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Abstract

This paper presents a systematic approach to analysis
and design of Iterative Learning Control (ILC). Rigorous
ILC design method is developed based on detailed specifi-
cations for performance, robustness, controller non-fragility,
and control amplitude constraints. The designed ILC up-
date is implementable through non-causal convolution win-
dow operators. The controller is designed by solving a linear-
quadratic optimization problem and manipulating control
penalty weights. This is related in spirit to LQG/LTR, de-
sign method for dynamic controllers.

1 Introduction

The idea of iterative control of batch processes has been
discussed in the automatic control literature for some time.
Many related ideas have been published under the names
of Tterative Control, Learning Control, Run-to-run Control,
and others. In this paper, the name Iterative Learning Con-
trol (ILC) will be used. An ILC controller provides feed-
forward control input to a plant through a batch run. The
feedforward control history for an entire batch run is stored
in a memory buffer. The plant output in the batch is stored
in another memory buffer. The ILC update is computed
between the batches and based on the output history buffer
data to calculate an update to the feedforward control his-
tory buffer data. Only main relevant ideas of the prior work
are briefly overviewed below. A detailed bibliography on
ILC can be found in [6, 14].

Most of the ILC approaches considered in the literature
update the feedforward control as

u® — yk-1 _ AYUC), (1)

where the superscript k denotes the batch run number, U™
is a vector containing the sampled feedforward control values
through the batch, Y*) is a vector containing sampled plant
output values, and A is a linear update operator.

Initial and best known approaches to the ILC problem
used an ILC feedback update operator A of the form similar
to standard dynamical controllers, such as P or PD oper-
ators acting on the plant output sequence as a local-time
function, e.g., see [2]. More complicated feedback opera-
tors described by high-order rational transfer functions can
be used, e.g., see [15]. The convergence analysis for such
operators is conveniently and intuitively performed in the
frequency domain such as in [14] and other work.

The main drawback of the described approaches is that
they follow standard controller methods and use feedback

operators that are causal in local time . At the same time, in
the ILC problem the feedback operator does not need to be
causal. The papers [11, 12, 13] among many others consider
use of noncausal operators and causal/anicausal dynamical
filters for shaping ILC feedback.

A different approach to the ILC problem is to consider the
plant over a batch time as an operator acting on a feedfor-
ward sequence and producing an output sequence. The ILC
provides a simple feedback for the operator system. Such
ILC feedback operator can be designed by minimizing a
quadratic performance index, such as in [7, 16, 21]. This
approach is similar to MPC methods used in process indus-
tries. The difficulty is in dealing with matrices of very large
dimensions if there are many samples in the feedforward and
output histories (e.g., hundreds or thousands).

One of the problems with ILC encountered in practice is
that even if initial reduction of the error is achieved, after
many iterations the error might start growing again [12].
One of the reasons for this is small gain of the plant on high
frequencies. Controllability can be improved and compu-
tational load reduced by using modal decompositions of the
initial ILC problem and droping all but the best controllable
modes out of the consideration, e.g., see [5, 10].

An ILC update is inherently ill-conditioned. This problem
can be reqularized [22] by adding a penalty for the control ef-
fort to an existing performance index such as to a quadratic
plant output error in an ILC batch. An ILC solution for
regularized LQ problem has form (1), with a term of the
form —BU*~") added to the r.h.s. [8]. A ‘relaxation’ term
with B = rI was used in ILC update in a few papers in-
cluding [1, 3], where it was found necessary to ensure robust
convergence.

This paper goal is to develop engineering methods for de-
sign of high-performance ILC update that can be easily im-
plemented in practice. The methods should be based on for-
mal specifications for the controller and supported by rigor-
ous robustness, performance, and control amplitude analysis
methods. Another goal is to develop a unifying view of the
ILC problem that will encompass operator, linear-quadratic
model-predictive, regularization, and frequency domain de-
sign and analysis approaches.

The approach of this paper is based on recent progress
in development of control methods for sampled spatially in-
variant distributed systems [4, 19, 20]. An ILC update for
an LTT plant can be considered as such a system, where
local time corresponds to a spatial coordinate and batch
number to a time variable. One important characteristic of
ILC problem for stable LTI plant or other spatially invariant
systems with spatially distributed control is that they can
be approximately diagonalized (decomposed into modal sub-



systems) by a Fourier coordinate transformation. In an ILC
problem, the Fourier coordinate transformation corresponds
to frequency domain analysis of the local time sequencies.

2 Models and Problems

This paper considers a discrete-time ILC problem.
Discrete-time models are adequate for development of prac-
tical ILC algorithms, since the history data for input and
output variables has to be discretized and stored in a digital
computer between the batch runs of the process. For the
sake of the presentation simplicity, a SISO process is consid-
ered. However the analysis and design approaches to follow
can be extended to MIMO processes with little or no mod-
ification as long as the underlying assumptions of linearity
and time-invariance of the process hold.

Let u(t) and e(t) be the feedforward input and the process
output error respectilely in the batch, e®(t) be the initial er-
ror with no ILC feedforward applied. Consider the following
simple model of a SISO batch process with the discretized
control inputs and measurement outputs

y® = qu® 4y (2)

where Y(’“)7 U(’“)7 and Y are vectors with the components
e®(t), u® (t), and e°(t) respectively, t = 1,..., N.

Since the process is LTI G € RV in (2) is a Toeplitz
matrix. Much of the analysis to follow will be based on
properties of Toeplitz matrices.

In what follows, a linear ILC feedback of the following
form is considered

U(k) — U(k'—l) _ Ay(k—l) _ BU(k_l), (3)

where A and B are linear operators (N x N matrices). Note
that (3) gives the most general form of the state feedback for
the control problem in hand, where Y *) is the ILC process
state vector and U(k), the controller state vector. In the
ILC problem framework this means iterative elimination of
the initial error. The time histories Y and U can contain
hundreds or thousands elements - data samples.

The analysis to follow uses properties of Toeplitz matrices.
The Toeplitz matrices encountered in this paper, such as G,
have elements vanishing outside of a narrow diagonal band.
Asymptotically for large duration of the batch run interval
N such matrices are close to circulant matrices and can be
approximately diagonalized in the same Fourier basis [9]. In
particular

G ~ F*diag {g;} F, (4)
Fii = N71/26727rijk/N7 (5)

where F' is a unitary complex Discrete Fourier Transfom
(DFT) matrix, F* is transposed complex conjugate of F,
and Fjj are entries of F. Further, in (4) the array of the
diagonal elements g; can be obtained as

g9 = N'*Fjj, (6)

where F} is the j-th column of the DFT matrix F and
g € R has elements g1 = Gi,1, §; = Gj1 + Gj-1,n,
(j = 2,...,N). The vector g is a first column of the cir-
culant approximation for G .

The approximate equalities (4), (6) are valid asymptoti-
cally for N — oco. For any finite IV, the errors of the approx-
imation can be found or estimated numerically as discussed
further on. The approximation (4), (6) makes the analysis
results intuitive and shows explicitly how the results depend

on frequency-domain properties of the dynamical operators
acting on local-time signals within a batch run.

By changing variables in (2) to U = FU, Y = FY, and
Y? = FY?, the system (2) takes the form

~(k) i) 4
7

Y; =G5y (.7:177N)7 (7)

where yj(-k), ﬂg-k), and gj‘? are components of the vectors [7,
Y, and Y° respectively.

The modal subsystems in (7) are decoupled and each can
be controlled independently. The modal control values com-
pensation for the initial error g7 in (7) are @s.; = §5/9;.
For poorly controllable modes, i.e., for the modes with van-
ishingly small modal gains g;, control that cancels out the
initial error can have extremely large magnitude. One way of
dealing with an inverse (control) problems for ill-defined sys-
tem like (7) is offered by the regularization theory [22]. The
regularization consists of adding a penalty for large values
of control to the problem. This can be conveniently done by
designing control as a solution to a Linear Quadratic (LQ)
problem with performance index including a quadratic con-
trol penalty.

This paper presents a systematic L(Q design approach that
yields practical ILC controllers implementable through FIR
window operators. This is done through the Fourier modal
analysis (4), (5) and formal specifications for the controller
robust stability, performance, and control amplitude.

3 Design and Analysis Approach

This section describes the control design and analysis ap-
proach for the ILC system (2)—(3) in general terms. The
main assumption is that the matrices G, A, and B can be
all approximately diagonalized by the same Fourier trans-
formation, (5) as matrix G (4) such that

A= F*diag{a;} F, B =~ F*diag{b;}F, (8)

In this section the following controller properties are for-
mally analyzed: Robust Stability, Nominal Performance,
and Actuator Magnitude

3.1 Robust Stability

By subsituting (2) into (3), we obtain the following closed-
loop dynamics equation

v =u* Y —aqu*TY — U™ — AY? (9)

It follows from (9) that an ILC update converges expo-
nentially provided that

I - AG — B|| < 1, (10)

where || - || = 7(-) denotes the operator norm (maximal sin-

gular value) of a matrix and I is the N x N unity matrix.
The errors of the approximation (8) can be taken into

account by presenting the matrices G, A, and B in the form

G=G+6G, A=A+35A, B=B+4B, (11)
where &, A, and B satisfy conditions (4), (8) exactly; 6G,
0A, and 6B are approximation errors. It will be further
assumed that

16G]] < wo, (12)

where wp is a scalar uncertainty parameter.



By substituting (11) into (10), the following sufficient con-
dition of the robust convergence can be obtained

|II — AG — B|| + ||A6G|| + ||0AG + B|| < 1, (13)

To guarantee the robustness condition (13), it will be fur-
ther assumed that the following controller approximation
error bound (non-fragility condition) holds

6(0AG+6éB)<o1 <1 (14)
By using (4), (8), (12), and (14), the inequality (13) can

be guaranteed if

1—-ajg; —b; - 1- 1
]_:1{1,?’_(,]\]| a;9gj J|+w0j7r{13XN la;| < o1 (15)

yeensy

The conditions (14) and (15) together ensure robustness
of the ILC update convergence to a mismatch between the
controller, plant and their models (approximations) used in
the controller design. By ensuring that (14) and (15) hold,
it becomes possible to design controller using the diagonal
approximation (4), (8).

3.2 Actuator Magnitude
From (9), the steady state control can be obtained as

Uss = —(AG + B) "' AY?", (16)

where we assume the operator AG + B to be invertible. In
case AG + B is not invertible, the control input can theoret-
ically grow without a limit in the updates, which is undesir-
able.

In this and the next sections, we consider control design
specifications for the nominal plant. It will be assumed that
(8) holds exactly for the nominal plant. Consider the steady
state control vector transformed into the modal coordinates
Uss = FUss . From (8) and (16) the modal components of
the control can be found as (Uss); = Y a;/(a;jg; + b;). The
assumed constraint on control amplitude in the ILC update
has the form: |(Uss);| < umax, (j =1,...,N). Constrain-
ing the modal components (ﬁss)]- instead of the instanta-
neous values (Uss); can be considered as a ‘soft’ constraint
technique. It gives a designer convenient tuning knobs for
achieving the desirable control input amplitude. The control
magnitude constraint used herein has the form

aj

——— | Yo < uUMAX, 17
ajg; +bj an)

where it is assumed that |Y}| < yo. This soft constraint ap-
proach follows standard practice of feedback control design
where original control amplitude constraints are commonly
replaced by frequency domain constraints.

3.3 Nominal Performance

The performance of an ILC controller can be quantified
by the residual steady state error obtained after the iterative
control update convereges. This steady state error can be
computed from (2) and (16) as

Yo = [I — G(AG 4+ B) *AlY° (18)

It is convenient to analyze modal components of the error
(18), i.e., components of the transformed vector Yss = FYss.
By assuming that the plant is nominal so that (8) holds
exactly, (18) gives the modal components of the steady state
error

bj }70

Vi) = ————Y 19
(Foo)i = o2, (19)

The control design should ensure that the errors (Yis);
are possibly small without vilolating the robustness condi-
tions (14), (15) and control amplitude constraint (17). The
formulation of this section allows to perform control design
and analysis in a decoupled way considering one modal com-
ponent at a time. This is similar to standard control theory
and practice of frequency domain analysis of control loops.

Note that the frequency analysis presented in this sec-
tion differs from standard (local time) frequency analysis of
the dynamical system and control loop underlying the ILC
system. This is because, unlike standard control theory, in
ILC the control does not need to depend on the measure-
ment in causal way as far as the local time dependencies are
concerned.

4 LQ/LTR Design of ILC

A straightforward approach to designing an ILC controller
for the system (2) is by minimizing a quadratic performance
index. Consider the following performance index including
penalties for the next step error Y *) and control effort

J=y®Ty® L y®Tgu® 4 Au®T RAU® - min, (20)

where AU® = U® — y®-Y g and R are symmetric
semidefinite positive penalty weight matrices. In what fol-
lows, the penalty weight matrices S and R will be used as
tuning parameters and chosen such that the design specifi-
cations of Section 3 are satisfied.

4.1 LQ controller

By minimizing (20) subject to the plant model (2) the LQ
controller can be obtained in the form (3), where
A=DG", B=DS, D=(G"G+S+R)” (21

The penalty weight matrices S and R will be chosen to
recover the loop robustness and other specifications simi-
lar in spirit to the transfer loop sensitivity recovery in the
LQG/LTR loopshaping procedure [18]. Therefore, a name
LQ/LTR ILC is used herein for both the controller design
procedure and the designed controller. The LQ/LTR ILC
approach presented in this section is closely related to the
approaches for control of distributed parameter processes,
such as paper manufacturing processes, presented in [19, 20].

As a first step towards selecting the penalty weight ma-
trices S and R, consider the following fact

Theorem 1 Consider the plant model (2) where matrices
A, B, and G are given by (11). Consider futher a model-
based LQ) controller (8), (20). Suppose that (13) holds.
Then, the left hand side of the robust convergence condi-
tion (14), where S + R is a fized matriz, is minimized for
R = 0. In other words, assuming R = 0 while keeping S+ R
fized provides the best stability margin.

Proof. In the Lh.s. of (14) the first norm achieves its
minimal (zero) value for R = 0 and the second term does
not depend on R as long as S + R is fixed. |

The problem of the form (3) was considered in a number
of ILC papers and in most cases the problem formulations
with § = 0 and R # 0 have been considered. Theorem 1
shows that one should rather select S # 0 and R = 0. Result
of Theorem 1 is somewhat counterintuitive because it seems
that increasing penalty on the control move Uk — k-
in (20) should reduce feedback gain and thus increase the
robustness. The reason why Theorem 1 result is valid is



because there is no uncertainty in the run-to-run dynamics
of the system (2)—(3). These dynamics are given by a simple
one-step delay. In accordance with (11) all uncertainty is
concentrated in the spatial (local batch time) operators A,
B, and G.

Based on Theorem 1, the detailed design of the LQ/LTR
ILC below sets the control increment penalty to R = 0.
The penalty S for the accumulated control profile value is
selected to achieve the design specifications.

4.2 Detailed LQ/LTR ILC design

Consider controller (21) where R = 0. The penalty matrix
S in (20) will be taken to be circulant - diagonal in the
Fourier basis.

S = F*diag{s;}F, s; >0, R=0. (22)

By subsituting (4) and (22) into (21), the nominal con-
troller can be presented in the form (8), where

aj = gi/(s; +1g;|*),  bi = 55/(s; +19;"), (23)

The nominal designed matrices A and B can differ from

the implemented matrices A and B in (11). One of the

reasons is that the designed controller will be implemented

through finitie convolution window operator. This can lead
to truncation errors as in the simulation example below.

Robust stability With (22) and (23) the robust stabil-
ity condition (15) leads to

|95 wj |
———— <1l-0 24
j=1,..,N 8j + |gj|2 ! ( )

The condition (24) can be presented in the equivalent form

sj > wolg;l/(1 —01) —lg;I’, (G=1,...,N) (25)

Note that (25) gives an explicit lower bound on the modal
penaly s;j. This bound depends on the modal gain g;.

Fragility Consider now the non-fragility (loop robust-
ness to controller modeling error) condidtion (14). This con-
dition is important because the designed circulant controller
matrices A and B (23) can differ from the implemented ma-
trices A and B in accordance with (11). In particular, the
designed controller matrices need to be approximated be-
cause it is practically desirable to implement finite window
convolution operators instead of the matrix multiplications.
The controller (3), (21) can be implemented as

vt =u® — D (GTy™ 4+ SUW) (26)

The matrices D and S in (26) correspond to finite window
convolution operators such that

1

D™'=D"'—6R, D= (G"G+S), S=5-48, (27)
where 0 R and 45 are approximation errors. By substituting
(27) into (26) and comparing to (3), (21), the approximation
errors in (11) can be obtainted as
$A=(D-D)G éB=DS-DS (28)
By using (27) and (28) and neglecting second order ap-
proximation error, this condition can be presented in the
form

[[6AG + 6B|| = ||D(6R + 6S)|| < o1 (29)

Note that in accordance with (27) ||D|| <
[g(D‘l)—||6R||]_l. Therefore, a sufficient condition

for (29) to hold is (||0R|| + ||65]])/(a(D™*) — ||6R]]) < o1,
where o(-) denotes the minimal sigular value of a matrix.
This can be equvalently re-written in the form

sj > ([6R|| +16511) /or + 1ORI| — |g;* (30)

The non-fragility condition (30) gives an explicit lower
bound on the modal penaly s;. This bound depends on the
modal gain g; and the controller approximation errors ||d R||,
lloS]]-

Control amplitude By using the diagonal representa-
tions (4) and (23), the control magnitude constraint can be
presented as the following inequality for the penalty weight
S

sj > yo-|gil/umax — g, (G=1,...,N) (31)

The lower bound (31) on acceptable penalty weight s;
depends on the modal gain g;.

Nominal performance In accordance with (19), the
performance is defined by modal components of the steady
state error. Substituting the diagonal controller gains a;
and b; from (23) into (19) gives these error components in
the form

o Sj 0 .

(Yss); = —2—Y; — min, (32)

Ts gl
Since the r.h.s. of (32) is a monotonic increasing function

of sj, the performance is optimized if the penalty weights s;

(22) are as small as possible

sj — min, (j=1,...,N) (33)

4.3 Graphical design of LQ/LTR ILC

The performance optimality condition (33) together with
the inequalities (25), (30), (31) allow to choose the penal-
ties s; that satisfy all the design specifications and solve
the LQ/LTR ILC design problem. Since all of the above
conditions define requirements on the modal penalty s; de-
pending on the modal gain g; such design can be graphically
illustrated in a s; vs. g; diagram.

The design is illustrated in a digram of Figure 1, where the
upper curve plots the designed penalties s; vs. the modal
gain g;. In accordance with the performance optimality con-
dition (33), each point on this curve should be selected as
low as possible in the upper half plane. This is prevented by
the inequalities (25), (30), (31) that provide lower bounds
on the value of s; depending on g;. These inequalities are
shown as shaded areas in Figure 1.

The bound given by the robust stability condition in (25)
is a parabola with branches down that has one zero and one

fragility
and

penalty weight

robustness
constraint

modal gain

g

Figure 1: Graphical design of LQ/LTR controller
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Figure 2: Designed convolution windows for an

LQ/LTR ILC controller

positive root. Both inequalities (30) and (31) have the form
s; > const — |g;|?, where either constant does not depend
on the modal gain g;. For controller design only one of
these two conditions - one with a larger constant - needs
to be considered. This condition appears in the diagram of
Figure 1 as an upturned symmetric parabola.

The shaded patches below the parabolas show the prohib-
ited values for the penalty weights s;. The s; vs. g; curve
should pass above the union of these areas. Notably, the
general shapes of the parabolic design constraints in Fig-
ure 1 do not depend on a particular ILC problem (operator
G). Only the positive roots of the parabolas might change
depending on the problem parameters.

5 Simulation Example

As an example of applying the developed LQ/LTR ILC
design approach, consider an ILC control problem for the
following simple discrete-time system

y(t) = () )], e(t) = y(t) - ya(t)(34)
o(t) = —(%H.w)e(t), (35)

where (34) defines the controlled plant and (35) defines a PI
feedback controller. The discrete Laplace variable z~' can
be interpeted as a unit delay operator; v(t) is the feedback
control; y(t) is the plant output; u(t) is the feedforward con-
trol computed by the ILC controller; and e(t) is the tracking
error observed by the ILC controller. The system evolves on
the interval 0 < ¢ < 400. The continuos desired trajectory
ya(t) is ramped on the time interval ¢ € [151, 310] with a
unit slope and is constant outside of this interval. The plant
parameters in (34) are as follows: g = 1 and a = e~ /7",
where T, = 6. These are nominal parameters that will be

used in the ILC controller design.

5.1 LQ/LTR ILC design

The LQ/LTR ILC design was performed as discussed in
the previous subsection. The initial error amplitude esti-
mate for control design was chosen to be uniform across the
modes, |Y?| < yo = 0.25. The plant uncertainty was as-
sumed to i)e uniform across the modes wo = 0.25. The ap-
proximation error of implementing controller was assumed
to be o1 = 0.15. This error is related to FIR convolution
window implementation of the designed circulant controller
matrices.

The designed LQ/LTR ILC finite window convolution op-
erators A and B are illustrated in Figure 2. The designed
windows consist of 51 elements each and are convolved with
the error profile in the update (3).

Output error update history

1
-
0 \ /
2 \ /
100 150 200 250 300 350 40(

Feedforward update history

[} P A
oY Ao
= \/
1 L
100 150 200 250 300 350 40C

Figure 3: ILC simulation results for the designed
LQ/LTR ILC controller

The designed LQ/LTR ILC controller was tested in the
closed loop simulations. The plant gain and time constant
parameters were perturbed by 20% in the simulation. In ad-
dition to that, a bounded random noise with an amplitude
of £0.001 was added to the plant output. The simulation re-
sults for first 10 consecutive ILC update steps are illustrated
in Figure 3. The lower plot shows the feedforward histories
(profiles) in these iterations, the upper plot shows the error
profiles. As one can see, the error converges to small final
residual error profile in 2-3 iterations.

5.2 Robust PD ILC design

The designed LQ/LTR ILC was compared with a more
traditional design of the ILC update. In particular a PD
ILC controller as considered in [2] was designed and tested
for the same process. The ILC update for this controller has
the form

u™(t) = (1= p)u* V() — kpe™ () — kpAe™(2), (36)

where Ae®(t) = e®(t + 1) — e®)(2); t denotes local time
within a batch run; k is the batch (ILC update) number;
p, kp, and kp are positive parameters of the controller. To
ensure robust convergence of the ILC iterations this PD con-
troller has a “relaxation” term defined by the parameter p
as suggested in [2, 3, 1]. The parameter p is chosen large
enough to ensure robustness for poorly controllable high-
frequency modes but small enough so that the overall ILC
controller performance does not deteriorate too much. Fur-
ther on, the ILC update (36) will be refered to as a Robust
PD (R-PD) ILC update.

The controller (36) can be presented in the form (9),
where A and B are Toeplitz matrices. These matrices, as
well as the closed-loop plant matrix G, are Toeplitz band-
diagonal matrices so that the approximation (4), (6) can be
used and the coordinate transformations in (8) are given by
the Discrete Fourier Transform (5). The parameters a; and
b; in (8) can be computed in straightforward way as diago-
nal elements of the matrices FAF™ and FBF™, where F is
the unitary DFT matrix. This allows to apply the tools of
Section 3 to analysis of the R-PD controller.

In simulations, the proportional gain kp, the derivative
gain kp, and p were such that the robust stability margin
in (15) for the R-PD ILC controller is close to the margin
for the designed LQ/LTR ILC controller. At the same time,
an attempt was made to optimize performance of the R-PD
ILC controller. As a result, the following parameter values
were selected

kp = 0.00095, kp = 0.003, p=10.02 (37)

The R-PD ILC and LQ/LTR ILC controllers can be com-
pared by observing their steady state performance charac-



Steady-state disturbance attenuation for LQ/LTR and R-PD ILC
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Figure 4: Nominal performance - disturbance attenua-
tion gain for LQ/LTR and R-PD ILC controller
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Figure 5: ILC simulation results for the R-PD ILC con-
troller

teristics as defined by the disturbance attenuation multi-
plier h; = |bj|/]ajg; + bj| in (19). Figure 4 illustrates the
disturbance attenuation gain h; computed for both ILC con-
trollers. The gain h; in Figure 4 is plotted vs. the local-time
frequency v; = 27j/N. Figure 4 shows that the nominal
disturbance attenuation gain achieved by the LQ/LTR ILC
controller is uniformly small for lower local-time frequen-
cies v; and increases approaching 1 for higher frequencies
outside of the plant bandwidth, where the gain g; is small.
The disturbance attenuation gain for the R-PD ILC con-
troller is larger than that for the LQ/LTR ILC, except for
the zero frequency (DC) component of error. In fact, the R-
PD ILC even amplifies some disturbance components by a
factor of up to 1.81 in the vicinity of the frequency v = 0.55
rad/sample.

The ILC simulation results for the R-PD ILC controller
(36), (37) are displayed in Figure 5 that is similar in format
to Figure 3. As expected from the performance analysis
illustrated in Figure 4, much larger tracking error is observed
for R-PD in Figure 5 compared to the LQ/LTR ILC update
in Figure 3. The convergence speed for R-PD is also much
slower. Figure 5 plots results for each 12th ILC iteration
while Figure 3 plots every ILC iteration. It takes 20-30
iterations for the R-PD ILC to converege, compared to 3-4
iterations for the LQ/LTR ILC.
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