
oad Disturbance 

his article is devoted to the 
problem of idle  speed 

control  for  an  automotive  en- 
gine. The  control objective is 
to  maintain  optimal  engine 
speed  despite  the  changlng 
engine  load which  acts  as  a 
disturbance.  We  study  the 
p rob lem  us ing  a pheno-  Dimitry Gorinevsky and Lee A. Feldkamp 
menological  modei of an 
idling automotive  engine known as  the  Ford model.  The  system 
is highly nonlinear and includes  delays in the control loop.  The 
problem was  previously considered by a number of authors,  e.$.> 
[l. 21, 17, 191. and can be  considered as somewhat of a bench- 
mark problem for the design of advanced powertrain  controllers. 

Idle  speed control is an example of a disturbance rejection 
problem that  contains  several  aspects commonly  found in real- 
world  control applications. An engine at idle is typically well 
away  from its  most  fayorable  region of operation and exhibits 

significant  nonlinearities. Con- 
trol of such a system is compli- 
cated by time delays of both 
phyical (the  time between the 
induction and power strokes) 
and  computational origin. In 
the  model used here, there are 
tw-o control variables, andthese 
differ in both their range of ef- 
fectiL-eness and in their  tempo- 

ral  characteristics; spark advance  is fast-acting but limited in  its 
effect. while  throttle has a large  rang6  but a slower  effect which 
results both from the dynamics of filling  the intake manifold and 
from the induction-power  delay. The spark variable also has a 
maximum zffective value, Le.. a value beyond  n-hich  it  has  an 
effect opposite to that  expected. 

These features make the problem very complicated and jus- 
tify development of nontraditional  nonlinear controllers.  In [21] 
a nonlinear fuzzy  logic feedback controller u-as developed for a 
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Fig. I .  Schemarics of the engine model. 

simplified  engine model  without  delays.  In [17], a nonlinear 
high-performance feedback controller  based on a  recurrent  neu- 
ral  network  was  demonstrated for the model  including delays. 

In [17]. disturbances in the form of changing torque load were 
regarded as unknown; the controller was required to react to  the 
effect of such disturbances. (Though not discussed, providing dis- 
turbance information to  the controller would have improved the 
performance considerably.) Furthermore, the procedure for  the 
neural network training described in [17] is not intended to be 
employed for in-use controller adaptation: rather it would be used 
in the development process to produce a fixed-weight controller. In 
spite of the lack of explicit adaptation. the recurrent networks 
employed exhibit considerable robustness to plant variations. A 
method to exploit this tendency was presented in [3]. 

This  article  describes a nonlinear adaptive feedforward  con- 
troller for compensation of external  load  disturbances in the idle 
speed  control of an  automotive  engine.  The controller is based 
on  a Radial Basis  Function (RBF) network  approximation of 
certain  input-output  mappings  describing  the  system.  An  under- 
lying  assumption  used in the  controller  design is that  the  external 
engine  load is  known  to the  controller. In particular,  that might 
be achieved by putting an appropriate  torque  sensor in the 
powertrain or  using other  available  information. 

In general, load disturbances of an idling engine,  can be 
categorized in terms of whether. for a particular system design, 
they are (a) unanticipated. (b) anticipated but uncertain in mag- 
nitude or timing, or  (cj anticipated and approximately known  (or 
constant) in magnitude and timing.  Clearly, a change of system 
design can convert some disturbances in category  (a) to (b) or 
(c),  and some in (b) to (c).  Here  are  examples, taken from our 
own  experimental  work  on a specific  vehicle  and  reported in [ 181: 

(a) 
Power  window  activation 
Cigarette  lighter  (or other minor  electrical load) 
Air conditioning  turning off 
Rear  window  defroster 
Initial power steering  activation, Le.; small  steering  wheel 
motion. 
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(b) 
Large  power  steering  activation.  A  sensor flags steering 
wheel motion  beyond  a  certain  point,  but  magnitude  of  load 
can vary considerably. 

( c) 
0 Air conditioning turning on. A flag  from  engine control unit 

anticipates  activation of the  air  conditioning.  but some 
uncertainty in  magnitude  and timing of the  load change 
exists. 
Shifts  between NEUTRAL and DRIVE 

In this  article  we do not distiguish  between  the above catego- 
ries of the  load  disturbance  and assume  more prior  information 
than is typically  provided in current  production  vehicles. We 
demonstrate how this  information on the  external engine  load 
may be used to advantage by a  nonlinear  feedforward  controller. 

The proposed  controller  uses  an RBF network  for computing 
the required  feedforward  control  action. The control  action  (con- 
trol  program) is a  sequence of the  control inputs needed to ensure 
a smooth  transition of the  engine  into a new regime as the external 
load changes.  Such a program ensuring optimal quality of the 
transient  processes by necessity  depends  on  the engine state at 
the  time  when the transition  starts, as well as  the new, changed, 
engine  load.  The RBF network  used in  the controller approxi- 
mates the dependence of the  feedforward  program on the engine 
state  and the  disturbance. 

The  network  has a large number of outputs defining  individ- 
ual steps of the feedforward  control  sequence. In  other words, 
the nonlinear  mapping  that is approximated by the RBF  network 
represents a nonlinear vecrorfield. It is known  that RBF net- 
works are especially well suited  for approximation of  vector 
fields compared to  other  architectures [5 ,  131. 

The proposed  controller is based on the  optimization and 
approximation algorithms  that are discussed in more  detail in the 
papers [7, 8, 11, 12, 91 in application to a  few  other  control 
problems.  It  acts in an open-loop  manner  between the  changes 
of  the  engine load disturbance  and  can be considered as a 
nonlinear  sampled-data  (generalized  sample-hold)  controller.  It 
is necessary to  emphasize that the presented  simulation is but an 
example of the  proposed approach application. The  same  ap- 
proach  using  neural  network computation of the optimal  feed- 
forward  control  program  might be applied to other  problems of 
powertrain control. 

Problem Statement 

Control  Problem 
Let us consider a  Ford dynamic model of an idling  automotive 

engine  as studied in [l, 17; 211. The  model  is schematically 
shown in Fig.  1 and it  describes  a 1.6 litre,  +cylinder  fuel-in- 
jected  engine. 

The system has a very nonlinear  dynamics  with two states: P ,  
the intake manifold  pressure. and N .  the engine speed (in rpm). 
There are two inputs  to  the  system:  the  throttle angle 8 and  the 
spark  advance 6. 

The  model used in this  article, for convenience,  lumps  the idle 
speed  control valke in with the overall engine throttle. In practice, 
the  driver-controlled  throttle is usually  closed at idle, and airflou- 
is controlled by a  bypass  air  valve. For  example, in the  test 
vehicle used in [ 181, control  signal  was a duty cycle for the  valve. 
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This control  does  have  substantial  authority,  easily enough  to 
propel the vehicle  at low speed.  The  dynamics of the valve are 
benign and are neglected. 

The  model used in simulation  follows the paper [17] and,  in 
contrast to the model  considered in [X] ,  includes the  delay  in 
the  control loop.  For the manifold pressure P expressed in kPa 
and  the engine  speed N expressed in rpm,  the  model  is given by Feedforward 

two differential equations I 

b = 42.40(ma, -ha,), 

= S6.26(T - TL).  

The right-hand-side  expressions in (1) are  defined by the input Fig. 2. Controlproblem arrangement. 
and  state  variables 8.6. P ,  N. and  the  external  disturbance torque 
d is as follows: controller  with asynchronous  sampliug that is activated at the 

instant of the  load change.  The transient  process occurring after 
&,, =(1+0.9070( t -~) )+o .o998e~( t -z jg(~j ,  the  engine  load  change,  depends both on the new load d and on 

for P < 50.6625 the initial conditions P and N at  the  time of the load  change. M7e i' g ( P )  = collect  the data d,  P, and N into the information vector p ,  
[0.019~(101.32P- P')''' for P 2 50.6625 

I ~ I , , ( ,  =-0.5968~10~'N-0.13?6P+0.5341~10~'1VP-l.'i57~10~~1VP~, p = [ P N d l T  13) 

mao = I (IlOh'), 

~=-;9.22-3.2502~~1OSn~, , -0 .01126' j t - tS)+0.6356(t~rd) .  

+~0.0216+0.675~10~~6j r - r , ) jN(2~/60)-0 .102~10~3.~r '~2ni60)2 ,  

T, = (N 1265.17)' + d ,  

.?,=5+15!N. 

(2) 

where the throttle angle 0 and  spark advance 8 are in degrees, 
with ranges 5 to 25 and 10 to 45 respectively:  the  external engine 
load torque disturbance d is in Nm with the  range of 0 to 61. The 
expressions (2) were obtained phenomenologically by fitting the 
experimental  data.  The  mriables &i and ma, refer  to the  mass 
air flows  into  and out of the  manifold. nlnO is the  air mass  in the 
cylinder, T,  is the  torque  developed by the engine,  and Tr is the 
load torque. 

Dependencies of the  variables  on the time t are not  shown 
explicitly in ( 2 ) .  except fol- the control inputs 0 and 6 that are 
delayed. The delay  of  the  digital  controller is 'I = 20 ms. and T& 
is a deadtime (in  sec)  incorporating  the  controller delay T and  a 
quarter  engine revolution  delay  needed for the  throttle change to 
take effect on  the cylinder  pressure. More  discussion of the 
engine dynamics  model ( l ) ,  ( 2 )  can  be  found  in the  paper [17]. 

The cxternal  load cl of the  engine  acts  as  a disturbance. Herein, 
it is  assumed that the load is constant most of the  time, but may 
change values  step-wise at  some instants.  It is further assumed 
that rhe load change is immediately  known to  the  controller. The 
control goal is to ensure that once the load changes, rhe control 
inputs are changed  in such a way  that after  a short transient 
process the  engine settles in a  regime  with the desired  speed A J  = 
750 rpm.  The transient  processes  should be  smooth, fast, and not 
exhibit excessive  overshoot. Stabilization of  the manifold pres- 
sure P is  not required. 

The  layout of  the  control system  is  shown  in  Fig. 2. The 
feedforward  controller we design is essentially a sampled-data 

As shown in Fig. 2. the  vector p is input to the  controller. The 
controller  output is a sequence of the  control  inputs 0 and 6. The 
output  sequence  should  be  chosen to compensate  for the  effect 
of the  disturbance and provide  for good quality of the transient 
process,  such as  little  oveshoot for a moderate  control effort. A 
more  formal inputloutput problem statement and performance 
index is are formulated  in  the next  subsection. 

A feedforward  that  ensures the desired  transient  processes is 
sought as  a  zero-order sample hold function  (see  Fig. 3). The 
feedforward control is initiated at time t d  of the load disturbance 
change. After changing a  few  values,  the control inputs  are kept 
constant  till  the  next change of the engine load  occurs. Uie 
consider the  timing of the control input change-i.e., durations 
of the  zero-order  holds of the control values-to be  predefined. 
The  schedule of changing the  feedforward control  values could 
be  chosen  subject to  the  achievable sampling period of the  digital 
controller, information processing  and  cylinder  firing delays,  and 
transient  process  optimization  requirements. U'ith this schedule 
given, for  each transient  process th2 feedforward control  inputs 
are defined as functions of time by a sequence of their sampled 
values 0, and 8,. Let us collect these  sampled values of the control 
in a vector denoted by U ,  

where IVL- = 2n,, and 8- and F* are nominal  values on the throttle 
and spark advance, respectively.  It is  assumed that  the  last  values 
in the control sequence, On, and t j n U  , are applied at time t d  i Tc 

and these  values of the throttle and  spark advance  are maintained 
till  the time of the  next load  disturbance  change.  The duration Tc 
of the  feedforward control  transient can  be  determined  empiri- 
cally to be about the  desired  duration of the transient  process. 

After each application of disturbance  (change of rhe engine 
load),  the  transient  process in the system  can  be  described 
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Fig. 3. Conceptltal design of the controller 

through a vector Y of the sampled deviation of the  system 
variables from the  steady  state. 

where N y =  2n,, ny is the number of input samples, zv is the output 
sampling  period, td  is time of the  load change  and beginning of 
the tramient process, P. = 35 kPa,  and N-  = 750 rpm are the 
nominal values of the  engine state  variables. We further  call Y 
the output  vector. 

Let  us denote by the  duration of the output  sampling 
interval in (5) .  = (rz? + 1 ) ~ ;  and Tf> Tc. When  designing the 
sampled-data  feedforward  controller, we assume that  the  interval 
between  the  changes of the load  disturbance d is always greater 
than Tf. 

In addition  to  the  feedforward  control sequence defined by 
the  vector U. the  transient  process  described by the output vector 
Y depends  on the system  state variables P and N at  the  time of 
the load  change, as  well as on the new, changed  value of the load 
d. We put these  values together into the information vector p = 
[P N 6] '. For the  output  vector, we  can write 

wherefi., .) is a  smooth mapping, since  the  right-hand  sides of 
the  system dynamics equations  are  smooth. In (6) we assume that 
the information  vectorp = [P NdTbelongs  to a compact domain 
P. This  domain  Pcould be defined from the  practical bounds on 
the system variables P. N ,  and d. 

Optimization  Problem 
Ideally, the  feedforward  control  should  provide  for  small 

deviations in the  transient  process,  thus, U should be  chosen so 
that components of  the  vector Y are  small.  This should  be 
achieved by means of  possibly small control  effort.  Thus.  the 
control objective could be described  as minimization of a  quad- 
ratic performance index of the form 

J(Y,  U)= Y T Q  Y +  U T R  U ,  (7) 

where Q E 3iNy2'vy and R E  %'T"'yL are  positive  definite height- 
ing matrices. 

For  a fixedp, the problem 161, (7) is a  classical  nonlinear  least 
square  minimization  problem.  Such  problems are typically 
solved  using  iterative  minimization methods, for  instance,  the 

Levenberg-Marquardt method. An optimal vector Lr = U-- can be 
found  as a  result of this  minimization. The minimization  could 
be performed  numerically by using  a computer model of the 
engine  embedded  in the mapping (6). In this  article, however. we 
choose a  different approach  and perform  the  optimization on- 
line, with the system in the iteration  loop. In that  case, each 
evaluation of the function (6) corresponds  to an input/output 
experiment  with  the system. 

In the  simplest case, performing  the  minimization on-line, 
with  the  system in the loop,  can  be explained  as follows. At each 
minimization  step.  initial  conditions of the  system P and N 
should  be reproduced and the same disturbance d should  be 
applied.  At  each minimization  step,  a  feedforward  control  se- 
quence U (4) would be applied to the system and the  transient 
process  described by the  vector Y ( 5 )  obtained.  A version of  the 
standard  Levenberg-Marquardt  algorithm  applicable to such on- 
line optimization is described later. 

Unfortunately, the above outlined  on-line Optimization ap- 
proach  would not completely solve the  stated  practical  control 
problem  for two  reasons.  First,  the optimal  input Us will be 
different  for each value of the information  vector p .  Second, it 
would  not be practical to  demand  that several mimimization 
iterations  would be  done with  reproduced  initial conditions  and 
disturbance  (that  is,p).  In  doing the  optimization  on-line we have 
to count on the vector p changing from  step  to  step of the 
minimization in a  largely  uncontrollable way. For the idle  speed 
control problem  stated  above, the  last  component of the infor- 
mation vector is a new disturbance  value, while the  first two (P 
and N) are the  steady-state  values  defined by the  preceding 
disturbance load.  The  changing  information  vectorp effectively 
plays a role of the  disturbance in the  control  (optimization) 
process defined by (6), (7). 

The control problem  we consider in this  article is to find an 
entire mapping U+), Le.,  the  entire dependence of the optimi- 
zation problem  solution U- onp,  rather  than  a  single  value of U* 
for  giveny.  The mapping U*@) will  then define a  control law  for 
the  disturbance compensation.  This control  law  should be used 
on-line in real  time:  therefore  we  are looking  for a  computation- 
ally  efficient way for finding U+). 

Controller Architecture 
An efficient  way  to compute U*(p) is to use  a  neural network 

or  other approximation technique, which will define  the  mapping 
U*@) through  a  limited number of approximation  parameters 
(network weights).  In this  article,  we use a  Radial Basis Function 
(RBF) network for  the purpose of such approximation. 

The controller we design  is illustrated in  Fig. 3. The controller 
approximates  the  nonlinear  vector-valued mapping U@) with 
help of an REF network. Thus, the  controller  design  consists in 
choosing  the  matrix u of the RBF network  weights to achieve 
an  optimal quality of the  transient processes. Following  the 
neural network terminology,  we  can  call  the  optimization  process 
of tuning  the RBF network  weights  the  training  process. If this 
training is performed  on-line,  the  controller is an  adaptive one. 

For the system  in question, the information vectorp is chang- 
ing from step to step of the process in search of the optimal 
approximation for U*. We obtain  an  approximation of U+) as 
a  result  of  an  on-line  iterative nonlinear least square  parametric 
optimization procedure proposed in [8]. This procedure  can be 
considered  as  an adaptive  controller for compensation of the 
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disturbancep  in the system (6). The controller is an adaptive one, 
as it  assumes the system (6) to be initially unknown and estimates 
certain  optimization gains  in the course of the iterations.  The 
procedure of [8] can be  considered as an extension of the  Leven- 
berg-Marquardt  method and it updates  the  weights of the RBF 
network approximation for U*@j as shown  in Fig. 4. At  each  step 
of  the  parametric  optimization  process,  the  controller computes 
a  vector U given  the  vector p .  Then; the  feedforward  defined by 
U is  applied to  the system and: based  on  the  obtained  vector Y ,  
the controller updates  the  available  approximation of Us@).  The 
parametric  optimization procedure of [8] is  explained  in  the next 
section for  completeness. 

On-Line Parametric  Nonlinear 
Least Square  Optimization 

This section formulates  the algorithm for on-line parametric 
nonlinear least  square optimization, m2hich we use to sake the 
formulated  problem. This optimization  algorithm,  formulated 
and  studied  analytically in [8], can  be  considered  (and applied) 
as an adaptive  algorithm for nonlinear system  control.  The 
derivation  below  uses  a somewhat  more  general notation  than 
[8]. This  derivation  mostly  follows [8] and  is included  for com- 
pleteness. 

In the beginning of this  section we briefly  discuss  a  classical 
Levenberg-hlarquardt algorithm  which could  be applicable  to 
on-line  optimization of the  control input in the absence of the 
dependence on the  information L'ectorp in (6). This algorithm is 
a  basis for  the main  algorithm  applied in this  article  which is 
introduced at  the  end of this section. 

On-Line Optimization of Input U for Fixed p 
Let us first consider  the information  vector p to  be fixed. In 

that  case. Lrb can  be  found as a solution of a standard  nonlinear 
least square minimization problem (7) ,  where Y=f(L') (we have 
removed  the second  argument  in (6)). This  problem  is well 
known and studied and a few  iterative  algorithms  exist for  finding 
its solution  numerically. Let us briefly consider a  modification 
of the Levenberg-Marquardt  algorithm for nonlinear least  square 
optimization, which  has very well recommended itself for solu- 
tion of such problems.  This  algorithm  is a  basis for the  parametric 
optimization algorithm of [8] that we apply in this  article and 
understanding it is necessary  to  understand our  main  algorithm. 

Let us first assume that the gradient  matrix G = -  of the Jf 
a u 

mapping Y =f(C? can be obtained for a given  argument L'. 
Let f i )  and 9) =,f(u'"') be  input  and output  vector  obtained 

at iteration 1 2 .  The Levenberg-Marqual-dt method iterates  the 
minlmizing input guess as (see [2])  

L7('"') = U(') - R + 1,: kn + G I ( f l ) ~ ~ ~ ~ i ~ ) ' , - l [ R ~ , ( ~ )  + G ( " ) r Q y j 4 ;  
i /I' 

(8) 

where ,un 2 0 is a step length  parameter, I.yv is a Nu x NL- unity 

matrix! Q and R result from (7)> and G'"' = G(L'n'). 
The motivation  for the  update (8) is as follom-s. Let us consider 

an  affine model of the mapping Y=f(U) of the  form 

22 

P 

i 
I I I I 
Fig. 4. Orz-line training of the rzemoi-k (adaptive control). 

Let us also demand that  the minimization  step length  does not 
exceed a  value I n  > 0, so that 

L+l+ l \ l  - - p + Sin) : 1 1  p , /  < 1, (10) 

By solving (7) and (IO) with  respect  to Ld'zT1) and using  the 
Lagrange multiplier method to  satisfy  constraint 110) we come 
to (8). The Lagrange multiplier u n  is nonnegative  and can  be 
computed  once G and allowed step  length 1, are given.  Clearly, 
dependence of blL on 1' is monotone  nonincreasing. In pracrice, 
instead of computing p. from 1,: usually ,u,; itself is made a 
parameter of choice. 

For the problem in hand, the gradient G is  not available and 
we  can only estimare  values of the function Y =f(m itself. In that 
case, a  natural  approach is to employ a secant  estimation of the 
gradient. To this end,  one  can consider  an  affine model (9j of the 
mapping Y =f(rj)  and try to update  estimates of parameters of 
this model  from  the available  inpuv'output measurements. 

The most commonly used  method for estimating  the  gradient 
is Broyden secant clpdate. Let G@) be an estimate of the gradient 
at the step n. Denote by the  variation  of input,  and by d n )  the 
corresponding  variation of the output  at the previous  minimiza- 
tion  step. For a  small step length II s(~) I ; ,  the  gradient should 
satisfy 

The Broyden update rule can be considered as an application 
of the  projection  estimation  algorithm [6],  which  is very popular 
in adaptive control  and signal  processing applications.  The Broy- 
den  update  is used in conjunction  with  the input  update (8) and 
has the  form 

where c > 0 is a  scalar parameter  used to avoid  division by zero. 
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Approximating Parametric  Optimum 
Under  reasonable  assumptions  (studied in [SI), the mapping 

U*(p) is smooth.  Therefore,  this mapping could be approximated 
with the help of an  expansion  with  respect to certain basis 
functions {hj(p) : P- 9?] as 

where U*j  are the  expansion  weights, p E T, and 

6 U ( p )  E '3*'L is the  approximation error. For L'-(.) with  a  uni- 
formly bounded  derivative  on  the  approximation  error  bound 
S u  can be  made arbitrarily small provided the expansion  order 
A'* is sufficiently  large.  For  a  polynonlial  expansion,  this is 
ensured by a  multidimensional  version of the Weierstrass  theo- 
rem. In this  article,  we  use another  type of  expansion, for which 
this is valid: a radial basis function  expansion. 

Let us consider expansion (13) with  the  basis  functions Iz,(p) 
of the form hi@) = h(p-Q(i)), where the  function h(r)  depends on 
the  radius II I 11,  and Q' j '  E ' d T P  are  given  vectors. Such  expan- 
sions  are  known under the name of RBF networks. One  can find 
further  details and references in [4. 14, 15, 161. Most  commonly 
used radial  functions  are  Gaussian. h ( p )  = exp(-llpl12 / r i ) ,  and 

reverse  Hardy  multiquadrics, h ( p )  = (1 +llp1I2 / r ; )  , For these 

functions,  the  expansion (13) is local, Le., the  radial  functions 
decay away from their centers.  This  is very advantageous  for 
many applications. Parameter ro in these  functions  has a meaning 
of  the function width and  is  chosen to be of the order of the  mean 
distance between the RBF centers in the  domain P. Usually,  the 
radial function width parameter I n  is  chosen  to be about an 
average distance  between the  neighboring  node  centers. 

To find  the  parametric optimum (13), we neglect  the expan- 
sion residual 6U in (13). In that  case,  the  parametric optimum is 
defined by a  set of the RBF network  weights U*j, which we 
further  collect in a single weight  matrix of the form 

- 1 / 2  

There are a few advantages in using RBF network  approxi- 
mation in the  described  problem.  compared  to  other parametric 
approximation  schemes, in particular, a multilayered  sigmoidal 
neural  network.  First,  an RBF network  with  fixed centers is linear 
in its weights,  which  makes au on-line  training of such  network 
a  special  case of classical  adaptive  control  with  linearly  para- 
metrized  nonlinearities. Second,  for the vector-valued output,  the 
number of the  nonlinear computations  in the RBF network 
approximation is  independent of the  output  dimension [5 ,  131. 
Thus, RBF networks are especially  convenient for  approxima- 
tion of the  vector fields, such  as U(p). 

Affine RBF Network Model of the System Mapping 
The on-line  parametric  optimization  algorithm of [SI w e  

derive  can be considered as an  extension of the  Levenberg-Mar- 
quardt algorithm. Similarly to a standard  derivation of the  Leven- 
berg-Marquardt algorithm given  earlier,  our  derivation  here  will 

be based  on an affine model (9) of the mapping (6). Such affine 
model  can be written in the form 

where G ( p )  and ? ( p )  are (smooth) matrix and vector  functions 
ofp.  For a fixed information  vectorp. the model (15) is affine in 
U, at the same time  the model  depends 011 p in a  nonlinear way. 

Let us introduce  functions: 

Similarly to (13), let us use RBF networks of the same  form 
for  approximation  of  the  functions Z*(p), and G*(p) 

?J, 

1x1 (17) 
zz(p) = C z * j h j  + S ~ ( P ) ,  ~ ~ ~ Z Z ( P ) I I  s,, P E *, 

where Ztj E and GXj E %'vysNr are  the  expansion  weights. 

The functions Z-(,) and G<(.)  have  derivatives, which are uni- 
formly  bounded on T provided  that  the  derivatives of U:e(.) are 
bounded. Hence. 62 and 8~ can  be  made small for high-order Na 
of the expansions (17), (18). 

We are now in position  to explain the  basic  algorithm of [8] 
for the  parametric NLS (Nonlinear  Least Square) minimization, 
which is the main algorithm  applied in this  article.  When  deriving 
the  algorithm.  we assume that the  approximation  errors 8 ~ ,  Fz, 
and 6~ are zero. These errors  are  taken into account in the 
algorithm  convergence  analysis in [8]. In the  absence of the 
approximation  error, (1 6) can  be represented in the  linear  regres- 
sion form 

Similarly  to (20). we can present (17) and (18) in the form of 
regressions  linear in  the weights Z*, and G-j. With these regres- 
sion representations (17) and (18) in mind.  the  model  of the  form 
(15) can be represented as the following  regression: 
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vi-here @ denotes the Kronecker (direct) product of matrices and 
c > 0 is a  scaiar  scaling  parameter. For a fixed parameter p ,  the 
model (21) has  the  form (15j. By substituting 0 into (21), one 
obtains an affine model of the form (IS), where 

60 

IVe assume  that for 0 =e*, the  affine model (21) gives exactly- 
the  linearization of the  mapping (6) in the optimum (17), (18). 
In  other words, 

Basic Algorithm 
The  parametric NLS optimization algorithm of [SI iteratively 

updates  a guess of the  vector re. This algorithm is a generaliaa- 
tion of the classical  Levenberg-Marquardt  algorithm that is 
widely  used for a  standard  (not  parametric) NLS minimization. 

Our  goal is to build an  approximarion of the form (19) to the 
optimal  input  mapping U+). We assume  that a sequence of the 

information vectors p(k'  is given. Let $) be the  value of 

the  input parameter matrix in (19) at the step k .  Then, in accord- 

ance with (19): the  input  vector ai step k is d k )  = $ k ' @ ( p ' k ) ) .  

Let us denote by 

I I,, 

the  input b': which would be obtained at step k + 1 if the  matrix 
c'k) is not updated. Let us denote  the output  vector at step k by 

Let  us  demand that.  similarly  to  the standard Levenherg-Mar- 
yw =flLJ'k'. p'"), 

quardt  method. the  minimization step should be  bounded  as 

Lf,k+l! = U ' k + ' l B  + p 1 ,  / I  S(k) ; /  < li; , (26) 

The output of the  model (21) at the step k + 1 is 

Fig. 5. System response  to the  disturbarlce vvith the trained 
,feeedfomard controller: si;nulation results. 

where pk is a Lagrange multiplier that is introduced  to comnpl!- 
with  the  step boundedness  condition II Sk II 5 Zk. As fortheclassical 
Levenberg-Marquardt method explained  earlier, the dependence 
of p k  on lk  is monotonz nonincreasing and instead of first empiri- 
cally  choosing Ik and  then computing  the Lagrange  multiplier,  it 
is advisable to make p k  itself a  parameter of choice. 

Note  that  according  to (19) and (26) 

By finding a leasr square  solution to (30) for the FLk-" - 
and substituting (28) for .(IC:,. we obtain a step of the proposed 
basic parametric S L S  optimization method: 
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where &(p)  is defined by (23); b(k) ,  by (29); f i i k t 1 I k )  ~ by (25), 

and (20); and ? ( k + l ' k )  is defined in accordance  with (21) as 
p + l l k )  - - ( k )  ('Tllk) - 0 q p  , u ). 

The affine model (15) can  be written in the  regression form 
(27) .  Therefore, at  each  step of our parametric NLS algorithm, 
we  can apply the projection  update  to estimation of the parameter 
matrix 0. This  update  has  the  form 

where 6(k' = ? 6 ( ~ ( ~ ) ,  d k ' )  and could be considered as a gener- 

alization of the Broyden  update (12). In (32), a(') is a  scalar 
deadzone parameter  that is introduced in the usual way to com- 
pensate for the influence of  the  mismodeling error. The  deadzone 
parameter a(" is  zero if the prediction  error Y i k )  - 6(k)&k! is 
within  the  mismodeling  bounds, and unity  otherwise. 

The choice of the deadzone  parameter d k )  in (32)> as well as 
a proof  of  the  algorithm  convergence. are considered in [SI. To 
ensure  convergence of the  estimation algorithm, a  small  self-ex- 
citation  signal is added  to  the computed control dk) before  it  is 
applied  to  the system. This  self-excitation is needed to  make the 
regressor  vector sequence  in (32) persistently  exciting as dis- 
cussed in  [7,8]. 

'4lgorithm Convergence 
Equations (20), (22), (31),  and (32) constititute  the  basic 

algorithm  for on-line parametric NLS optimization  first pro- 
posed in [8]. An  analysis of the  algorithm  convergence is pre- 
sented  in [SI. Since  the  proposed  adaptive  algorithm  is, 
essentially. anonlinear  optimization algorithm. it is only  possible 
to prove local convergence of the  algorithm. The locality condi- 
tion  here  means that the  initial approximation  to the  nonlinear 
feedforward  control mapping (19), (20), should be sufficiently 
close to  the optimum.  The  domain of the  algorithm  convergence 
theoretically  ensured in [8] depends on the degree of the system 
nonlinearity (second derivative bound). 

The local  convergence  result  of [8] demonstrates  that  the 
advocated  algorithm is not self-contradictory.  However.  its prac- 
tical  usefulness depends on its  performance in the  particular 
application and  is studied in the next  section by means of 
simulation. 

Simulation Results 
In simulation,  both  feedforward  controller  outputs  (throttle 

and spark  advance) in  each transient  process  are  assumed to be 
a sequence of three  steps. At each  step, the  control  outputs  are 
constant.  The first  two  steps  have  duration of 80 ms and the  third 
value ofthe control  variables is maintained  till  the next transient 
starts. Thus,  the dimension of the  RBF network output vector U 
is  six. To obtain  the  vector Y in (51, variables P and N were 
sampled ny = 25 times each with  an  interval of 40 ms,  starting 70 
ms  after  the change of the disturbance. Thus.  the  dimension of 
the  vector Y is 50. 

For training of the  RBF  network, the  extended  Levenberg- 
Marquardt  algorithm  for  on-line parametric  optimization de- 
scribed in the  previous  section is used. The algorithm minimizes 

a mean  square  deviation of the  engine  speed  Nfrom  its  desired 
steady  state  value of 750 rpm in the transient  process.  The 
minimization (RBF network  training)  is  performed  while  the 
engine  load  undergoes  step-wise  changes, Le.. during  the 
system  operation  as  shown  in  Fig. 4. In  Fig. 4, the information 
vector p at  each  step  is  defined  by  the  system  steady  state  at 
the  previous  step,  which  can  be  monitored  through  the  com- 
ponents of the  output  vector Y at  the  previous  step.  Thus,  the 
closed-loop  system  has  two  feedback  loops:  the  sampled 
feedback  loop  shown  in  Fig. 2: and  the  adaptation  feedback 
loop  for  tuning  the  RBF  network  weights  as  shown  in  Fig. 4. 
The  algorithm  used  can  be  considered  as a nonlinear  adaptive 
algorithm of the  feedforward  control. 

For  the  simulation,  the  performance index (7) was chosen so 
that 

n 

j=1 j=1 j=1 

where 60 = 0. This choice of the performance  index  closely 
approximates one  made  in [ 171 and was empirically  found  to 
provide  good  quality of the transient  processes.  (See  [17]  for 
more discussion.) 

The  simulations use  an RBF  network with 45 nodes  allocated 
on a  regular grid in the network input space (information  vector 
p )  with  five gradations in the  disturbance d and  three gradations 
in  each P and N. The  range of  the input variables  covered by the 
grid  was 0 4 d 4 60 Nm for the disturbance load; 22.5 kPa I P 5 
97.5 kPa, for  the manifold  pressure; and 500 rpm I N 5 2,000 
rpm  for the engine  speed. After 3,000 of the  simulated  transient 
processes a good  quality  feedforward  compensation  was 
achieved. 

Though typical load disturbance in  idle speed engine control 
are 10-20 Nm: the  wider load  range assumed in  our simulation 
is meant to  represent combinations of individual  loads, e.g.? 
simultaneous air  conditioner compressor  engagement  and  power 
steering lockup,  or air conditioner  engagement plus  a  NEU- 
TRAL to DRIVE shift. Experience  shows  that in vehicle  studies 
such  combination  loads are fully capable of stalling  a  poorly 
controlled engine. 

The simulation results  for a  few  transient  processes  with a 
trained RBF network  are shown in Fig. 5.  The transient  process 
quality is quite  good despite the large amplitude of the distur- 
bance  load  change.  Maximal transient  process  amplitude  does 
not  exceed 100 rpm  and the  maximal  steady  state  error  does not 
exceed 20 rpm. This quality is achieved  with an RBF network of 
a  relatively small size  and can be further improved by increasing 
the size of the network to make the approximation of the  mapping 
U(p) more accurate.  For  comparison,  for the  purely  feedback 
controller  designed in [17], the maximal transient  process  error 
exceeds 300 rpm. One should,  however,  understand  that  unlike 
[17].  the  algorithm  proposed in this  article  uses information on 
the disturbances. 

High quality of the  transient  processes  was  obtained  despite 
the 40 rns delay in the  control loop.  Such a  delay  normally makes 
design of feedback controller  for  the  problem in hand much  more 
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difficult. At the same time: for the proposed  approach, the delay 
does not  make the  controller  performance much  worse, nor  the 
controller  design  more  complicated. One reason for this is use of 
a  feedforward controller;  hence, the delay  does  not illfluence 
feedback  loop stabilitJ-. Another reason of the  high efficiency is 
that  the input dimension of the RBF netu-ork  computing the 
feedforward  control is that of the information  vector depends 
only  on  the  number of the  wriables that define a steady  state of 
the  system,  which is much  smaller  than that of the  state  vector 
for  the  system with delays. 

Conclusions 
The  problem of feedforward  compensation of load  distur- 

bances in  idle  speed control of automotive  engine  by  using an 
adaptive RBF network approximation  has been studied.  The 
conclusions  learned  from this  study  are  as follows. 

e The  completed  simulations  shows  that the  proposed  ap- 
proach  works well in the  idle  speed control problem. 

m The  considered results  are  obtained  with  a  purely feedfor- 
ward control scheme. In practice,  this scheme  should  be 
used  together  with an appropriate  feedback controller. e.g., 
one  considered in [17]. Such a combination will  both 
provide for  the  compensation of unknown disturbances and 
improve transient  process  quality compared  to purely feed- 
back  control. 
For application of the approach, the engine  load disturbance 
should be known.  This can be achieved either  bp the  direct 
measurement of the load, or by the use of an  appropriate 
nonlinear state observer. 
The proposed  approach  uses a relatively simple and accu- 
rate neural  network architecture,  which can  be trained 
on-line, adaptively. Furthermore,  the  complexity of the 
proposed neural  network controller should not he influ- 
enced by the  introduction of the delays in the system  model. 
In addition  to the  idle speed  control  problem,  the considered 
approach  might  be  also useful in  other powertrain  control 
problems m-here compensation of knou-n  disturbances  is 
required.  For instance,  it might  be used in  compensation of 
the engine  load  change caused by the gear  shift. 
The proposed approach  could  be  extended for the  case of 
load  disturbances  which  differ from  constant on a  certain 
interval. Such extensions  are  currently  being studied. 
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