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Abstract

The paper addresses two interrelated problems in cross-directional (CD) control of papermaking

processes. The �rst problem is explaining paper property streaks observed in many CD control

installations. The streaks usually correspond to the high-resolution error pro�le harmonics

with wavelength close to twice the actuator spacing. Typically, the streaks of paper weight or

moisture are very stable. A question, which often arises, is if the streaks can be compensated

by better tuning of the CD controller.

The second, related, problem addressed in this paper is how the achievable high-resolution

error pro�le and its spectrum depend on the CD controller tuning. The paper compares the

performances of a mapped controller and an optimal multivariable controller. It also describes

spectral characteristics of CD error pro�le around the Nyquist frequency. Applications of the

developed analysis methodology to a paper mill data where weight streaks are a problem are

demonstrated.
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1 Introduction

This paper considers some problems of cross-directional (CD) control of paper machines. Paper

machines produce a continuous web of the paper from a pulp stock. The paper, as it passes

through various parts of the machine, undergoes a number of various process changes. As a

result of these processes, a paper sheet with desired properties should be produced at the end of

the machine. The important paper properties include weight, moisture, thickness, smoothness,

and some others; they need to be maintained uniform and as desired in both the machine

direction (MD) and cross-direction (CD), i.e., along and across the direction of the paper web

motion, respectively. The goal of the CD control is to maintain 
at pro�les of the paper

properties across the web. These pro�les are measured by high-resolution scanners installed

on the machine and used by the CD control system for feedback. A typical paper machine is

illustrated in Figure 1.

The CD control is performed using CD actuators. Each CD actuator includes a set of

the identical actuators distributed (usually uniformly) across the sheet. Depending on the

application and the actuator type, there can be 20 to 300 individual actuator units in one CD

actuator. An example of an important CD actuator is the weight actuator, which adjusts the

stock distribution across the machine by changing the opening of di�erent sections of the slice

lip extrusion gap on the machine headbox. The CD control technology can be considered as

mature, since CD control systems with various levels of complexity and sophistication have been

in operation in many di�erent paper mills around world for more that a decade. Irrespective

of the machine type, CD actuator type, or control system brand, these systems on some of

the machines exhibit certain properties that are undesirable for the paper manufacturer. In

particular, in many installations the pro�le achieved with a CD control system and measured

by a scanner exhibits a regular periodic pattern of the paper property variations, which is

typically very stable for given installation of the CD controls. The periodic variations of the

CD pro�le physically correspond to streaks lasting along the paper web. The stable streaks in

paper weight and thickness are undesirable in paper making, since they are enhanced when the

paper is wound on the reel in the end of the paper machine. They are particularly troublesome

for the processes where the paper is used as a base stock for subsequent coating. What makes
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the streak problem especially intriguing is that the streaks often have periods close to twice the

CD actuator spacing.

The streaks have been attributed to hydrodynamic problems of the stock 
ow in the machine

[1, 16, 22], mechanical defects in the equipment [18, 19], control system problems, inadequacy of

the CD actuators and other reasons. Also di�erent vendors of CD controls have claimed various

advanced control and pro�le �ltering algorithms that presumably should reduce the streaks.

The goal of this paper is to present a simple CD control model and analysis that will help

to explain the periodic behavior of the CD actuator pro�le and understand theoretical limits

of the achievable CD control performance. In what follows, the analysis is complemented by

application examples for real paper machines. In current industry practice, analysis of the paper

machine data puts much emphasis on the spectral content of the steady-state CD measurement

pro�le around the spatial Nyquist frequency. The Nyquist frequency for an actuator system

corresponds to the 1
2
actuator frequency (a spatial period of twice the actuator spacing). It is

often argued that CD control is possible and should be attempted below and up to the Nyquist

frequency and is impossible beyond it. As the analysis of this paper shows, this statement is

not completely accurate.

The analysis of this paper is based on a linear model for CD control and uses the assumption

that the shape of CD response for each individual actuator is the same across the web. It is

acknowledged herein that such a model does not describe practical systems in an absolutely

accurate way, yet this is the type of the model which is explicitly or implicitly used in most of

theoretical reasoning regarding CD control design and performance analysis. The model with

an identical response shape has an adequate accuracy in most practical cases.

The paper employs both matrix analysis and spectral analysis techniques. The matrix anal-

ysis automatically takes into account edge e�ects and allows for accurate simulation. However,

matrix analysis tends to be less understandable for �eld technical personnel and provides less

qualitatively transparent results compared to spectral analysis. Frequency domain analysis is

a preferred tool, which is widely used in current engineering practice for CD control. At the

same time, an accurate frequency domain understanding of many e�ects related to CD control

mapping and actuator spatial frequency response cannot be found in published CD control
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literature. The only exception known to the authors is the recent paper [6], which considers

issues of CD control bandwidth and optimality closely relate to the topic of this study. In [6] a

CD pro�le of the process is considered as a function of a continuous CD coordinate, while this

paper considers a CD pro�le sampled along the CD coordinate as encountered in practical CD

control.

Section 4 of this paper contains a sampled-coordinate version of the optimality results

of [6]. By comparing our results and results of [6] one can see that the bandwidth limitations

associated with control of discrete and continuous CD pro�les di�er in a way that is reminiscent

of the bandwidth issues for continuous and discrete-time systems. In particular, in case of

sampled measurement (as used in industrial systems and studied in this paper) the frequency

aliasing phenomena for the measurement have to be taken into account. A study of the aliasing

phenomena is a subject of Section 5 of our paper.

Only optimal CD control is considered in [6]. Unlike that, our paper also considers a

"mapped" control approach that is predominantly used in the industrial CD control systems.

Sections 3, 4, and 5 of this paper analyze performance for such mapped CD controllers by

comparing it and relating it to the optimal controller performance. Our paper speci�cally

considers and analyses a practical problem of the CD pro�le streaks as it is related to the CD

control performance. Sections 5 and 6 of the paper provide discussion and real-life examples of

the streak problem, which is really important in the industry.

2 Model for CD pro�le control

Consider an array of na uniformly spaced CD actuators and denote by u a pro�le of the actuator

setpoints

u = [u1 u2 : : : una]
T 2 <na ; (1)

This paper studies a steady state of the CD control system that is achieved by maintain-

ing the actuator setpoints constant. We will assume that the measurement available to the

system is represented by a high-resolution CD pro�le obtained by sampling paper properties

at m = na �ma points uniformly spaced in CD, where ma is a number of high-resolution pro-
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�le measurements per CD actuator. In most practical cases, 3 � ma � 12. Denote by q a

high-resolution pro�le vector, measured before the CD control is engaged, i.e., for zero actuator

setpoints, u = 0. Denote by qd the target high-resolution pro�le. In most practical cases the

target pro�le is 
at, i.e., all components of qd are equal. Denote by p an initial high-resolution

pro�le error vector

p = [p1 p2 : : : pm]
T 2 <m ; m = nama ; (2)

Let us further denote by pu = q � qd a steady-state variation of the high-resolution pro�le

obtained for the actuator setpoint pro�le u, and by eu = p� pu the residual error of the high-

resolution pro�le. In accordance with the assumptions made above, variations of the actuator

setpoints and high-resolution pro�le are linearly related. Therefore, we can write

pu =
naX
j=1

ujg
j; (3)

where gj 2 <m are vectors describing shapes of a high-resolution pro�le response to individual

actuators. Equation (3) can be written in the matrix form as

pu = Gu ; (4)

G = [g1 : : : gna] 2 <m;na; (5)

where G is the system gain matrix. Columns of the matrix G are the actuator response shapes

gj. As mentioned above, we assume that responses of the actuators are of the same shape

and di�er only by shift in the CD coordinate, which we will denote by x. Each response gj is

obtained by sampling a continuous response function of the actuator at the scanner sampling

coordinates x = k. Thus, the components of the response gain vector gj have the form

gjk = b(k � 
j); k = 1; : : : ; m ; (6)

where 
j is the center of the response for the actuator k, and b(x) is a continuous response

function (the same for all actuators).

Most of the industrial CD controllers in use today are mapped controllers. Such controllers

map the high-resolution pro�le (2) into an actuator-resolution pro�le, which is called a control
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error pro�le. Each element of the control error pro�le v is subsequently used to compute moves

of a single respective actuator.

v = [v1 v2 : : : vna]
T 2 <na ; (7)

In one of the most sophisticated CD control systems on the market, the control error pro�le

(7) is obtained from the high-resolution error pro�le (2) by performing �ltering with a spatial

antialiasing window and/or weighted averaging of the high-resolution data across an actuator

zone. Both antialiasing and averaging are linear operations, which means that the control error

pro�le (7) is related to the high-resolution error pro�le (2) by a linear transformation. This

linear transformation can be presented in the matrix form as

v = CT eu ; C 2 <m;na; (8)

C = [c1 c2 : : : cna]; cj 2 <m;

where C is a mapping matrix or observation matrix and superscript T denotes matrix trans-

pose. The columns cj of the mapping matrix C contain weights with which high-resolution

measurements are summed up to obtain the control error pro�le values.

In general, it is possible to implement a mapping window of an arbitrary shape in the CD

control system. The mapping window vectors cj (8) de�ned by an antialiasing window and

averaging across the actuator zone are of the form

ck = [hB 
 zk]mB
; (9)

where hB is the antialiasing window of the width 1+2mB, z
k 2 <na is the window with elements

1
ma

and 0 that de�nes averaging across the actuator zone, and [�]mB
denotes truncation of the

mB elements on the both sides of the convolution pro�le.

By using (9) and neglecting edge e�ects, we can present entries of the mapping matrix C

in the following general form:

ckj = hk�ma(j�1); (10)

where the kernel mapping window hk is de�ned for �m � k � m and determines the design

of the mapping mechanism in the controller. Note that the described mapping method, di�ers
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signi�cantly from the common square-down methods used in other MIMO process control

problems such as described in [23, Chapter 8]. Mapping of the measurement error to actuators

is a standard practice in industrial CD control systems, e.g. see [17]. This is one reason

why published papers on CD control start from considering a square system model, which

corresponds to considering the mapped measurements [4, 2, 11, 15, 21, 27].

3 Matrix Analysis

In this section, we perform matrix analysis of the CD control performance limits. Such analysis

is based only on the property of linearity of the system and automatically takes into account

edge e�ects. Such analysis is valid even if the response shape varies across the paper sheet. We

�rst consider an optimal, minimum-variance CD controller, then compare the control quality

achievable with such controller and with a mapped controller.

The error pro�le eu = p � Gu is de�ned by the initial error pro�le p and the actuator

pro�le input u which is used to shape the error pro�le in a desirable way. The high-resolution

error pro�le has m = nama elements, while the actuator pro�le input u has only na elements.

Thus, performance of CD control in compensating high-resolution pro�le variation is inherently

limited.

The optimal actuator pro�le u
�
that minimizes the variation (mean square value) of the

error pro�le can be found by solving the following quadratic optimization problem

U
�
= argmin keuk

2; (11)

where eu is the error pro�le and k � k denotes the Euclidean norm of a vector.

By substituting eu = p�Gu into (11) and di�erentiating with respect to u, we can obtain

a solution to (11). The optimal actuator pro�le input u
�
and the high-resolution error pro�le

e
�
= p�Gu

�
with the minimal achievable variance have the form

u
�

= (GTG)�1GTp ; (12)

e
�

=
�
Im �G(GTG)�1GT

�
p ; (13)

where Im in a m�m unity matrix.
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If the matrix GTG is not invertible, a least-square optimal control input u can be found

by using a regularization technique [25], by minimizing a regularized performance index of the

form

U
�
= argmin[keuk

2 + �kuk2]; (14)

where � is a small positive parameter. The regularized problem solution has the form

u
�
= (�Ina +GTG)�1GTp ; (15)

and for small values of � is close to (12). We would like to note here that the regularized solution

(15) to the non-square multivariable problem (11) has the form similar to the quadratic-optimal

multivariable controller solution considered in [3, 5, 12, 13, 24].

A mapped CD controller strives to compensate for the control error pro�le deviation from

zero (7). As a result of this, control error pro�le is usually kept small and we will assume that

v = 0. To �nd the actuator pro�le input uM for the mapped controller providing zero control

error pro�le v = 0, let us substitute eu = p�pu into (8) and use (4) to obtain the high-resolution

error pro�le eM corresponding to the zero control pro�le of the mapped controller.

uM = (CTG)�1CTp ; (16)

eM =
�
Im �G(CTG)�1CT

�
p ; (17)

Note that the j-th column wj of the matrix CTG in (16), (17) can be found as wj = CTgj.

The vector wj, therefore, gives a shape of the actuator response visible in the actuator-resolution

control error pro�le. The actuator setpoint pro�le and the error pro�le achieved with a mapped

controller, in general, di�er from the pro�les (12), (13) for the minimum-variance controller and

would provide an inferior quadratic variance performance. However, a mapped controller can

achieve the same error as the minimum-variance controller. Given (12), (13), and (16), (17),

the following statement regarding optimal performance of a mapped controller can be made:

The optimal performance of a mapped controller can be achieved by using a map-

ping window shape exactly coinciding with the shape of the CD actuator response.
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Using a mapping window coinsiding with the response shape corresponds to squaring down

the system (4) by projecting the error on the image subspace of the gain matrix G. Such projec-

tion is achieved by right multiplication by GT and it gets rid of the uncontrollable measurements

belonging to the kernel of G.

This use of the projection follows directly from standard control theory results and is obvious

mathematically since there are no dynamics in the system. At the same time, the above rigorous

de�nition of how a mapped CD controller can be made optimal does not seem to be generally

acknowledged in the CD control literature and practice. Various spatial �ltering and mapping

schemes have been proposed by some CD control equipment vendors and research organizations

with claims of performance improvement. One of the goals of this paper is to communicate

the mapped CD control optimality condition clearly and rigorously to people involved in CD

control.

4 Frequency Domain Analysis

In comparison to the matrix analysis, frequency domain analysis does not take edge e�ects

into account. At the same time, results of the frequency domain analysis are intuitively more

understandable. Fourier analysis of the CD control is somewhat non-standard because the

control and high-resolution pro�les have di�erent resolutions. Such analysis can be performed

by using the multi-rate signal theory [26].

4.1 Spectral model for CD control

Let us derive a frequency domain model of the CD control (4), (6). When deriving this model,

one should take into account that the pro�les u and p as well as their Fourier transforms have

di�erent resolutions. Since there are exactly ma measurement points per actuator, multi rate

signal analysis results are applicable [26].

A discrete Fourier transform (DFT) computed for a pro�le p 2 <m gives a complex 'fre-

quency component' pro�le ~p as

~p = [~p1 ~p2 : : : ~pm]
T 2 Cm ; (18)
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~pk =
mX
l=1

ei!k�1(l�1)pl ; !k =
2�k

m

Since the pro�le p is real-valued, its Fourier transform ~p possesses certain symmetry prop-

erties, in particular in (18)

~pk = ~p�m�k+2 ; (19)

where � denotes complex conjugate. Thus, the power spectrum j~pkj
2 is symmetric with respect

to the mid-point m=2 + 1.

Consider a DFT of the actuator pro�le u in (4)

~u = [~u1 ~u2 : : : ~una]
T 2 Cna ; (20)

~un =
naX
l=1

ei
n�1(l�1)ul ; 
n =
2�n

na

By using (6), we can present (4) in the form of a convolution of the �lter kernel b with the

"expanded" [26] signal u.

pu;j =
naX
k=1

gjkuk =
naX
k=1

bk�ma(j�1)uk (21)

Let us subdivide the high-resolution pro�le frequency band into ma subbands of the length

ma that are multipliers of the actuator pro�le frequency band in (21).

~p =

2
666664

~p1

...

~pma

3
777775
; ~b =

2
666664

~b1

...

~bma

3
777775
; ~v =

2
666664

~u
...

~u

3
777775
; ~pj; ~u;~bj 2 Cna (22)

where vector ~v in (20) consists of ma stacked images of the Fourier transform ~u.

Note that in accordance with (22),

k~pk2 =
maX
j=1

k~pjk2 (23)

In accordance with [26, Section 4.1, p. 102],

~pu;n � ~bn~vn; (24)
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By using (22), we can write (24) in the form

~pju =
~bj � ~u; (j = 1; : : : ; ma) ; (25)

where � denotes a component-wise product of two vectors.

The expression (25) shows an aliasing e�ect in the control of a high-resolution pro�le with a

lower resolution actuator pro�le. In accordance with (25), each of the actuator pro�le frequen-

cies in
uences the high-resolution pro�le at all of its ma multipliers. The strength of in
uence

is de�ned by the spectral content of the actuator shape ~b. Since, normally, the amplitude

j~bkj drops sharply with the frequency !k, each of the frequency components ~uj would visibly

in
uence only a few of the subband pro�les ~pkj .

From the control design viewpoint, (25) shows that an attempt to control only the low,

�rst-subband, frequencies in the high-resolution pro�le may cause aliased increase in the higher

harmonic amplitude. This e�ect and the optimal control strategy to overcome it are discussed

in the rest of this section.

4.2 Minimum variance solution in the frequency domain

Based on the frequency domain model of the previous subsection, let us �nd actuator pro�le

input u that will provide for the minimum variance of the residual error pro�le eu = p � pu.

Similarly to Section 3, we will minimize the performance index of the form (11). By using the

Parceval's Identity, the frequency domain model of the CD control (22), (25), and identity (23),

we arrive at the following optimization problem, which is equivalent to (11),

J = m�1k~euk
2 = m�1k~p� ~puk

2 = m�1
maX
j=1

k~pj � ~bj~uk2 ! min (26)

By rewriting (26) in component form, one can see that the contribution of components of ~u

to the performance index can be separated so that the optimum components can be found as

~u
�;k = argminm�1

naX
k=1

maX
j=1

j~pjk �
~bjk~ukj

2 (27)

where j � j denotes an absolute value of a complex number. By solving (27) and substituting

~u
�;k into (25), we obtain

~u
�;k =

Pma

j=1(~b
j
k)
�~pjkPma

j=1 j~b
j
kj
2

; (28)
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~el
�;k =

Pma

j=1(~b
j
k)
�(~bjk~p

l
k �

~blk~p
j
k)Pma

j=1 j~b
j
kj
2

(29)

Since the problem (27) is just a di�erent form of representing (11), the expressions (28),

(29) give the same results as (12), (13). Multiplication of the initial pro�le by the matrix

GT in (12) corresponds to multiplication by (~bjk)
� and summation over the harmonics in the

numerator of (28), while division by the denominator in (28) is the frequency-domain analog

of multiplication by the matrix (GTG)�1 in (12).

Before presenting a more detailed analysis of (28), (29), let us consider the case where the

denominator of (28) is close to zero. This corresponds to the ill-conditioned matrix (GTG)�1 in

(12) and might particularly happen if the spectrum of the actuator response shape ~b is narrow

and goes to zero within the Nyquist frequency range. The narrow spectrum of the actuator

response corresponds to the wide physical response of the actuator. It this case one can compute

a desirable actuator pro�le input ~u by minimizing a regularized performance index of the form

(14). In frequency domain, we obtain the following modi�cation of (26) equivalent to (14)

J� = m�1k~euk
2 + n�1a �k~uk2 = m�1

naX
k=1

maX
j=1

j~pjk �
~bjk~ukj

2 + �j~ukj
2 ! min ; (30)

where � is a small positive scalar.

By di�erentiating (30) to �nd optimal ~u, we obtain frequency domain equivalent of (15)

~u
�;k =

Pma

j=1(~b
j
k)
�~pjk

ma� +
Pma

j=1 j~b
j
kj
2

(31)

The regularization is equivalent to adding a small positive value to the denominator of the

optimal solution in the frequency domain. This makes the spectral components of the computed

actuator pro�le ~u bounded even if all of the actuator frequency response harmonics ~bj turn into

zero at certain frequencies.

Let us note that according to (26), for small (or zero) values of the regularization param-

eter �, the spectral components of the actuator pro�le ~uk can be large at high frequencies,

if all actuator response harmonics ~bjk are close to zero. This explains why actuator picketing

of large amplitude was observed experimentally in the early attempts to implement optimal

control moves based on matrix inversion or multivariable control equivalent to the considered
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regularized solution. Picketing of the actuators corresponds to a large amplitude of high-

frequency components in the actuator pro�le. An obvious solution against the picketing is,

thus, to increase the penalty parameter � in order to achieve a proportional attenuation of

these high-frequency components. This solution, however, is not a perfect one, because for

large � compensation for all spatial frequencies will deteriorate to a certain extent. Methods

for avoiding picketing while maintaining a good quality of control are subject of a comprehensive

study which is outside of the scope of this paper.

We will perform a frequency-domain study of the least square controller error further in this

section together with the analysis of the mapped controller error.

4.3 Frequency domain analysis of a mapped controller

Let us now formulate a frequency domain model of the mapped CD controller. This model will

be based on the Section 2 model of the mapped controller observations.

Let us compute a discrete Fourier transform of the control error pro�le v (8). This pro�le

has the same dimension as the actuator pro�le u and its Fourier transform can be computed

similarly to (20). Note that (8), (10) describe a transformation of the error pro�le ek that

consists of �ltering with the kernel (10) and then ma-fold "decimation" [26, Section 4.1, p. 102]

vj =
mX
k=1

hk�ma(j�1)ek (32)

In accordance with [26, Section 4.1, p. 102], we obtain from (32) for the Fourier transforms

of the signals

~vn =
1

ma

maX
q=1

~en+(q�1)na~h
�

n+(q�1)na (33)

In the notation of (22), we can re-write (33) in the form

~v =
1

ma

maX
q=1

~eq � (~hq)�; (34)

where � denotes a component-wise product of two vectors.

Expression (33) shows an aliasing e�ect of the higher harmonics of the sampling frequency

on the control error pro�le. The strength of this aliasing e�ect is de�ned by the spectral
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characteristics of the mapping window hk. Current practice in the tuning of the mapped

controllers is to shape this window using a spatial smoothing �lter in order to get rid of the

aliasing e�ect. We will further show that such �ltering may not provide the best possible CD

control performance.

Let us �nd the actuator pro�le input for the mapped controller that will be achieved if the

CD feedback loop is designed in the appropriate way. As already discussed, with this input uM ,

the control error pro�le obtained for the high-resolution error pro�le should provide for a zero

control error pro�le v = 0. By substituting into (33) the error pro�le ~eu = ~p� ~pu, where ~pu is

de�ned by (21), we obtain that the optimal input uM of the mapped controller should satisfy

0 =
maX
q=1

(~hqk)
�(~pqk �

~bqk~uM;k) (35)

By formally solving (35), we �nd the optimal actuator pro�le input in the form

~uM;k =

Pma

q=1(
~hqk)

�~pqkPma

q=1(
~hqk)

�~bqk
(36)

This expression can potentially give very large values of the actuator pro�le spectral components

(picketing) if the denominator in (35) is close to zero. In particular, this may happen if the

actuator response ~b has a cut-o� frequency lower than the Nyquist frequency of the actuator

system.

By substituting (36) into (25) and computing the error ~eu = ~p � ~pu, we obtain frequency

domain equivalent of (16), (17)

~enM;k =

Pma

q=1(~h
q
k)
�(~pnk~b

q
k � ~pqk

~bnk)Pma

q=1(
~hqk)

�~bqk
(37)

We will study the spectral contents of the control error pro�le and the error pro�le of a

mapped controller in more detail in the next subsection. Here we would just like to note that

the total variation k~euk
2 of the error pro�le for a mapped controller can not be less than the

variation (29) for the minimum variance controller (28). By comparing (36) and (28), one

can see that the mapped controller will be equivalent to the minimum variance controller if

~hqk = const ~bqk, i.e., if the mapping window has the same shape as the actuator response.
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5 Study of Aliasing E�ects

Let us analyze e�ects of aliasing on CD control in more detail both for a general mapped and a

minimum variance controller. For this analysis, we will assume that the frequency response ~b of

the CD actuator decays fast outside the Nyquist frequency range. Physically, this assumption

means that the width of the actuator response is larger than the width of the actuator zone,

i.e., the responses of the neighboring CD actuators overlap, which is often the case for CD

actuator systems.

5.1 Primary frequency subband

In our analysis, we have subdivided the frequency bands of the high- resolution pro�les into

ma frequency subbands in accordance with (22). As the actuator frequency response is small

for higher frequencies, we can analyze the results by taking into account only two terms - two

frequency ranges - in the sums (28){(29), and (36){(37). This terms correspond to the �rst and

last of the ma subbands. To make this idea clearer, Figure 2 shows a typical appearance for

spectra of the initial high-resolution actuator pro�le, actuator response, and actuator setpoint

pro�le. In accordance with(19), all real pro�le spectra that we consider are symmetrical with

respect to the middle point. Thus, the high-resolution pro�les in question are relatively large

in the �rst subband, and, symmetrically, in the last subbands range, while being small in other

frequency ranges. In particular, this is valid for the frequency response ~b of the CD actuator.

To make the below analysis more transparent, let us convert to a physically meaningful

frequency notation in such analysis. A discrete Fourier transform of a high-resolution pro�le p

can be considered as an approximation for the Fourier transform of a continuos pro�le sampled

with the scanner resolution. Let us choose the actuator spacing as a unit for the description of

the CD coordinate of the pro�les. Then, the CD coordinate of the actuator j will be j� 1, and

the CD coordinate of the high-resolution sample k will be (k � 1)=ma. Accordingly, instead of

(18) and (20), we will consider the following notation

~p[�] =
mX
l=1

ei2��=mapl ; ~pk = ~p[� = (k � 1)=na] ; (38)
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~u[�] =
naX
l=1

ei2��ul ; ~uk = ~u[� = (k � 1)=na] ; (39)

where � is the inverse wavelength of a complex exponent measured in the actuator spacing

units.

In the notation of (38), (39), the Nyquist frequency of the actuator system corresponds to

� = 1=2. The symmetry property (19) of the spectra can be written in the form

~p[�] = ~p�[ma � �]; ~u[�] = ~u�[1� �];

while transition to a di�erent frequency range in (22) corresponds to changing � by an integer

number. We will further assume that 0 � � � 1 and denote ~pj[�] = ~p[j � 1 + �]. Then,

~pma[ma � �] = ~p�[1� �].

5.2 Optimal multivariable controller

To make the following analysis more transparent, it is performed using the physically meaningful

frequency notation. By using the notation of (38), (39), we can estimate the spectra of the

minimum variance actuator and error pro�le (12){ (13) for 0 � � � 1 from (28){(29) as

~u
�
[�] =

~b[�]~p[�] + ~b[1� �]~p�[1� �]
~b[�]2 + ~b[1� �]2

(40)

~e
�
[�] = ~b[1� �]

~b[1� �]~p[�]� ~b[�]~p�[1� �]
~b[�]2 +~b[1� �]2

(41)

One can see from (40), (41) that the minimum variance solution has a nonzero error ~e
�
[�]

in the Nyquist frequency range (for 0 � � < 1=2), unless the actuator response spectrum ~b[�]

is zero beyond this range (for 1=2 � � � 1).

First, let us consider the case, where the actuator response spectrum j~b[�]j decays fast and is

close to zero for � > �0, where �0 < 1=2. This is the case of actuator response being much wider

than the actuator spacing. In such case, the denominator in (40) is close to zero in the frequency

interval �0 < � < 1 � �0. Therefore, the spectrum of the minimum-variance actuator pro�le

input j~u
�
[�]j will be large in the same interval, which will be observed as actuator picketing. A

possible control strategy to overcome the picketing is to add some penalty for the control by

using a regularized performance index (14). This approach adds a small positive constant to the
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denominator in (40), (41). The regularization would improve the actuator pro�le appearance,

but may increase the error for high frequency (� > �0) components of the measured pro�le,

which are, in this case, poorly controllable.

Now let us consider the case, where the actuator response spectrum ~b[�] is signi�cant over

a frequency interval stretching beyond the Nyquist frequency � = 1=2. This is the case of a

relatively narrow actuator response. Let us study the spectral content of the residual error

pro�le ~e
�
[�] at frequencies � = 1=2 and � = 1.

For the Nyquist frequency � = 1=2, we obtain from (41)

~e
�
[1=2] = i Imag ~p[1=2] ; (42)

where Imag denotes an imaginary part of a complex number. The imaginary part of ~p[1=2]

corresponds to the pro�le component at the Nyquist frequency, which is out of phase with the

CD actuator system and, therefore, is not controllable using this actuator system. Notably, the

error (42) at the Nyquist frequency does not depend on the actuator response shape.

For the frequency � = 1, the wavelength is equal to the actuator spacing. Since the spectral

response of the actuator decays for high frequencies, we will assume that j~b[1]j � j~b[0]j. By

neglecting ~b[1] in the denominator of (41), we obtain

~e
�
[1] � ~p[1]� ~p�[0]

~b[1]
~b�[0]

; (43)

The �rst term in (43) is the uncontrollable initial spectral component of the pro�le at the

considered frequency. The second component shows an aliased in
uence of the zero-frequency

component of the initial error pro�le and it might mean a control-caused increase of the error.

Though this second component is multiplied by a small value ~b[1]=~b�[0], the initial zero-frequency

error ~p[0] (initial mean error) is usually much larger than the higher frequency components of

the error. Thus, the error pro�le might exhibit a signi�cant error at the frequency � = 1, if the

ratio j~b[1]j=j~b[0]j is not small enough. Such an error concentrated around a speci�c frequency

will appear as periodic streaks in the error pro�le. These streaks are related to such design

parameters of the CD actuator system as response shape and actuator spacing. They cannot

be improved by the CD control, since we already consider the minimum variance control here.
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On the other hand, such streaks can be potentially changed by changing paper machine or

actuator design parameters which in
uence CD response width and shape.

5.3 Mapped CD control

Let us now analyze the frequency domain expressions (28){(29) for the mapped CD control and

high-resolution pro�le error in the same way as we have just done for the minimum variance

control. We will use the frequency notation introduced in this section and consider only the

�rst and last frequency subbands. We will assume that the mapping window hk is symmetric

and, therefore, ~h[�] is always real. Similarly to (40){(41), we obtain

~uM [�] =
~h[�]~p[�] + ~h[1� �]~p�[1� �]
~h[�]~b[�]j+ ~h[1� �]~b[1� �]

(44)

~eM [�] = ~h[1� �]
~h[1� �]~p[�]� ~h[�]~p�[1� �]
~h[�]~b[�]j+ ~h[1� �]~b[1� �]

(45)

Let us consider the case, where the actuator response spectrum j~b[�]j is signi�cant over

a frequency interval prolonging beyond the Nyquist frequency � = 1=2. This is the most

interesting case of a relatively narrow actuator response. We will study the spectral content of

the residual error pro�le j~eM [�]j at frequencies � = 1=2, � = 1, and around � = 1=2.

For the Nyquist frequency � = 1=2, we immediately obtain that, irrespectively of the

mapping window shape, the error is always the same as in (43)

~eM [1=2] = iImag ~p[1=2]

For the frequency � = 1 de�ned by the actuator spacing, we will assume that j~b[1]j � j~b[0]j

and j~h[1]j � j~h[0]j. By neglecting ~b[1]~h[1] in the denominator of (45), we obtain the result

coinciding with (43)

~eM [�] � ~p[1]� ~p�[0]
~b[1]
~b�[0]

;

Thus, under mild assumptions on the mapping window shape, the mapped controller error for

� = 1=2 and � = 1 does not depend on this shape and coincides with the error for minimum

variance controller. Therefore, the above discussion of the similar results obtained for the

minimum variance controller is applicable to the results for the mapped controller as well.
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A minimum-variance and a mapped controller will however give di�erent results for fre-

quencies around the Nyquist frequency � = 1=2. Let us study comparative error for these two

controllers. Though each of the errors (41) and (45) depends on the initial error pro�le ~p, their

ratio depends only on the actuator response and mapping window shapes. By dividing (45)

and (41) we obtain an increase of the mapped controller error relative to the minimum variance

controller.

~eM [�]

~e
�
[�]

=

0
@1 +

�����
~b[�]

~b[1� �]

�����
2
1
A
0
@1 +

~�[�]
~�[1� �]

�����
~b[�]

~b[1� �]

�����
2
1
A
�1

; (46)

where ~�[�] = ~h[�]=~b[�] is the ratio of the mapping window spectrum to the actuator response

spectrum. In particular, one can immediately see from (45) that for � = 1=2 the ratio of the

errors is always unit. The estimate (45) gives a qualitative understanding of the CD controller

error around the Nyquist frequency. This estimate is accurate for ~b[�] being not exceedingly

small, otherwise the aliased in
uence of higher harmonics can be comparable to contribution

of the two harmonics considered.

Let us analyze (46) in more detail. Currently, in many industrial CD control system, the

mapping window is signi�cantly narrower than the actuator response. Therefore, the spectral

width of the mapping window is larger than the spectral width of the actuator response - one

can call such situation \under�ltering". This means that the actuator response spectrum ~b[�]

decays steeper than the mapping window spectrum ~h[�] and, thus, their ratio ~�[�] grows with

the frequency. Hence, ~�[�]=~�[1 � �] < 1 for � < 1=2, and the ratio (46) exceeds 1 below the

Nyquist frequency, while being lower than 1 above this frequency. A noticeable error spectrum

just below the Nyquist frequency is observed in MDI practice of the CD control. A reduction of

the error spectrum below the Nyquist frequency was observed in tests of a minimum variance

controller [13].

To the contrary, over�ltering (an application of an overly wide antialiasing window) will

result in decaying ratio ~�[�]. Therefore, the mapped controller would have a larger error just

above the Nyquist frequency.
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5.4 Possible reasons for streaks

Based on the above discussion, the streaks - periodic disturbances of the high resolution pro�le

- can be caused by the following reasons.

First, streaks might appear at the actuator frequency (twice the Nyquist frequency). The

spectral power of such streaks is given by (43). Such streaks might become noticeable if the

actuator response is narrow compared to the actuator spacing. This corresponds to the spec-

trum of the actuator response being wide, i.e., still signi�cantly above zero at twice the Nyquist

frequency. The relative width of the response is related to the design of an actuator system

and could be possibly improved by reducing the actuator spacing.

Second, the relatively large spectral power of the pro�le variations below the Nyquist fre-

quency could be caused by the usual practice of under�ltering in the mapped controller. Un-

der�ltering means that the actuator response is wider than the joint width of the actuator zone

and the `antialiasing' �lter window. In this case, the pro�le spreads can be reduced by using a

wider antialiasing window or employing a minimum variance controller (which corresponds to

the window shape coinciding with the actuator response shape).

Third, streaks can be caused by presence of uncontrollable components in the initial pro�le

at the Nyquist frequency and out of phase with the actuators. Such streaks are process related

and cannot be dealt with by control tuning or signal processing. It is possible to make a

conclusion about controllability of the streaks by performing a model-based analysis. Software

tools for such analysis will become available in the next generation of advanced CD control

systems.

6 Paper Machine Data Example

This section applies the analysis tools developed in this paper to a �eld installation of a CD

control system for a paper machine, where streaks are observed. The data below was obtained

at a North American paper mill.

Before discussing the analysis results, consider the controlled process, which is shown in

Figure 1. In a Fourdrinier paper machine where the data was collected, similar to this in
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Figure 1, the liquid paper stock (pulp) is extruded from the headbox onto the top of the

horizontal surface of the moving wire as illustrated in Figure 3. The wire is a machine-wide

band of a �ne metal or plastic mesh made into a closed loop. The water in the stock drains

through the wire while the wood �bers are retained on the top of the wire. At the end of the

wire, the solidi�ed stock enters the next stage of the paper making process.

The paper machine uses slice lip CD actuators for the paper weight control. The slice lip is

a metal bar covering one side of the gap in the headbox, where the stock is extruded onto the

wire. The slice lip actuators are electric drives that pull the slice lip down or push it up the at

di�erent points in the CD. The actuator action bends the slice lip, respectively increasing or

decreasing the extrusion gap where the actuator is attached. The resulting local change in the

stock 
ow results in a localized change of the produced paper weight.

The paper machine, where the data was collected, has 66 slice lip actuators uniformly

distributed in CD direction across the headbox with of 8.28 m (330 in). The produced paper

is further trimmed to about 7 m width. The machine speed is 16.3 m/s (37 mph). It produced

light coated paper grade with the weight of 32.6 g/m2 (22 lbs/3300 ft2). The paper weight

pro�le is measured by a scanning gauge located at the dry end of the paper machine just

before the coater, 1050 m of paper downstream from the slice lip. The scanner supplies a high-

resolution pro�le with a 22.8 mm databox resolution every 22 seconds. This pro�le is mapped

to actuator-resolution control error pro�le as described in Section 2 of the paper.

The problem streaks do not show up on the control error pro�le and, thus, are not con-

trollable with the mapped CD control system. The data used for the analysis included the

steady-state high-resolution error pro�le obtained for the working CD control system. This

pro�le corresponds to good compensation of the control error pro�le and is shown in the upper

plot in Figure 5.

In order to verify the system alignment and identify a multivariable model of the CD control,

an identi�cation experiment was performed on the paper machine. In the experiment, the CD

actuators were put o� feedback control. After collecting 20 scans of the baseline data with �xed

actuator setpoints, three actuators were stepped up (bumped) to new setpoints and 20 more

scans were collected after the process reached new steady state. By �nding average baseline
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and bump pro�les and subtracting them the di�erential response pro�le was obtained. The

di�erential response pro�le together with the actuator bump pro�le are shown in Figure 4. The

data in Figure 4 was used to identify a parametric model of the process response and mapping

using the tools described in [8, 9, 10].

The identi�ed parametric model for the response shape function b (6) has the form

b(k) = ge�ak
2=w2

cos(�x=w); (47)

where the response width is w = 8:85 databoxes, the attenuation parameter is a = 1:5. The

response gain g in (47) is de�ned for the actuator pro�le (slice lip opening variation) measured

in �m and the paper weight measured in g/m2. The identi�ed gain was g = 3:71 g/m2 per �m.

The response pro�le modeled in accordance with (47) is shown in Figure 4 as a smooth curve

in the upper plot.

The identi�cation results allow us to compute the gain matrix G in (4). The system in

question does not use an antialiasing �lter, and the mapping window h in (10) is a rectangular

averaging window. In order to validate the obtained matrix model, the minimal achievable error

of the mapped controller was computed from the condition of the zero control error pro�le.

This error is shown in the middle plot of Figure 5, while the top plot shows the experimentally

obtained steady-state error pro�le. The achieved quality of the model prediction indicates that

the identi�ed model is suÆciently accurate.

The lowest plot in Figure 5 illustrates the error pro�le obtained for a multivariable controller

in accordance with (13). Though the results for the multivariable controller are slightly better

than for the mapped controller used presently, a signi�cant part of the streaks remains present

in the pro�le. Since the multivariable compensation provides minimal possible variation of

the error pro�le for the given response shape, one has to conclude that the streaks are not

controllable and cannot be improved by the control tuning. It is believed that the streaks

present in this case are linked to a mechanical or 
ow related process problem.

The spectral characteristics of the mapping window and the actuator response shown in the

upper plot of Figure 6 demonstrate that the mapped controller spectral window is much wider

than for the optimal multivariable controller. Therefore, the mapped controller `under�lters'

the error pro�le. As discussed in Subsection 4.2, such under�ltering should result in an in-
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creased variation of the mapped controller in the frequency range below the Nyquist frequency.

To illustrate this point, the lower plot in Figure 6 shows spectra for the initial pro�le, error

pro�le for mapped controller, and error pro�le for the mapped controller. As expected, the

multivariable controller provides a smaller error below the Nyquist frequency, while having a

slightly larger error above this frequency. The peak at � � 0:53, which corresponds to the

uncompensated streaks, comes from the initial pro�le and is believed to be process-related.

7 Conclusions

The analysis performed in this paper has shown that the performance of a mapped controller

or optimal cross-direction controller is limited by the spatial response frequency characteristics.

The performance of either a mapped controller or an optimal multivariable controller has been

shown to be identical if the mapping window equals the spatial response shape. Narrow streaks

close to Nyquist frequency, de�ned by twice the actuator spacing cannot generally be corrected

with CD control changes. They are often found to be process-related and must be eliminated

at the source.
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Figure 1: Paper Machine.
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Figure 2: The upper plot shows typical spectrum j~pj of the initial high-resolution pro�le

(dashed) and actuator response j~bj (solid). The lower plot shows typical spectrum of the

actuator setpoint pro�le ~u.
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Figure 3: Paper machine headbox
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Figure 4: Multivariable model identi�cation for a paper mill data. The upper plot: the model

response identi�ed from the data (solid) and the averaged incremental steady-state measured

response of the CD process (dashed). The lower plot: the incremental actuator pro�le applied

in the step response test.
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Figure 5: Plots from top to bottom: 1) the experimentally obtained steady state error pro�le;

2) the theoretically optimal error pro�le for a mapped controller; 3) the multivariable optimal

error pro�le
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Figure 6: Upper plot: CD spectrum of the actuator response - dashed; spectrum of the mapping

window - solid. Lower plot: Spectral content of error pro�les. Mapped controller - solid;

multivariable controller - dashed; initial error pro�le - dotted.
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