults and estimate their
parameters.

The described concept of computing a residual of model-
based prediction is illustrated in Figure 2. In this figure,
the ”Static Map” block corresponds to solving the algebraic
equation (6) for the fast gas path variables z; the ”Shaft Dy-
namics” block corresponds to the slow dynamics given by (1).
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Figure 2: Fault estimation algorithm concept

The differentiator and smoother blocks shown in Figure 2 are
described in the next section. The design of the differentia-
tor/smoother algorithms has to take into account noise in the
data sequence being differentiated. Since numerical differen-
tiation tends to enhance the noise, a great care is required
when designing the differentiator. This is described in some
detail in the below.

The fault estimation algorithm mentioned in Figure 2 is de-
scribed in the next subsection.

2.4 Fault parameter estimation - no noise

The algorithm for identification of the fault parameters work
with the prediction residual data as illustrated in Figure 2 is
described in this subsection and does not assume a detailed
model of the measurement noise. Since only three fault pa-
rameters are estimated from a long series of data by a least
square error method, the estimation is insensitive to noise.
A discussion of the issues associated with the presence and
modeling of the measurement noise is discussed in the next
two sections of the report.

In particular, the next section describes the design of the FIR
differentiator/smoother operator D corresponding to the re-
spective bock in Figure 2, as well as the smoother operator L
shown in the same figure. The smoothing operator is defined
as

L(z) =
1

1− z−1
D(z), (8)

where z is the discrete time Laplace variable corresponding
to one sample shift in discrete time. No matter how the dif-
ferentiator operator D(z) is computed, it can be represented
as a product of a finite difference differentiation 1− z−1 and
the smoothing L(z).



In accordance with Figure 2 and (17), the following residual
sequence is used for estimating the fault parameter vector p.

r(t; p) =

[
(Dx)(t)− (Lf)(x, z, w), t; p)

y(t)− h(x, z, w; p),

]
(9)

where time t is assumed to be scaled such that the sampling
interval is unity, D and L are related by (17). Obviously in
the absence of the measurement noise the residual sequence
r(t; p = 0) = 0 provided that the data has been generated by
the system (1), (3), (6) where p = 0. In practice, because of
the measurement noise and other model imperfections, the
residual is always nonzero.

For estimating fault parameter vector p consider a sequence
of the sampled data (9) collected over a time interval t ∈
[0, N ] and introduce the following notation

R(p) =




r(0; p)
r(1; p)

...
r(N ; p)


 (10)

An estimate of the parameter vector p minimizing the
quadratic loss index ‖R(p)‖2 → min can be found numer-
ically. Though, generally speaking, R(p) is a nonlinear func-
tion, the incipient faults usually result in a relatively small
change of the fault parameters, such as compressor efficiency.
Thus, the dependence R(p) can be linearized in the vicinity
of the nominal system (where p = 0) and presented as

R(p) ≈ R0 +
∂R

∂p
p, (11)

where R0 = R(0) is the model prediction residual obtained
assuming the faults are absent, p = 0. The matrix ∂R

∂p
in

(11) can be conveniently evaluated using a finite increment
method, by repeatedly computing residual (11) for different
values of p.

By using (11), the least-square optimal estimate of the fault
parameter vector p can be obtained in the form

p̂ = −
(

∂R

∂p

T ∂R

∂p

)−1
∂R

∂p

T

R0 (12)

One of the main issues that have to be resolved to achieve
practical applicability of the described algorithm is compu-
tational performance. Each computation of the residual (9)
requires to run a comprehensive simulation model for the du-
ration of simulation time equal or exceeding the data batch
time. Another important practical issue is robustness of the
estimate to the noise in the data. Yet another issue is related
to individual variations of the performance between different
engine units. This makes necessary to augment the estima-
tion of the fault parameters with a trending of these estimates
from one flight cycle to another. These issues are discussed
in the paper sections to follow.

3 FIR differentiator design

The problem of estimating a derivative of a measured signal
has to be approached carefully because in practice such mea-
surements are always corrupted by noise - random or quan-
tization. Since all data in consideration are sampled at the

controller rate, a sampled- time formulation of the problem
will be considered. The problem of designing a statistically
optimal differentiator can be posed as a deconvolution prob-
lem. The deconvolution problem is to estimate an unknown
input u of a linear system from a measurement x corrupted
by a noise. The statistical properties of the noise and the
signal x are assumed to be known.

The numerical differentiation can be stated as the following
deconvolution problem

x =
1

1− z−1
v + E(z)e, v = U(z)η, (13)

where z−1 is a unit delay operator, e = e(t) and η = η(t) are
uncorrelated Gaussian white noise sequences. The transfer
function E(z) defines the noise model and U(z), the signal
model.

The noise model E(z) is can be directly identified from the
spectral estimate of the steady-state data, where the useful
signal v(t) is known to be zero. The signal model U(z) essen-
tially defines differentiator bandwidth specs and is selected
by the designer. It is assumed that U(z) has a zero at z = 1.
This assumption is needed to guarantee that the signal x(t)
has a finite covariance.

A solution of the deconvolution problem is sought in the form

v̂ ≡ ˆ̇x = D(z)x, (14)

where D(z) is a linear operator.

Deconvolution problems are discussed in [1, 6, 12]. We use
an optimal non-causal Wiener filter solution of the deconvo-
lution problem that can be obtained in the form (see [5] for
more detail)

D(z) =
UU˜

1− z−1

[
EE˜ +

UU˜

(1− z−1)(1− z)

]
(15)

where U˜ = U(z−1). Note, that in the literature Wiener filter
often means a causal Wiener filter. Such a causal filter ob-
tained is a result of factorization (projection) of a noncausal
least-square optimization equations. The Wiener filter in this
paper is a noncausal least-square optimal filter.

The transfer function D(z) in (15) describes a noncausal op-
erator and has poles both inside and outside of the unit circle.
This transfer function D(z) is a 2-sided z-transform of a cor-
responding non-causal pulse response kernel d(t) (see [9] for
a background on 2-sided z-transform). The operator D can
be implemented as a convolution with the kernel d(t).

(Dx)(t) =

∞∑
τ=−∞

d(τ)x(t− τ) (16)

Since D(z) in (15) has no poles on the unit circle, the kernel
d(t) in (16) decays exponentially for t → ±∞. For a prac-
tical purpose the kernel can be implemented as a delayed
noncausal FIR operator.

The convolution kernel d(t) can be computed in straight-
forward way as an inverse of the Fourier transform D(eiω),
where ω ∈ [0, 2π] is the frequency. This requires substituting
z = eiω into (15) and noticing that EE˜ computed on the
unit circle has a meaning of the spectral power for the noise



corrupting the differentiated signal x. As mentioned above,
the spectral power of the signal UU˜(z = eiω) = |U(z =

eiω)|2 is used as a bandwidth tuning knob in the design.

Figure 3 (left) illustrates the truncated FIR convolution ker-
nel of the designed differentiator. This kernel d(t) can be
presented as a composition of a pure differentiator and FIR
kernel l(t) of a smoothing operator L(z). The smoothing
operator is defined as

L(z) =
1

1− z−1
D(z), (17)

The FIR kernel l(t) is illustrated in Figure 3 (right). In the
algorithms of the next subsection, the numerically differenti-
ated signal is compared to a smoothed prediction sequence.
This is necessary to ensure consistency and the zero error in
the ideal case.
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Figure 4 illustrates the performance of the designed differ-
entiator. The upper plot shows a sequence of steady-state
engine speed data with added first order step response sig-
nal. The spectral power of the steady state noise has been
used in the differentiator design. The lower plot shows the
derivative estimate obtained from the noisy data. As one
can see, it matches the smoothed version of the applied first
order step response (the second curve) quite well.
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4 Results for 331-400 APU

The evaluation of the described fault estimation approach
was performed using a high-fidelity detailed simulation model

of the Honeywell 331-400 APU starting. The closed-loop con-
troller was simulated in detail including the digital control
logic and a hydromechanical fuel control unit. The engine
simulation included pneumatic and electrical loads, oil-lube
system, starter, accessory gearbox, and inlet model simula-
tions. A detailed simulation model of the sensors included
realistic effects of noise, analog pre-filtering, and sampling
quantization. The detailed models of the considered faults
were included in the simulation.

The following data were available for the diagnostics and
logged during the simulation at 0.2 sec rate.

Input Data: Engine shaft speed N, inlet pressure P2,
inlet temperature T2, mass fuel flow Wf , generator
load, oil temperature, mass air flow through load com-
pressor Wc, and IGV (inlet guide vane) position.

Output Data: Load compressor temperature increase
LCDT, and exhaust gas temperature EGT

This data was logged in the simulation and stored in a file.
The diagnostics algorithms used this data only and did not
have information about the faults seeded. This closely re-
sembled data availability for 331-400 APU operation.
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Figure 5: Input data from a data file used for the diag-
nostics.

The diagnostics algorithms described in this paper were im-
plemented in Matlab. The prediction model of the 331-400
APU used by the diagnostics algorithms was simplified com-
pared to the detailed simulation model. It included main
gas-path dynamics but ignored some of the detail in the sim-
ulation model, such as sensor data pre-fitering. Thus, there
was a mismatch between the prediction model and the high-
fidelity simulation, which contributed to the realism of the
diagnostics algorithm use. The diagnostics algorithms use
the detailed simulation results from a file. The data used
for the diagnostics is illustrated in Figure 5. The above men-
tioned input data was used to compute the predictions for the
outputs, given the faults. In addition to that, a prediction of
the acceleration was computed as illustrated in Figure 2 and
explained in Section 3.

To obtain the data in Figure 5 three faults were simultane-
ously seeded as follows:
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No performance loss for the power section.

A 1% performance loss for the load compressor (LC).

A parasitic torque drag on the main shaft of 0.4 (about
2% of the maximal torque spec).

A 2% fuel flow reduction caused by the nozzle degrada-
tion

When used on the field data, the fault estimated will be
trended in time to compensate for engine-to-engine varia-
tion. To emulate this, the estimate (9) of the seeded fault
was corrected by the estimate obtained for zero fault seeded.
The estimates of the fault parameters obtained using the de-
scribed diagnostics algorithms from the data in Figure 5 were
as follows:

A -0.49% performance loss for the power section (per-
formance gain)

A 0.99% performance loss for the load compressor

A parasitic torque drag on the main shaft of 0.42

A 2% fuel flow reduction

These estimates have errors of about 20% which allows for
adequate discrimination of various engine problems. The es-
timation error sources include: sensor noise and offsets that
were simulated, modeling errors (the simplified prediction
model was used), and using a linear approximation (11) of
the nonlinear map (10) in the estimation.

The model prediction errors are illustrated in Figure 6. The
solid lines in Figure 6 show the prediction residuals corre-
sponding to Figure 5. The dashed lines are the prediction
residuals that remain unexplained by the estimated faults.
These dashed lines correspond to R(p̂) in (9), (10), where
p̂ is the fault estimate. For an ideal prediction model the
dashed lines should be identical zero, R(p̂) = 0. Their devia-
tion from zero illustrates the modeling errors. Despite these
errors, reasonable fault estimates have been obtained using
the described methodology.

5 Conclusions

This paper presented a case study for diagnostics of a small
turbine engine – Honeywell 331-400 APU. The incipient fault
estimation is performed from batch data by identifying defi-
ciencies of the performance parameters in a detailed model
of the engine. The algorithms include numerical estimation
of the engine acceleration from the noisy engine speed data ,
which is performed with a rigorously designed finite impulse
response differentiator. The estimation approach is based on
assuming the performance parameters change is small and re-
spective system output change can be obtained by linearizing
the model. The paper demonstrates that location and mag-
nitude of the performance faults can be estimated accurately
despite the noise and nonlinearity, by using only exhaust gas
temperature, compressor exit temperature, and engine speed
data as prediction variables.
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