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Abstract— This paper develops a statistical modeling and
estimation approach combining robust regression and long tail
estimation. The approach can be considered as a generalization
of Huber regression in robust statistics. A mixture of asymmet-
ric Laplace and Gaussian distributions is estimated using an
EM algorithm. The approach estimates the regression model,
distribution body, distribution tails, and boundaries between
the body and the tails. As an application example, the model
is estimated for historical power load data from an electrical
utility. Practical usefulness of the model is illustrated by
stochastic optimization of electricity order in day-ahead market.
The computed optimal policy improves the cost compared to the
baseline approach that relies on a normal distribution model.

I. INTRODUCTION

This paper considers estimation of statistical model that
includes the distribution body and long distribution tails. The
objective is stochastic optimization using such model.

Estimation of statistical models from data was studied
extensively in decision and control, signal processing, statis-
tics, and econometrics. Most common models are based on
normal (Gaussian) distributions and lead to versions of least
squares estimation. Such models have issues with extreme
events that are encountered in many practical problems.

The first issue is that extreme events create outliers that
are outside of the normal distribution and can severely bias
least squares estimates. There is substantial literature on
robust regression methods for handling outliers in the data.
One robust regression approach is to change from quadratic
loss function in Gaussian model estimation to Huber loss
function, which grows linearly for large outliers, e.g., see
[16]. Another approach is based on iterative removal of the
outliers and update of the solution, e.g., see [4].

The second issue is the need to model long tails dis-
tributions for the extreme events. Extreme Value Theory
(EVT) predicts that in many cases the distribution tails would
asymptotically follow Pareto (power law) or exponential
distribution. The last couple of decades saw a number of
applications of the EVT methods, e.g., see [10]. The tails
can be estimated using peaks-over-threshold method, where
tail model is fitted to the data exceeding a threshold. Tail
data is usually sparse compared to the distribution body data
requiring special procedures for the tail fit. An established
approach is Hill’s estimator of Pareto tail model [6].
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The motivating example is stochastic optimization of day-
ahead electricity market order. In the example, which is
considered in Sections V and VI of this paper, the dependent
variable is logarithm of the power load. The exponential
(Laplacian) tails in the logarithmic variables correspond to
Pareto distribution tails in the original physical variables.
Logarithmic variables are commonly used for describing
stock returns and power loads [21].

In related recent work [3], a Generalized Pareto model was
used for the entire long tail distribution of electricity demand
data. Such model cannot be conveniently used for forecast-
ing. Long tail distribution models for electricity markets are
considered in [2], [18]; the cited work does not include
regression modeling for forecasting. This paper proposes a
Laplacian-Gaussian mixture model that allows to estimate
the distribution body, the long tails, and the regression model
in a Generalized Linear Model (GLM) setting.

There seems to be little prior work that uses Laplacian-
Gaussian mixtures. In [14], a linear relationship between
the standard deviation of the normal distribution and the
scale parameter of the Laplace distribution is assumed for
a financial application. Laplacian-Gaussian mixture models
were also used for modeling of wind shear data [17] and for
speech enhancement [20].

The contributions of this paper are as follows. First,
it introduces MALG (mixture of asymmetric Laplace and
Gaussian) distribution model as a GLM mixture model, see
[15]. MALG model is simple and has few parameters. This
makes it useful for on-line decision and control applications.

Second, the paper formulates an optimal Bayesian problem
for MALG estimation from data. We propose a version
of Expectation Minimization (EM) method [1] for iterative
computation of the MALG parameters. E step of the EM
uses scalable closed-form expression computations. M step
is decomposed into three convex optimization problems for
estimating the body, the tails, and the regression parameters.

Third, the paper shows the links between the EM method
and known estimators. The regression and body estimation
in the MALG model is related to Huber’s robust regression.
The estimation of the tails is related to Hill’s tail estimator.

Finally, the paper applies the results to data modeling and
stochastic optimization in day-ahead electricity market. It is
shown that using the MALG model instead of a simpler
normal model can save a few million dollars per year.

II. MODEL FORMULATION

Consider dataset

D = {Xi, yi}Ni=1 , (1)



where scalars yi are response variables and Xi ∈ <n are ex-
planatory variables (regressors). In the motivating example,
index i describes time sample; N is the number of samples.

We assume that (1) is an i.i.d. realization of a mixture of
asymmetric Laplace and Gaussian (MALG) distributions

y = βTX + (1− z) vN + zvAL, (2)
z ∼ B(1, q), (3)

vN ∼ N(0, σ2), (4)
vAL ∼ AL(0, λL, λR), (5)

where z is Bernoulli random variable with probability q for
z = 1 and β ∈ <n is linear regression parameter vector. Nor-
mal (Gaussian) distribution N(µ, σ2) has mean µ, covariance
σ2, and probability density pN (x|µ, σ2). The Asymmetric
Laplace distribution AL(µ, λL, λR) has probability density
pAL(x|µ, λL, λR) given in Appendix.

The model (2)-(5) is a special case of Generalized Linear
Model (GLM) mixture model class, see [5]. The probability
density functions (PDF) of the two mixture distribution are

p(y|X, θ, z = 0) = pN (y|βTX,σ2), (6)
p(y|X, θ, z = 1) = pAL(y|βTX,λL, λR). (7)

This GLM mixture is special in having the same linear
model βTX of the distribution means for (6) and (7). In prior
work, such as [5], [9], the component distributions in GLM
mixture represent clusters of the data centered at different
locations. In this work, GLM mixture components represent
the body and the tail of the same distribution

y|X ∼ MALG(θ), (8)

θ =
[
βT q σ λL λR

]T
, (9)

where MALG combines the normal (N) distribution PDF pN ,
(4) and the Asymmetric Laplace (AL) PDF pAL, (5) as

pMALG(y|X, θ) = (1− q)pN (y) + q pAL(y). (10)

We will use an example MALG distribution to illustrate
the approach in this paper. In the example, X = 1, βTX =
β1 · 1, and the distribution parameters are

θ = [β1 q σ λL λR]
T

= [5 0.05 20 15 0.05]
T
. (11)
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Fig. 1. Comparison of the MALG log likelihood and the Huber loss index.

Figure 1 plots the negative log likelihood index L(v) =
− log pMALG(v|1, θ) for parameters (11). In what follows,
we relate the optimal Bayesian estimation based on MALG

distribution to robust regression based on Huber’s loss index
optimization. The second curve in Figure 1 is an example
Huber loss index. Both functions in Figure 1 grow linearly
for large absolute values of the argument. This provides
robustness of the estimates to large outliers. Huber loss index
is convex and quadratic for small arguments. MALG loss
index is non-convex and non-quadratic for small arguments.

III. EM ALGORITHM

The objective is to find a Maximum Likelihood Estimate
(MLE) of the parameter vector θ (9) in (8) from i.i.d. data
(1). MLE is the solution of the optimal Bayesian problem

θ = arg max

N∑
i=1

log pMALG(yi|Xi, θ). (12)

To solve MLE problem (12) we use Expectation Maxi-
mization (EM) algorithm, see [1]. EM for a GLM mixture
is discussed in [5], [15]. The EM algorithm described below
accounts for the linear models βTX in the mixture being
the same. The EM formulation allows to solve (12) as
series of convex optimization steps and finite expression
computations. The EM algorithm iterates between two major
steps, the expectation step (E step) and the minimization step
(M step), that are detailed in the next two subsections.

A. E Step
The expectation step assumes that the parameter vector θ

(9) is known. It computes posterior probabilities wiz for data
point i in the data set (1) belonging to either distributions
(6) with z = 0 or (7) with z = 1. Standard EM algorithm,
see [5], computes these posterior probabilities as

wij = p(zi = j|θ, yi), (13)

=
p(yi|Xi, θ, zi = j)p(zi = j)∑1
k=0 p(yi|Xi, θ, zi = k)p(zi = k)

, (14)

where p(zi = 1) = q, p(zi = 0) = 1− q, and p(yi|Xi, θ, z)
are given by (6), (7). Weights wij are complementary,

wi0 + wi1 = 1, (i = 1, ..., N). (15)

Large weight wi0 means data point i is likely generated
by the normal distribution and belongs to MALG body. For
large wi1 and small wi0, the data point is likely generated
by the AL distribution and belongs to the distribution tail.

B. M Step
M step assumes that posterior probabilities wij are known

and estimates parameters θ of the MALG distribution. This
is done by maximizing a convex lower bound J(θ) of the log
likelihood function in (12), L(θ) =

∑
i log pMALG(yi|Xi, θ)

J(θ) =

N∑
i=1

1∑
k=0

wik log p(yi|Xi, θ, z = k), (16)

log p(yi|Xi, θ, z = 0) =− (1/2)σ−2(yi − βTXi)
2

+ log(1− q)− log σ2, (17)
log p(yi|Xi, θ, z = 1) =λL(vi)− − λR(vi)+

+ log q − log(λ−1L + λ−1R ), (18)
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where (x)+ = max{x, 0} ≥ 0 and (x)− = min{0, x} ≤ 0.
Maximizing (16) instead of (12) is a standard M step, e.g.,

see [1]. Expressions (17), (18) are specific to the MALG
distribution. Our version of the EM approach performs M
step as a sequence of three sub-steps: Robust Regression,
Body Estimation, and Tail Estimation. These compute partial
optimums over subsets of parameters in vector θ (9) and are
detailed below. The three sub-steps make a block coordinate
descent algorithm maximizing the objective J(θ).

1) Robust Regression: The robust regression step esti-
mates regression parameter vector β assuming that other
MALG parameters in θ (9) are known. Maximizing (16) with
respect to β, assuming that σ, λL, and λR in (17), (18) are
known, leads to the following convex optimization problem

β̂ = arg min

N∑
i=1

[wi0
2σ2

(yi − βTXi)
2

−wi1λL(yi − βTXi)− + wi1λR(yi − βTXi)+
]
, (19)

where the decision vector β has a moderate size, the same as
the number of regressors. The quadratic programming (QP)
problem (19) can be numerically solved using one of the
standard QP solvers.

2) Body Estimation: MALG distribution body is de-
scribed by the second summand in (10) that is defined by
parameters q and σ. To find these, we maximize (16) with
respect to q and σ2 assuming that β, λL, and λR in (17),
(18) are known. This results in two independent problems
for q and σ2; each has a closed form analytical solution.
The optimal estimate of q is

q̂ =
1

N

N∑
i=1

wi1. (20)

The estimate of the normal distribution covariance σ2 is

σ̂2 =

(
N∑
k=1

wk0

)−1 N∑
i=1

wi0(yi − βTXi)
2. (21)

3) Tail Estimation: MALG distribution tails are described
by the third summand in (10). The estimated parameters are
λL and λR. We assume that q is already known. Maximizing
(16) with respect to λL, and λR for given β, σ, and q in (17),
(18), yields the following problem

{λ̂L, λ̂R} = arg max
λL,λR

N∑
i=1

wi1
[
λL(yi − βTXi)−

−λR(yi − βTXi)+ − log(λ−1L + λ−1R )
]
. (22)

Differentiating yields a non-linear system that allows the
following closed form solution for the optimum (note that
aL and aR are always non-negative)

λ̂L = (aL +
√
aLaR)−1, λ̂R = (aR +

√
aLaR)−1, (23)

aL =
(∑N

i=1 wi1

)−1∑N
i=1−wi1(yi − βTXi)−,

aR =
(∑N

i=1 wi1

)−1∑N
i=1 wi1(yi − βTXi)+.

(24)

C. Algorithm

The proposed expected conditional maximization (ECM)
version of the EM algorithm starts with an initial guess θ0
of the parameter vector. One approach to computing θ0 is
discussed below in Section IV-B. The algorithm logic is
presented in Algorithm 1 panel. In examples of Sections IV
and V, it takes about 15 EM algorithms iterations to achieve
convergence.

Data: Data set D (1), parameter guess θ0, accuracy ε
Result: θ̂
Initialize: θ = θ0
while ‖∆θ‖ > ε do

E step: Compute weights wij from (14)
M step:

Robust Regression: get β̂ from QP problem (19),
Body Estimation: compute q̂ (20) and σ̂ (21),
Tail Estimation: compute λ̂L, λ̂R (23),
θ = [β̂ σ̂ λ̂L λ̂R q̂]

T , ∆θ = θ̂ − θ, θ̂ ← θ
end

Algorithm 1: EM algorithm for identification of MALG

IV. EM ALGORITHM DISCUSSION

The EM algorithm with the block coordinate descent in
M-step described in Subsection III-B is known to converge.
The variant on the EM with the M step broken into partial
minimization steps is called the Expectation Conditional
Minimization (ECM) algorithm. It was earlier considered by
Meng and Rubin [23], who discuss the ECM convergence.

A. Idealized Models

Weights wij (14) provide ‘soft’ switching between the
distribution body and tail, the normal and AL distributions
in the mixture model. Additional insight into the formulated
algorithm can be obtained by considering a ‘hard threshold’
modification of the EM algorithm. Consider an idealized
model with weights wij are replaced by

w∗ij = nint(wij), (25)

where nint(·) rounds its argument to the nearest integer.
The idealized model helps to establish the initial quess

of the parameter vector θ for the EM update. Consider the
tails of the MALG distribution first, where wi0 ≤ wi1.
Expressions (14) for wi0 and wi1 have common denominator.
In accordance with (6), (7), for the tails

qpAL(yi − βTXi, λL,λR)

≥ (1− q)pN (yi − βTXi, σ
2).

(26)

This paper assumes the tail intensity q is small. For q <
1/2, the left tail consists of data points, where yi−βTXi <
tL; for the right tail yi − βTXi > tR. From (26), we get

tL = −σ2λL −
√

(σ2λL)
2

+ 2σ2 log ρ,

tR = σ2λR +

√
(σ2λR)

2
+ 2σ2 log ρ,

ρ = (1− q)
(
λ−1L + λ−1R

)
/
(√

2πqσ
)
.

(27)
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For the tail points, wi0 ≤ wi1 and (15) imply that wi0 ≤
1/2 and wi1 ≥ 1/2. The idealized model is then

w∗i0 = 0, w∗i1 = 1, for i ∈ SL ∪ SR, (28)
w∗i0 = 1, w∗i1 = 0, for i ∈ SB , (29)

where (28) is the idealized model for the tail indexes and
(29) for the distribution body indexes. The left tail index set
SL, the right tail set SR, and the body indexes SB are

SL ≡ {i : yi − βTXi ≤ tL}, (30)
SR ≡ {i : yi − βTXi ≥ tR}, (31)
SB ≡ {i : tL < yi − βTXi < tR}. (32)

Figure 2 compares weights wij (14) and the idealized
model (28), (29) for the example (11). The plot argument
is v = y−βTX . In Figure 2, tL = −0.187 and tR = 0.165.
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Fig. 2. Weights wi0 for the distribution body (upper plot) and wi1 for the
tail (lower plot)

B. Initialization and Approximate Algorithms

1) Initialization: Our goal is to establish the initial pa-
rameter vector guess θ0 in EM Algorithm 1. This can be
done by executing the M step of Algorithm 1, with idealized
model (28), (29) used in place of the E step weights (14).
The idealized model is defined through (30), (31), (32) that
depend on the two tail threshold parameters tL and tR in
(27) and the regression parameter vector β.

The initialization starts from assuming a Gaussian model.
This is the same as having q = 0 in MALG. The solution is
then the standard least square regression

β0 = arg min
∑N
i=1(yi − βTXi)

2,

σ2
0 = N−1

∑N
i=1(yi − βT0 Xi)

2.
(33)

These initial estimates can be further improved by removing
the outlier data points, where yi − βT0 Xi is outside the
[tL, tR] interval. Several iterative updates usually provide

convergence, see [4] for discussion. The tail thresholds define
the initial idealized model and are initialized as

tL,0 = −3.5σ0, tR,0 = 3.5σ0. (34)

2) Approximate Tail Estimation: By substituting idealized
model (28)–(32) in place of weights wij in (24) we get

aL,0 = −N−1T
∑
i∈SL(yi − βT0 Xi),

aR,0 = N−1T
∑
i∈SR(yi − βT0 Xi),

(35)

where NT = card SL + card SR is the total number of the
tail points. Initial estimates of MALG tail parameters λL,0
and λR,0 are then computed from (23) using approximate
initial values (35) in place of aL and aR.

Estimates (35) are related to MLE estimation of exponen-
tial tail using peaks over threshold method. In the motivating
example, response variable y is logarithm of the physical
variable. In that case, estimates (35) are closely related to
Hill’s estimator for Pareto distribution, see [6].

3) Approximate Body Estimation: The initial estimate
q0 of q is deduced by approximating MALG cumulative
distribution function (CDF) in the tails with AL CDF (50)
as follows

P
(
y − βTX ≤ tL|θ

)
≈ qλR(λL + λR)−1eλLtL , (36)

P
(
y − βTX ≥ tR|θ

)
≈ qλL(λL + λR)−1e−λRtR . (37)

We approximate probabilities (36) and (37) with
card(SL)/N and card(SR)/N , to estimate q0

q0 = (qL + qR) /2, (38)
qL = N−1card(SL)(1 + λL,0λ

−1
R,0)e−λL,0tL,0 , (39)

qR = N−1card(SR)(λR,0λ
−1
L,0 + 1)eλR,0tR,0 . (40)

The initial guess q0 can be iteratively refined by recom-
puting weights in (14), updating thresholds (27), and then
computing a new value of q0 using (20).

The idealized model yields covariance estimate (21) as

σ2
0 =

1

N −NT

∑
i∈SB

(yi − βT0 Xi)
2, (41)

where N −NT = card SB . This estimate is consistent with
computing σ0 after removing the outliers (tail points).

4) Approximate Robust Regression: For the idealized
model weights (28)–(32), (34), QP problem (19) becomes the
well-known robust regression problem formulated as Huber
loss function optimization, see [16]. For λL 6= λR, the loss
function is asymmetric. The described procedure for iterative
outlier removal when estimating β from (33) provides robust
regression approach that is roughly equivalent to the Huber
robust regression. Additional discussion of the two robust
regression approaches can be found in [4].

5) Initial Guess: Initial parameter vector θ0 in Algo-
rithm 1 is set to θ0 = [β0 σ0 λL,0 λR,0 q0]T .
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C. Verification

The performance of the described EM algorithm for MLE
of MALG distribution parameters was verified for simulated
data with known ground truth. For that purpose, 40,000
points were generated following MALG distribution with
parameters (11). In the verification example, βTXi = β1 · 1,
with Xi = 1. The results obtained after five iterations of
Algorithm 1 are shown in Table I. The estimates obtained
by the algorithm are close to the ground truth parameters.

TABLE I
TRUE AND ESTIMATED PARAMETERS FOR SIMULATED DATA

µ σ λL λR q
Estimated Value 4.9997 0.0502 21.1615 14.4549 0.0446
True Value 5 0.05 20 15 0.05

V. POWER LOAD DEMAND MODEL

The motivating example for the MALG model is fore-
casting of electrical power demand for a utility. Anonymous
US utility data described in [8] include hourly loads for 20
zones served by the utility and ambient temperature. The
methodology described above was applied to the aggregate
load across all these zones. The range of the aggregate load is
0.8 to 3.2GW, with the average value being 1.6GW. The data
covers a time range of approximately 4 years with sampling
interval of one hour, N = 38, 070 samples at all.

Let L(t) be the load demand. The data is sampled every
hour and t is the number of hours elapsed since the start of
the data collection. We use logarithmic load, normalized by
L0 = 1 GW, as response variable yt

yt = log (L(t)/L0) . (42)

We use linear regression model of the hourly load demand
described in [22]. This model has the form yt = βTXt

with 58 non-linear regressors Xt that depend on temperature,
load values, and time. The regressors are calculated from the
available data at each time sample to provide dataset (1).
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Fig. 3. Comparison of aggregated load demand and forecast.

Algorithm 1 was used to fit the MALG mixture of
Generalized Linear Models to the data {Xt, yt}Nt=1. Model

forecast was calculated as ŷt = β̂TXt, where β̂ is the
regression parameter vector estimated by the EM algorithm.
Figure 3 compares the forecast ŷt to the actual logarithmic
load demand yt for 301 hour period.
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Fig. 4. Residual histogram

A histogram of the prediction residuals yt − ŷt is shown
in Figure 4. The long tails of the residuals are not modeled
by a normal distribution. A zero-mean MALG distribution
model provides much better fit. The estimated MALG model
parameters are summarized in Table 3. Vector β̂ ∈ <58 is not
included here because of the space limitations. The shown
parameters are roughly the same as in the example (11).

TABLE II
ESTIMATED MALG PARAMETER FOR THE LOG LOAD MODEL

Distribution Normal σ̂ AL λ̂L and λ̂L Bernoulli q̂
0.0593 (18.2594,19.3068) 0.0659

For comparison, a regression model based on the normal
distribution was fitted to the data. This model is a special
case of the described MALG model with mixture parameter
q = 0. Zooming in on the right tail, Figure 5 shows a
comparison between the PDFs of the fitted normal and
MALG distribution. One can see that the MALG distribution
provides much better for the tail than the normal distribution.
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VI. STOCHASTIC OPTIMIZATION

This section considers a practically important problem that
can be solved using the model described in Section V. Utili-
ties order electrical power from power generating companies
24 hours in advance. The demand that exceeds the advance
order has to be fulfilled in the spot market, at much higher
price. There is a trade-off between overpaying upfront at
day-ahead power cost and the risk of paying for excessive
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demand at much higher spot price. The MALG model allows
stochastic optimization of this trade-off taking into account
the long tail risk of unusually large demand.

Models of day-ahead electricity market order were con-
sidered in earlier work. Related approach in [7] considers
much simpler forecasting model for power load and no
optimization. Stochastic optimization in [11] uses a simple
regression model and normal model without the long tails.

A. Expected Total Cost Formulation

This section assumes that accurate day ahead temperature
forecast is available. In that case the regressors vector Xt in
load demand model of Section V is available day ahead.
The problem below assumes that regressor vector X is
deterministic and known. The next day demand y is a random
variable with distribution y ∼ MALG(X, θ); parameter θ can
be identified from historical data as described in Section V.

The goal is to model and optimize the total expected
cost that will be paid for the electricity in the day’s time.
The forecasted mean log-load (42) is βTX . The forecasted
physical load (in GW) is L0 exp(βTX). The day ahead order
is then M + L0 exp(βTX), where M is the margin above
the mean forecast. The total cost can be broken up into
deterministic day-ahead upfront cost A(M) and stochastic
spot cost C(M). The expected total cost is

U(M) = A(M) + E[C(M)], (43)

where E[·] is the random variable expectation. The goal is
to optimize margin M , such that U(M) (43) is minimal.

The day-ahead cost A(M) and the spot cost C(M) are

A(M) = πadv ·
(
M + L0e

βTX
)
, (44)

C(M) = πspot · (D)+, (45)

D = L0e
y −M − L0e

βTX , (46)

where πadv is electricity price on the day ahead market; it
is considered as a deterministic constant. The load forecast
error D is a stochastic variable depending on y, where
y ∼MALG(X, θ). The spot price πspot is also a stochastic
variable. Spot cost C(M) (45) includes the term (D)+. If
demand error D (46) is positive, the electricity must be
procured at the spot price πspot. If the error D is negative,
the advance cost A(M) is not recovered. The trade off is
then between wasting money on buying too much power in
advance or potentially paying a high spot cost later on if
demand is not met. The goal is to find M such that the
expected cost U(M) (43) is minimized.

It is well known that the spot price is driven by the spot
demand. We assume that spot price πspot is affine in the
demand (day-ahead forecast error D). Related models are
discussed in [7], [11], [12]. Our model is

πspot = aD + b+ ε, (47)

where a, b are constants, ε is the modeling error for the
prices, and D is given by (46). We consider ε as a stochastic
variable independent of y and with zero mean E[ε] = 0.
Related affine model for spot prices is considered in [13].

Substituting (47) into (45) yields C(M) = aD(D)+ +
b(D)+. By taking expectation we get

E[C(M)] = aE[D2|D ≥ 0] + bE[D|D ≥ 0]. (48)

The exact expression for E[C(M)] is given in the Appendix.

B. Results

The stochastic optimization was applied to the power load
data and the model described in Section V. The price models
in Subsection VI-A were established based on the results of
[19]. The advance price in (44) was set to πadv =$1920/MW-
day. The affine spot cost model (47) was set to a = $19,200-
day/(MW-day)2 and b = $1,920,000/MW-day.

To illustrate the results, we pick sample t such that
the forecasted mean demand L0 exp(βTXt) = 2.845 GW.
Figure 6 plots MALG expected total cost U(M) (43) and
day ahead advance cost A(M) (44) against the margin M
argument. Expected cost E[C(M)] is the difference between
the two curves. For small values of margin M the expected
spot cost E[C(M)] dominates the total cost U(M). This
means not enough power was ordered in advance and there
is high risk of covering substantial amount of power deficit
at the high spot price. For large values of margin M , the
expected spot cost becomes negligible and the advanced cost
A(M) dominates the total cost. This means too much power
is bought in advance. The optimum is achieved somewhere
in the middle, for M = 467.6MW.
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Fig. 6. Expected total cost.

We compared the stochastic optimization results obtained
using the MALG model and a simpler model based on
normal distribution. The latter can be considered a special
case of the MALG model with q = 0. Table III is the
summary of total expected costs based on the MALG and
normal distribution model. The total expected cost shown for
the normal distribution is computed assuming the optimal
margin M is computed using the fitted normal model; the
total cost computation then uses the same MALG model. In
accordance with Table III, using MALG model instead of
the simpler normal model in advance power order decision
would save $23,567 per day, that is about $8.6 M per year.
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TABLE III
OPTIMAL MARGIN AND COST

Normal Model MALG Model
Margin 432.59 MW 486.01 MW

Total Expected Cost $5,393,384/day $5,346,341/day

VII. CONCLUSION

This paper proposed a mixture model, MALG, that allows
combined modeling of distribution body and distribution
tails in regression problems. The paper demonstrated EM
algorithm for optimal estimation of MALG parameters from
data as sequence of robust regression, distribution body
estimation, and tail estimation steps.

In the example application, the MALG model was used as
a basis for stochastic optimization of the total expected cost
for day-ahead electricity market. Modeling long-tail risks of
the peak load demand events using MALG is shown to save
a few million dollars per year compared to use of a normal
distribution model and least squares regression.
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APPENDIX

The asymmetric Laplace distribution AL(µ, λL, λR) has
the following PDF

pAL(x) =

{
κ eλL(x−µ), x < µ
κ e−λR(x−µ), x ≥ µ . (49)

The CDF of AL is given by (κ = 1/(λ−1L + λ−1R ))

FAL(x) =

{
λ−1L κ eλL(x−µ), x < µ

1− λ−1R κ e−λR(x−µ), x ≥ µ . (50)

Section VI-A requires computation of expected spot cost
(48), E[C(M)] = aE[D2|D ≥ 0] + bE[D|D ≥ 0]. In
the computation, we hold parameters σ, λL, λR, q, βTX,L0

constant do not show dependence on these parameters explic-
itly. We define m = inf{y − βTX|D(y) ≥ 0}. By solving
exp(m+ βTX) = exp(βTX) +ML−10 we get

m = log
(
1 +ML−10 exp(−βTX)

)
. (51)

Next we compute the expected values E[D2|D ≥ 0] and
E[D|D ≥ 0] based on (10)

E[D2|D ≥ 0] = L2
0

∫ ∞
m

(ey − γ(M))
2
pMALG(y|X, θ)dy

(52)

= L2
0

[
Ψ2(m)− 2γ(M)Ψ1(m) + γ(M)2Ψ0(m)

]
, (53)

E[D|D ≥ 0] = L0

∫ ∞
m

(ey − γ(M)) pMALG(y|X, θ)dy

(54)
= L0 [Ψ1(m)− γ(M)Ψ0(m)] , (55)

where γ(M) = eβ
TX +ML−10 and Ψz(m) is defined as

Ψz(m) =

∫ ∞
m

ezypMALG(y|X, θ)dy (56)

= ezβ
TX [(1− q) ηz(m) + q κφz(m)] (57)

ηz(m) =
1

2
ez

2σ2/2erfc
(

(mσ−1 − zσ)/
√

2
)

(58)

φz(m) =

{
κR e

−κ−1
R m, m ≥ 0

κR + κL

(
1− eκ

−1
L m

)
, m < 0

(59)

where κL = (λL + w)
−1 and κR = (λR − w)

−1. These
integrals exist provided that λR > 2.
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