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The paper considers design of a predictive Linear Time Varying model-based cont
with nonlinear feedforward for regulation of transient processes caused by setpoint
changes in a nonlinear plant. An optimal feedforward control sequence is computed b
on an empirical Finite Impulse Response model of the process. Though the control
niques developed in this paper are meant to have more general industrial applicabil
specific automotive engine control application—control of Variable Cam Timing auto
tive engine—is pursued. An advantage of the proposed controller design in this prob
that no first principle models are required. Instead, nonlinear parametric approximat
of a neural network type are being used to describe and identify static nonlinear m
pings encountered in the problem. A number of simplifying assumptions and appro
tions are made to make practical implementation of the proposed scheme possible.
ity of the designed controller is verified by simulation. The proposed ‘‘model-free’’ de
can potentially increase flexibility and save labor in development and deployment of
controllers for industrial systems.
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1 Introduction
This paper considers an approach to designing a model pre

tive controller for disturbance compensation in a nonlinear pla
Model predictive control~MPC! is a well-established industria
technology used in many process plants and some other app
tions, e.g., see@1–4#. In a majority of applications, MPC desig
and implementation assumes linear time-invariant~LTI ! models of
a process. These models are usually formulated as FIR~Finite
Impulse Response! models and can be conventiently identifie
from the input–output data collected in experiments with the p
cess. One of the reasons for practical success of MPC is bec
these FIR models can be easily understood and identified. Tu
and troubleshooting of MPC is conceptually straightforward a
directly linked to the model.

According to a recent survey@5#, MPC is advantageous in con
strained control problems as well as in unconstrained nonlin
plants. Much of the technical MPC literature, including@5#, deals
with the former types of problems. This paper is focused on
latter types of problems. Related work includes the papers@6–8#.
These papers use linearization around a steady-state regime
nonlinear parametric approximation for gain scheduling. Us
some of the related concepts, this paper differs in scope by b
focused on the rejection of large measurable disturbances.

In this paper, a nonlinear process is linearized in a vicinity o
given reference trajectory. An extension of the MPC for line
time-varying~LTV ! plants is considered. In order to formulate a
implement an MPC controller for an LTV linearization of a no
linear process, the following issues need to be addressed:~i! De-
fining a reference trajectory and control for the linearization;~ii !
model identification for the linearized system. A contribution
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this paper is in demonstrating a specific nontrivial and novel
proach to resolving the above two issues. The approach ap
on-line training of the controller and use of nonlinear parame
approximation towards the problem of compensating exter
measured disturbances.

The reference trajectory about which the system of interes
linearized is affected by disturbance inputs. Here, we consid
practically important class of systems in which disturbances
assumed to be either slow quasistatic changes or instantan
step changes to respective variables. The step disturbances c
parameterized by initial setpoints and an amplitude of the s
The dependencies of the reference trajectory and reference co
on the disturbance parameters are approximated using a nonl
parametric approximation approach similar to neural networ
Specifically, a form of a multivariable Chebyshev polynomial e
pansion is used for the approximation.

Though the control technology presented in this paper is me
to have more general industrial applicability, the paper is focu
on a specific automotive engine control application—control o
Variable Cam Timing~VCT! internal combustion engine. The us
of VCT technology reduces engine emissions but might adver
affect torque response of the engine. An optimal tradeoff betw
emission and torque performance can be achieved by electr
control of the engine. In our earlier paper@9#, a linear predictive
VCT controller for small-signal fixed setpoint tracking was d
signed in a form suitable for embedded engine controller imp
mentation. This paper extends the linear predictive controller
veloped in @9# toward a nonlinear predictive controller usin
techniques from@10–12#.

The validity of the proposed approach is partially supported
existing theoretical justifications of predictive control in LTV sy
tems @13,14#. Validity of the approximation based model of th
nonlinear system in question is verified by simulation. Anoth
important issue is finding an optimal control for the referen
transient response to the disturbance. This transient regime ca
be computed from the linearized model and requires control o

of
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mization for the full nonlinear system. In the proposed approa
this is achieved by on-line iterative updating in experiments w
the system. The update is similar to parametric approxima
algorithms studied in@10,12#, where convergence proofs are pr
sented. Such updates were earlier applied in@11# to be control of
transients in an automotive engine, though not in an MPC sett

When using MPC in process industry applications, high co
putational capabilities of the hardware and long sampling interv
can allow for extensive optimization computations in the feedb
loop. In this paper a nonlinear MPC controller is developed us
a parametric approximation of certain static mappings. Differ
parametric approximation schemes for static mappings suc
neural networks, Radial Basis Functions, or polynomial netwo
are presently well understood, both theoretically and practica
At the same time, the developed combination of the MPC a
neural network technologies represents a promising novel pr
cal approach.

Previous approaches that have been applied to automotive
gine control problems similar to the one considered here incl
traditional linear feedback control designs based on a linear
first-principle nonlinear model of the engine@15,16# as well as a
nonlinear recurrent neural network controller@17,18#. The former
approach is problem-specific and requires labor-intensive de
opment to achieve satisfactory control performance for nonlin
regimes. The latter approach is more generic and is based o
on-line update of the controller input–output characteristi
There is, however, little analysis available to support enginee
methods for design of such controllers. The novel control
proach based on the nonlinear MPC methodology proposed in
paper has the advantages of the two above approaches.

2 Process Model Overview
The goal of the VCT engine control, as considered in t

project, is to minimize engine emissions in response to ra
changes of throttle~TA!, engine speed~RPM!, and camshaft tim-
ing ~CAM!. The three disturbance variables—RPM, TA, a
CAM—are assumed to change in an uncontrollable way. The c
troller can modify the Fuel input in response to this change an
required to maintain the Air/Fuel ratio~A/F! at the stochiometric
value of A/F514.64 at all times. The controller can use addition
measured variables, such as Mass Air Flow~MAF! and Manifold
Pressure (Pm), for computations. This paper uses the model
veloped in@15,16,19,20#. The VCT engine model was embedde
in the simulation software and was used as a black-box for
purpose of the controller development.

The controller design and performance requirements depen
the dynamical characteristics of the disturbances acting in the
trol loop. In this project it is assumed that TA and CAM ca
change in a stepwise manner within a certain range and that R
can change with a bounded increment within some limits. T
limits and ranges for the disturbance variable change can, in
eral, be described as follows:

TA~ t !P@7.6, 25#, (1)

RPM~ t !P@750, 2000#, uRPM~ t !2RPM~ t21!u<2, (2)

CAM~ t !P@0, 35#. (3)

The controller performance measure is taken to be a m
square deviation of the A/F output from the stoichiometry.

2.1 Model Structure. The first step in controller develop
ment is definition and identification of the process model. T
model formulated in this section is a nonlinear extension of
linear FIR model considered in@9#. Figure 1 illustrates the inpu
and output variables for the VCT engine control problem. T
Manipulated Variable~MV ! is the Fuel Input increment, which i
added to the fuel estimator cascade loop. The Disturbance V
ables~DV! are Throttle Angle~TA!, Cam Phase Shift~CAM!, and
the Engine Speed~RPM!. The Controlled Variable~CV! is the
430 Õ Vol. 125, SEPTEMBER 2003
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Air/Fuel Ratio ~A/F! deviation from the stoichiometry, which
should be maintained as close to zero as possible at all times
despite the effect of the DV changes.

The nonlinear predictive controller design uses the followi
assumptions about the problem:

A1 Variations in the DV and the MV are small around a give
regime which is either a steady state-regime or a step chang
DV with known amplitude.

A2 Given the condition A1, the plant can be linearized arou
a given steady-state regime or around a nominal transient reg
corresponding to a step change in DV or MV.

A3 Step changes in the DVs result in Finite Step Respo
~FSR! transients in the CV.

A4 A pulse change in the MV causes a Finite Pulse Respo
~FIR! change in the CV.

The main practical consideration behind A3 and A4 is that
controlled plant is stable. For a stable plant, a time-limited cha
in the input variables will always cause an asymtotically decay
transient. For any practical purposes the transient duration ca
considered finite, hence, the FIR or FSR models are adequate
assumptions A1 and A2 are practically reasonable for DV inp
that are either slowly varying or undergo a step change.

2.2 Nominal Transients. Let us consider a single transien
process caused by a step change in one or more of the DV inp
Assume that the step change has occurred at timet* and prior to
this time the system was in the following steady-state regime

u~ t !50, for t,t* , (4)

y~ t !50, for t,t* , (5)

v~ t !5v0[@TA0 RPM0 CAM0#T for t,t* , (6)

whereu(t) is the MV ~Fuel! input, y(t) is the CV~A/F deviation
from the stoichiometry! output, andv(t)PR3 is the DV input
vector for the VCT engine system. At timet5t* the DV change
instantaneously to a new steady state

v~ t !5v1[@TA1 RPM0 CAM1#T for t>t* . (7)

In ~7! it is assumed that unlike TA and CAM, the engine RP
never changes instantaneously. This is a realistic assumption s
there is inertia in the system associated with the rotating eng
parts and the moving vehicle. For automated transmission
hicles, this inertia prevents rapid jumps in RPM for the limite
torque generated by the engine. Slower, not instantaneous, v
tions of the DVs including RPM are modeled and controlled in t
further parts of this paper by considering them quasi-static. T
essentially means performing gain scheduling in these variab

After the step change of DV defined by~6! and ~7! has oc-
curred, the engine controller reacts by changing the fuel in
according to the control agorithm. Since the control algorith
provides for a stable closed-loop operation, it is assumed that a
a transient process in MV and CV the system returns to a ste
state. Even if the variables might decay asymptotically in the tr
sient process, for all practical purposes the transient can
counted on to have a finite duration, which will be denoted
N* . The change of the DV and MV in the transient can be ma
ematically described as

Fig. 1 Input and output variables used for the predictive con-
troller design
Transactions of the ASME
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u~ t !5H u* ~ t2t* !, for t* <t,t* 1N*
0, for t>t* 1N*

, (8)

y~ t !5H y* ~ t2t* !, for t* <t,t* 1N*
0, for t>t* 1N*

. (9)

In the predictive control formulation to follow, it will be con
venient to describe the transient process with the following t
lifted vectors

Y* 5F y* ~N* 21!

]

y* ~1!

y* ~0!

G , U* 5F u* ~N* 21!

]

u* ~1!

u* ~0!

G . (10)

The control command sequenceU* in the transient proces
generated by the control algorithm as well as the respective ou
transientY* are completely defined by the DV values~6!, ~7!
before and after the step change. These values can be coll
into a single transient parameter vector

p5@RPM0 TA0 CAM0 TA1 CAM1#T. (11)

The vectorp ~11! has only 5 components since in~6! and~7! RPM
does not undergo any step change.

The transient regime vectors~10! are defined by the transien
parameter vector~11! and these dependencies can be represe
as two vector fields of the form

U* ~p!, Y* ~p!. (12)

In what follows, the vector fields~12! are approximated by para
metric functions of the vectorp and the approximations are ada
tively updated based on the system closed-loop performa
results.

The transient process description~8!–~9! is only valid for step
changes in DV or MV that are more thanN* samples apart from
each other. It can, however, be extended towards a more ge
class of disturbances where the DV sequence is either slo
changing or can be approximated by a step. More specific
consider a DV sequence of the form

v~ t !5v* ~ t !1dv~ t !, (13)

v* ~ t !5H v0 , for t* <t,t* 1N* 21

v1 , for t>t* 1N* 21
, (14)

wherev0 , v1 are as defined in~6!, ~7! anddv(t) is assumed to be
a small deviation from the nominal step inputv* (t). In practice,
the algorithms described in this paper would work even ifdv(t) is
not very small.

In a practical controller, the representation~13!, ~14! can be
obtained on-line based on the available DV data sequencev(t).
Consider a DV history with a memory horizonN* as illustrated in
Fig. 2. For this sequence,v0 , v1 , andt* in ~13!, ~14! are approxi-
mation parameters, whiledv(t), is an approximation error. On

Fig. 2 Identification of the step change in the disturbance his-
tory buffer
Journal of Dynamic Systems, Measurement, and Control
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feasible method to find the approximation is to do a direct sea
for all values oft* within the history time horizon. For each valu
of t* , the approximation functionv* (t) ~14! is linear in param-
etersv0 andv1 . It is straightforward to determine these by min
mizing the mean quadratic error of the approximation. Findin
value of t* corresponding to the minimum quadratic error of t
approximation, and taking respective values of the parameterv0
andv1 solves the approximation problem.

2.3 Linear Predictive Model in a Vicinity of a Steady-State
Regime. In accordance with the Assumptions A3 and A4, t
dynamical evolution of the system can be defined through its in
and output variables collected over some history horizonNf . A
linear dynamical model of the VCT engine in a vicinity of
steady-state regime was considered in@9#. This model has the
form

y~ t !5(
k51

Nf

h~k!u~ t2k11!1(
j 51

nV

(
k51

Nf

hV, j~k!Dv j~ t2k11!,

(15)

whereDv(t)5v(t)2v(t21)PRnV is a change in DV at timet,
nV53, h(k)PR is an element of the FIR pulse responses for M
andhV, j (k) ( j 51,2,3; k51, . . . ,Nf) describes the FSR elemen
for j th component of the DV vectorv(t). The components of the
pulse responses in~15! can be joined into vectors of the FIR
model parameters in the following way:

h̄5@hF
T hTA

T hRPM
T hCAM

T #TPR4Nf. (16)

Similar to @9# let us introduce the lifted vectors describing hi
toric input ~MV, DV ! and output~CV! sequences

Yf5F y~ t !
y~ t21!

]

y~ t2Nf11!

G , Ut5F u~ t !
u~ t21!

]

u~ t2Nf11!

G ,

DVt5vecH F Dv~ t !
Dv~ t21!

]

Dv~ t2Nf11!

G J , (17)

whereDv(t)5@DTA( t) DRPM(t) DCAM( t)# is a 133 matrix;
YtPRNf; by vec(A), whereA is a matrix, we denote a vecto
obtained by stacking all entries ofA into a single vector, column
by column; andDVtPR3Nf.

For the controller design, it is convenient to re-write the mod
~15! in a predictive form. Let us introduce the predicted futu
histories of the MV, DV, and CV over a prediction horizonNh

Ŷt5F y~ t1Nh!

]

y~ t12!

y~ t11!

G , Ût5F u~ t1Nh!

]

u~ t12!

u~ t11!

G , DV̂t50PR3Nh,

(18)

where as commonly done in predictive control and similar to@9# it
is assumed that at any point in time nothing is known about
future disturbancesDv(t), t.t, and therefore, they are assume
to be zero.

Assume for a moment thatu(t)[0, DV(t)[0 for t,t2Nf .
In @9#, a predictive Linear Time-Invariant model corresponding
the steady-state linearization~15! was considered. This model ha
the form

F Ŷt

Yt
G5GNf1NhF Ût

Ut
G1GV

Nf1NhFDV̂t

DVt
G , (19)

whereGNf1NhPRNf1Nh ,Nf1Nh andGV
Nf1NhPRNf1Nh,3(Nf1Nh) are

Toeplitz and block-Toeplitz matrices with the entries consisting
SEPTEMBER 2003, Vol. 125 Õ 431
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the pulse response elementsh(k) and hV, j (k) ~15!, respectively.
In accordance with~15!, vectorŶt ~18! in ~19! does not depend on
u(t) andDv(t) for t,Nf .

2.4 Predictive Model Linearized in a Vicinity of a Tran-
sient Process. The LTI model ~19! can be generalized to de
scribe a linearization of the VCT engine plant around a trans
regime caused by a step change of the DV of the forms~13! and
~14!. As mentioned above the transient responses are assum
have a maximum lengthN* . Thus, after a single step change
DV occuring att* , for t.t* 1N* , the plant dynamics are de
scribed by the steady-state model~15!. The same model holds fo
t,t* because the transient response is causal.

Let us now assume that the step timet* is such thatt2N*
,t* <t. In accordance with~10!, ~12!, the transient response
~8!–~9! of the MV and CV at timet can be written in the form
u* (t2t* ;p) andy* (t2t* ;p). Here, the dependence of the tra
sient response on the transient parameter vectorp ~11! is explicitly
emphasized. The assumed dynamical model linearized in the
cinity of a transient response can be mathematically presente
the form

y~ t !5(
k51

N
*

h~k2t* ;p!@u~ t2k11!2u* ~ t2k111t* ;p!#

1(
j 51

nV

(
k51

Nf

hV, j~k2t* ;p!~k!@Dv j~ t2k111t* ;p!

2Dv* , j~ t2k111t* ;p!#, (20)

where the nominal and current DV incrementsDv j (t;p) and
Dv* , j (t;p) are defined in accordance with~6!, ~7!, ~11!, ~13!, and
~14!. The model~20! is an extension of the steady-state lineariz
model~15! and, similar to,~15!, Dv(t)5v(t)2v(t21)PRnV is a
change in DV at timet, nV53, h(k)PR is an element of the FIR
for MV, and hV, j (k) ( j 51,2,3; k51, . . . ,Nf) describes the FSR
element forj th component of the DV vectorv(t).

In accordance with~8!, ~9! the vectors~12! describe the tran-
sient process from its beginning att50 to its end att5N* 21. In
the predictive control formulation, the same transient is descri
by the vectors~17!, ~18!. These vectors have lengthsNh andNf ,
respectively. The vectors~12! have lengthN* . The vectors~12!,
~17!, ~18! describing the same transient are related by the timt
5t2t* elapsed after the DV step that caused the transient.
past history and predicted history vectors of the forms~17! and
~18! in the nominal transient process can be obtained from~12! in
the form.

Y* ~t,p!PRNh; Ŷ* ~t,p!PRNf, (21)

U* ~t,p!PRNh; Û* ~t,p!PRNf. (22)

The vectors~21! and~22! are obtained by padding components
the vectors~12! with zeros on either side. In case if the vectorp in
~21! and~22! corresponds to a zero step, ift.Nf , or if t<0, the
vectors~21! and~22! are zero vectors and the dynamic model~19!
can be used.

Similarly, consider the disturbance history vectors correspo
ing to the nominal step disturbance~13! and ~14!

DV* ~t;p!PR3Nh; DV̂* ~t;p!50PR3Nf. (23)

For 0,t<Nf , all components ofDV* (t;p) are zero except
for DV* ,t(t;p)5p(4)2p(2), and DV* ,2Nh1t(t;p)5p(5)
2p(3).

The predictive dynamics model~19! corresponding to~15!
should be replaced by a predictive model corresponding to
plant linearization~20! in the vicinity of the transient dynamics. In
accordance with~20!, ~21!–~23! this predictive model has the
form
432 Õ Vol. 125, SEPTEMBER 2003
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F Ŷt2Ŷ* ~ t2t* ;p!

Yt2Y* ~ t2t* ;p!
G5GNf1Nh~ t2t* ;p!F Ût2Û* ~ t2t* ;p!

Ut2U* ~ t2t* ;p!
G

1GV
Nf1Nh~ t2t* ;p!3FDV̂t2DV̂* ~ t2t* ;p!

DVt2DV* ~ t2t* ;p!
G ,

(24)

where GNf1Nh(t2t* ;p)PRNf1Nh ,Nf1Nh and GV
Nf1Nh(t2t* ;p)

PRNf1Nh,3(Nf1Nh) are input/output mapping Jacobian matrice
The predictive model~24! shows that for the DV input~6!–~7!,
~11! and the MV input~4!, ~8!, ~22!, the CV output should have
the form ~5!, ~9!, ~21!.

In this work, the Jacobian matricesGNf1Nh(t2t* ;p) and
GV

Nf1Nh(t2t* ;p) are defined off line as discussed below. T
nominal transients described by~12! are determined as a result o
an on-line update. This on-line update can be considered
‘‘training’’ of the controller. Once the training is completed an
approximate models of the nominal transients are identified,
controller can operate on-line with the transient update disab
Such operation without the on-line adaptation is preferred in
dustrial practice.

3 Process Model Identification
The previous section has described the general structure o

nonlinear predictive model used herein for the controller desi
This section describes the model in more detail and explains
the model parameters can be identified from the experime
data.

3.1 Model Identification Issues. A steady-state regime o
the VCT engine operation can be defined by the following para
eter vector:

q5@TA RPM CAM#T[v, (25)

where TA, RPM, and CAM are the average steady-state value
the respective disturbance variables. As a first step in buildin
nonlinear model, let us approximate dependencies on the vecq
~25! for the steady-state plant model~15!. The pulse response
~16! define a linearization of the original nonlinear plant in th
vicinity of a steady-state regime. The plant model depen
smoothly on the parameters~25!. Consider the following four
smooth mapsR3°RNf

hF~q!, hTA~q!, hRPM~q!, hCAM~q!. (26)

In this work, the nonlinear mappings are approximated by
regression linear in parameters and with nonlinear regressor
tor. For a general mappingg(q)R3°RNf, whereg can represent
any of the four vector fields~26!, the regression has the form

g~q!'(
j 51

Na

g~ j !c j~q!5GC~q!, (27)

G5@g~1! . . . g~Na!# (28)

C~q!5@c1~q! . . . cNa
~q!#T, (29)

whereg ( j )PRNf are parameters~weights! of the regression, and
c j (p)PR are scalar-valued nonlinear regression functions. R
gressions of the form~27! are widely used in Applied Approxima
tion Theory as well as in engineering practice. The regress
functions can be polynomials, B-splines, harmonic functions, R
dial Basis Functions, wavelets, or other. In this work, Chebys
polynomials are used as the regression function.

The nonlinear regression model~27! was built as follows. First
the FIR responsesg(k) for steady-state regimes were identified
the nodesq(k) of a regular grid in a domain of the steady-sta
regime parameter vectorq ~25!. For each parameterq(k) this was
Transactions of the ASME
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done by using an input–output experiment with the black b
simulation model of the engine as described in@9#.

The regression functionsc j (q) were chosen semiempirically
These regression functions are designed to perform Cheby
polynomial approximation of the target nonlinear mappings. T
Chebyshev polynomialsCi(x) are a system of polynomials or
thogonal on@21, 1#. These polynomials are defined by the fo
lowing recursive formulas:

C1~x!51; C2~x!5x; Ci~x!52xCi 21~x!2Ci 22~x!,

for i>3. (30)

The nonlinear dependences of the pulse response vectors~26!
on the parameters~25! are such that the strongest nonlinearity
associated with change of TA. The dependences on RPM
CAM are very close to being affine in TA and CAM. To refle
this, the nonlinear regression functionC(q) in ~27! was chosen in
the form

C~q!5F X1~TA!

X1~TA!~0.0025RPM25!

X1~TA!~0.05CAM21!
G , (31)

X1~TA!5@C1~0.05TA21! . . . CNCh
~0.05TA21!#T, (32)

whereCj (x) are the Chebyshev polynomials. The variables T
RPM, and CAM in~31!–~32! are scaled such that the range of t
scaled variables is close to being@21, 1#.

The weights of the regression models~27! and ~32! can be
identified by solving the following linear least-square fit proble

G5arg miniG@C~q~1!! . . . C~q~Nd!!#2@g~q~1!! . . . g~q~Nd!!#iF
2,

(33)

where i•iF is a Frobenius norm of the matrix andNd denotes
number of the nodes in the data grid. The Moore–Penrose pse
inverse solutionG to ~33!, ~27!–~29! can be easily computed.

The accuracy of the nonlinear approximation~27!, ~28!, ~30!–
~33!, depends on the maximal degreeNCh of the approximating
Chebyshev polynomials in~31!, ~32!. By approximating the pulse
responses~26! computed on a grid of the parameter values, it w
found thatNCh57 provides an optimal tradeoff between the a
proximation accuracy and the numberNa of the regression~shape!
functionsc j (q) used in the expansion~27!. For NCh57, the re-
gressor vectorC(q) ~31!, ~32! hasNa521 components. The rela
tive accuracy of such approximation was checked on regular
of the 1134345176 nodes covering the domain of the transie
parameters@TA RPM CAM#~26! The 176 responses correspon
ing to the grid nodels were identified from the simulated expe
ments and had the approximation error better than 3%.

3.2 Approximation Model of the Transient Regime
Jacobian. Now consider a nonlinear transient regime cor
sponding to a step change of DV as defined by~6! and ~7! and
described by the transient parameter vector~11!. If the DV step
change occurs at timet* , the transient process will take a finit
duration of time betweent* andt* 1N* , whereN* describes the
transient duration. Fort,t* and t>t* 1N* the system can be
considered in a steady state and a steady-state linearized mo
the process pulse response can be used. This model can be
puted through the parametric approximation as described in
previous subsection. Letg(q0(p))PRNf and g(q1(p))PRNf be
such approximations of the pulse responses, whereq0(p)5v0 and
q1(p)5v1 are related to the parameter vectorp ~11! in accor-
dance with~6! and ~7!.

The predictive model~24! requires defining the Jacobian matr
ces GNf1Nh(t2t* ;p) and GV

Nf1Nh(t2t* ;p). Columns of these
matrices are pulse responses of the process linearization ar
the nominal transient regime. In this work, the transient pu
responses are approximated by assuming linear interpolation~gain
scheduling! of the response shape during the transient proces
Journal of Dynamic Systems, Measurement, and Control
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The pulse responses are taken to be constant and correspond
the respective steady-state outside the time interval@ t* ,t*
1N* #. The pulse response approximation on the inter
@ t* ,t* 1N* # has the following form:

g~ i ;t;p!5~12a~ i 2t!!g~ i ;q0~p!!1a~ i 2t!g~ i ;q1~p!!,
(34)

a~ j !5H 0, j <0

j /dh , 0, j <dh

1, j .dh

, (35)

q0~p!5@TA0 RPM0 CAM0#T, (36)

q1~p!5@TA1 RPM0 CAM1#T, (37)

wherei in ~34! indexes the pulse response element,t is the input
pulse application time, anddh is the model parameter introduce
to describe the transient duration. In~34!, g( i ;t;p) corresponds to
any of the pulse responses~26!.

For the fuel input response, the Jacobian matrix has the fo

Gi , j
Nf1Nh~t;p!5H hF~ i 2 j 11;t;p!, i> j

0, i , j
. (38)

Expressions forGV
Nf1Nh are defined similarly to~38!. The ap-

proximations of the JacobiansGNf1Nh(t2t* ;p) and GV
Nf1Nh(t

2t* ;p) are defined solely based on the pulse responses~26! iden-
tified in steady-state. The identification procedure described
more detail in@9# is straightforward. A potential downside of suc
a simplified easy-to-build model is that it might be potentia
inaccurate because somewhat arbitrary assumptions were m
The simulation results presented below, however, show that su
model is adequate for the design of the proposed controller
achieves a good disturbance rejection. The performance
achieved because the control scheme developed herein tune
feedforward parameters in an on-line adaptation process. An e
in the Jacobians might slow down convergence on the adap
update without having a major influence on the performance
is eventually achieved.

3.3 Nominal Transient Regime. In the affine predictive
model ~24! the Jacobian matricesGNf1Nh(t2t* ;p) and
GV

Nf1Nh(t2t* ;p) defined in accordance~38! characterize the in-
put output dependency slope. The intercept of this dependenc
defined by the nominal transient regime vectors~21! and~22!. As
mentioned above, the latter are obtained by padding compon
of the vectorsU* (p) andY* (p) ~12! with zeros. In what follows,
the mappingsU* (p) and Y* (p) defining the nominal transien
will be approximated by a Chebyshev network. This approxim
tion cannot be determined from the identification of the stea
state regime behavior of the plant as done above for the Jaco
matrices. Instead, the approximations for the mappingsU* (p)
andY* (p) will be determined as a result of a closed-loop upd
process with the operating engine. This closed-loop update is
major new algorithm developed in this work and it is described
some detail in the next section. The overall structure of the con
loop with the described update of the nominal transient proces
illustrated in Fig. 3.

4 Predictive Controller Design
The previous sections have defined the predictive model~24!

relating the DV input~6!–~7!, ~11! and the MV output~4!, ~8!,
~10!, ~22!, to the CV output~5!, ~9!, ~10!, ~21! of the process. This
section uses this model to build a nonlinear receding hori
controller.

4.1 Optimization Problem and the Control Law. To de-
rive the predictive control optimization problem, let us partitio
SEPTEMBER 2003, Vol. 125 Õ 433
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the matricesGNf1Nh(t2t* ;p) and GV
Nf1Nh(t2t* ;p) in the

model ~24! in accordance with the vector partitioning as

GNf1Nh~ t2t* ;p!5FG~ t2t* ;p! H~ t2t* ;p!

. . . . . . G
PRNf1Nh ,Nf1Nh, (39)

GV
Nf1Nh~ t2t* ;p!5F . . . HV~ t2t* ;p!

. . . . . . GPRNf1Nh,3~Nf1Nh!,

(40)

where . . . denotes the terms irrelevant for subsequ
calculations.

Following the model~24! and notation~18!, the predicted fu-
ture values of the process output can be represented in the f

Ŷt5Y* ~ t2t* ;p!1G~ t2t* ;p!~Ût2Û* ~ t2t* ;p!!

1H~ t2t* ;p!~Ut2U* ~ t2t* ;p!!

1HV~ t2t* ;p!~DVt2DV* ~ t2t* ;p!!. (41)

In accordance with the standard receding-horizon control
proaches,@2,4# at each step the following optimization proble
will be solved

J5iŶti21riÛti2→min, (42)

wherer is a scalar controller design parameter defining a trade
between performance and robustness. By substituting~41! into
~42! and finding an optimum with respect toÛt , we obtain the
optimal predicted control sequence. In the receding horizon a
rithm, only the first value of the computed optimal control s
quence is applied. The optimal control is then re-computed at
next step. This control law can be presented in the form

u~ t11!52hC
T~ t !Ut2hD

T ~ t !DVt1 f ~ t !, (43)

hC
T~ t !5H~ t2t* ;p!TG~ t2t* ;p!Rtn̄, (44)

hD
T ~ t !5HV~ t2t* ;p!TG~ t2t* ;p!Rtn̄, (45)

n̄5@0 . . . 0 1#T, (46)

Ẑt[2Y* ~ t2t* ;p!1G~ t2t* ;p!Û* ~ t2t* ;p!

1H~ t2t* ;p!U* ~ t2t* ;p!

1HV~ t2t* ;p!DV* ~ t2t* ;p!, (47)

Fig. 3 Transient regime model computation in the designed
controller
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Rt[~G~ t2t* ;p!TG~ t2t* ;p!1rI !21, (48)

f ~ t !52Ẑt
TG~ t2t* ;p!Rtn̄, (49)

where G(t2t* ;p), H(t2t* ;p) are defined by~39!, HV(t
2t* ;p) is defined by~40!, Rt is defined by~48!, andẐt is defined
by ~47!. Note that the control law~43! has the form similar to that
of the predictive control law derived in@9# for the disturbance
rejection in the vicinity of a steady-state regime. There are t
main features in~43! that reflect the fact that it is derived fo
control of nonlinear transients. First, in~43! there is a feedforward
term f (t) ~47!, ~49! that is aimed at optimization of the nomina
transient. Second,~43! is a time-variant control law because it
obtained by linearization of a nonlinear process around a trans
regime. This is reflected in the FIR windowshC(t) andhD(t) ~46!
being time-varyng.

4.2 Controller Structure. The overall structure of the de
signed controller~43!–~49! is illustrated in Fig. 4. The three
DVs—TA, RPM, and CAM—are the main inputs of this nonline
controller; the Fuel MV is the main output. The DVs are fed to t
input of a Disturbance Analyzer block that approximates the p
DV data sequence as a sequence of step changes and stead
constant setpoint periods. Note that steady-state constant setp
can be considered as a special case of a step: one with zero i
ment. The output of the disturbance analyzer is an approxima
of the DV signal coded through the step parameter vectorp ~11!
and the step timet* . These parameters enter the control comp
tations as described in the previous subsection. As shown in
4, the nominal~approximated! disturbance is subtracted from th
overall disturbance signal to give the approximation residual. T
residual is then fed into a linear time-variant predictive control
described by the first two terms in~43!. Note that the FIR win-
dows in this linear controller are computed based on the s
parametersp and t* as described in Section 2. The output of th
linear controller, which provides compensation for the approxim
tion residual DVs input, is then added to the nominal regim
feedforward that provides an optimal compensation for the no
nal step disturbance.

The most important transient regime computations, shown
single block in Fig. 4, are illustrated in more detail in Fig. 5. T
step parameter vectorp ~11! and the step timet* in ~13!, ~14!
allow the computation of the linearized transient regime mod
This affine input–output model~41! is described by its gains an
offsets. As shown in Fig. 5, these gains and offsets define
nominal disturbance~23! and nominal feedforward~49! to be used
in the control scheme illustrated in Fig. 4. The gains and offset
the model are also used for computing the linear controller ga
~46!. Further, the linearized model allows the prediction of the A
output, as described in the following subsection. This predictio
needed in the on-line update scheme presented below.

Consider now in more detail how the transient regime mo
computations work. This is illustrated in Fig. 6. Based on the s
parameter vectorp ~11! the four pulse responses~26! are approxi-
mated for the steady statesq5v0 ~6! and q5v1 ~7! before and
after the transient respectively, in accordance with~27!, ~28!, ~30!,
~31!, ~32!, and~33!. Based on these FIR approximations, and d
pending on the DV step timet* the approximations for the Jaco
Fig. 4 The overall structure of the designed controller
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Fig. 5 Transient regime computations in the designed controller
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bian matricesGNf1Nh(t2t* ;p) andGV
Nf1Nh(t2t* ;p) ~38! in the

affine predictive model~24! are computed as described in prev
ous section.

In addition to this, the step parameter vectorp ~11! is used to
compute an approximation to the nominal transient descrip
vectors~12!. This computation is describled in more detail in th
next subsection. From the vectors~12! and the step timet* , the
transient regime vectors~21! and ~22! are computed.

The above described controller structure assumes that the
metric vector field mappings~12! describing the nominal regime
dependence on the transient regime parameter vectorp are known
and can be readily approximated. In fact, these mappings are
known and their estimates are dynamically updated on-line ba
on the controller operation data. The next subsection describe
update in more detail.

4.3 Transient Regime Approximation. Similar to the ap-
proximations~27!, ~28!, ~30!–~33!, the vector fields~12! are ap-
proximated by expansions of parametric functions of the vectop
~11!. When presented as linear parametric regressions these
pansions have the form

U* ~p!5ŪF~p!, ŪPRN
*

,Na, F~p!PRNa, (50)

Y* ~p!5ȲF~p!, ȲPRN
*

,Na, (51)

where Ū and Ȳ are weights of the regression andF(p) is the
nonlinear regressor vector containing shape functions for the
proximation. In what follows, the form of the regressor vec
F(p) is chosen once in the beginning of the controller des
process. Conversely, the weight matricesŪ and Ȳ are updated
on-line based on the controller operation observations.

In order to describe the nonlinear regressor vectorF(p), con-
sider the following variables that can be computed from the co
ponents of the vectorp ~11!

TA5~p21p4!/2, DTA5~p42p2!/2, (52)

RPM5p1 , (53)

CAM5p31p5 , DCAM5p52p3 . (54)
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The nonlinear regressor vectorF(p) is chosen semiempirically
in the form of a Chebyshev polynomial network, similar to~30!–
~33!. Several different forms of the regression vector have b
tried in the simulations. The form that was eventually used can
described through the following partial regressor vectors:

XTA~TA!5@C1~0.05TA21! . . . CNTA~0.05TA21!#T, (55)

XD~DTA!5@0.1DTAC1~0.05TA21! . . .

0.1DTACND
~0.05TA21! 0.05DCAM#T, (56)

X5XD~DTA! ^ XTA~TA!, (57)

where ^ denotes a Kronecker~direct! product of matrices and
Cj (x) are the Chebyshev polynomials~30!. Note that the variables
in ~55!–~57! are scaled such that the domain of the parame
values corresponds to each of the five scaled variables~52!–~54!
changing on the interval@21 1#.

The regressor vectorF(p) in ~50!–~51! is defined with help of
~55!–~57! as

f~p!5F X~TA!

X~TA!~0.0025RPM25!

X~TA!~0.05CAM21!
G . (58)

Note that the regression approximation~50!–~51!, ~55!–~58! is
affine in RPM, CAM, andDCAM and defines a strongly nonlinea
dependence on TA andDTA.

4.4 Transient Regime Control Update. Assume that cor-
rect values of the approximation weightsŪ and Ȳ in the regres-
sion approximation~50!–~51! are not exactly known. These
weights can be updated on-line by observing the controller op
tion data.

Consider the following predictive model of the process that c
be obtained by considering one-step ahead prediction only~41!.
Fig. 6 Transient regime model computation in the designed controller
SEPTEMBER 2003, Vol. 125 Õ 435
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ŷ~ t11!5y* ~ t2t* ;p!1n̄TG~ t2t* ;p!~Ût2Û* ~ t2t* ;p!!

1n̄TH~ t2t* ;p!~Ut2U* ~ t2t* ;p!!

1n̄THV~ t2t* ;p!~DVt2DV* ~ t2t* ;p!!, (59)

where ŷ(t11) is a model-based prediction of the process out
andy* (t2t* ;p) is an instantaneous value of the current estim
of the optimal transient obtained as a respective component o
vectorY* (p) ~10!.

Define the model prediction error as a difference between
predicted~59! and measured value of the system output

e~ t !5y~ t !2 ŷ~ t !. (60)

To eliminate the model mismatch error~60!, there is a need to
update the transient response output in the transient model~10! for
the current value of the transient parameterp by

Dy* ~t!5e~t1t* 11!. (61)

By accumulating the component updatesDy* (t) we obtain the
vector updateDY* . Different algorithms for updatingY* can be
used in principle, e.g., update at every time sample or once
every transient. In this project the update ofU* and Y* was
implemented once per each transient. In any case, the approx
tion error can be eliminated by updating the regression weight
the approximation model~51! using the projection update

Ȳ15Ȳ1DY* FT~p!/iF~p!i2, (62)

where Ȳ1 denotes the regression weight matrix~51! after the
update.

An error in the model of the transient process~50!–~51! would
lead to a suboptimal transient feedforwardU* (p). The optimality
of the transient feedforward can be determined directly from
input-output data in the transient. The regression model can
be updated by feeding back the optimality condition error.
derive the optimality condition and the update scheme, assum
linearized model of the relationship betweenU* andY* in ~10!
around the nominal transient. For the derivation it will be assum
that the transient duration is the same as the prediction hori
N* 5Nh . In the vicinity of the transient regime, the followin
affine model relating the transient input estimateÛ* and the tran-
sient output estimateŶ* can be assumed

Ŷ* 5Y* ~p!1G~0;p!~Û* 2U* ~p!!. (63)

The optimal transient process defined by the vectorsU* and
Y* should satisfy an optimality condition of the form~42!. For the
transient process parameters this optimality condition takes
form

J5iŶ*
i21riÛ*

i→min. (64)

By substituting~63! into ~64! and finding an optimum with
respect toÛ* we obtain the optimal transient control sequen
This sequence corresponds to updating the current estimate oU*with the update step

DU* 52~G~0;p!TG~0;p!1rI !21~G~0;p!TY* 1rU* !.
(65)

The update step~65! is the update ofU* for current value of
the parameter vectorp. To achieve this update, the regressi
weight matrixŪ in the approximation model~50! can be updated
by using the projection algorithm as

Ū15Ū1DU* FT~p!/iF~p!i2, (66)

Ȳ15Ȳ1G~0;p!DU* FT~p!/iF~p!i2, (67)

where Ū1 and Ȳ1 denote the updated values of the respect
weight matrices of the regressions~50!, ~51! and the regression
matrix F(p) is as defined by~50!–~51!, ~52!–~58!. The update
436 Õ Vol. 125, SEPTEMBER 2003

rom: http://dynamicsystems.asmedigitalcollection.asme.org/pdfaccess.ash
ut
te
the

the

per

ima-
s in

the
hen
To
e a

ed
on,

the

e.
f

n

ve

~67! for the regression matrixȲ in ~51! complements the updat
of Ū. The update~67! is synchronized with~66! so that for the
current value ofp, the change inY* (p) and the change inU* (p)
are related in accordance with the affine model~63!.

Note that the derived updates of the regression model wei
in ~50!–~51! closely follow the parametric optimization algo
rithms described in@10#. Therefore, the convergence of these u
dates can be established following the results of@10#.

5 Simulation
The overall controller design, implementation and validati

procedure was as follows. First the predictive model of the V
engine was identified and modeled as described above. At
stage, the nominal transient sequences for controlU* and mea-
sured outputY* were initialized to be zero through the entir
domain of the transient parameters. Next, the training of the n
ral network approximator was performed. This training update
performed while running the designed controller with the pla
and on-line updating the approximation for the nominal transie
After the training process convereges, the adaptive~training! up-
date of the control law is disabled. The run-time implementat
of the controller has fixed weights for approximation of the nom
nal transients. The two following subsections present the res
for controller training and verification.

5.1 Controller Design and Training. The receding horizon
predictive control algorithm~48!, ~43!–~49! requires downloading
weights of the Chebyshev network for approximating inpu
output Jacobian matrices. These weights are computed as
scribed in Section 3 and stored in a disk file.

The transient regime update~50!–~51!, ~61!–~62!, ~65!–~67!
based on the transient regime regression approximation~50!–~51!,
~52!–~58! was also implemented as a part of run-time.

After the nonlinear regression approximation schemes in
proximating Jacobians~Sections 3.1 and 3.2! and the transient
regime~Section 3.3! have been chosen, only a few parameters
the controller design need to be selected. These free contr
design parameters were chosen as follows. The control penar
in the performance index~42! was selected to ber50.04. The
predictive control horison was chosen to beNh5Nf590. Finally
the duration of the transient process was assumed to beN* 590.

The developed algorithms were used in learning the trans
feedforward for a generic sequence of step and gradual chang
the disturbance variables as specified in Section 2. In the pro
of training the Chebyshev network~nonlinear regression! for ap-
proximating the transient model, the step changes in the DVs w
processed such that only some of them were selected for the
sient update. The update of the transient model was only
formed if two consecutive steps in the DVs are more thanN*
590 samples apart. In this way a complete transient process
time to evolve and converge to a new steady state. Note that
limitation was only applied to the update of the transient mod
The feedforward based on the transient model for current trans
parameter vectorp was computed in all cases irrespective of t
time interval between two consecutive step changes of the D

Overall, the training~on-line adaptive update! for the nonlinear
Chebyshev network model of the transient was performed for
duration of about 100 000 samples, which corresponds to
hours of real time. In the process of the training the amplitude
the change of DVs was initially scaled down to a fraction of t
full range of the DV change and was gradually expanded be
reaching the full specified range of change for the DVs. In t
way a reasonable amplitude of the transients was mainta
throughout the training process.

5.2 Simulation Results for On-line Operation. After the
completion of the training process, the obtained regression we
matricesŪ ~50! andȲ ~51! were stored into a disk file. By down
loading these matrices into the memory during the controller
Transactions of the ASME
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Fig. 7 Simulation results with the designed controller after the end of the training process.
The plots top to bottom are: The Air–Fuel ratio deviation from stoichiometry, the control effort
„incremental Fuel input …, TA, RPM, and CAM histories
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tialization, the designed nonlinear controller is able to oper
without the necessity of any further training update.

To demonstrate the performance of the obtained controlle
was tested in a simulation run 2000 samples long. Results
illustrated in Fig. 7. The lower three plots in Fig. 7 show t
history of the three DVs: CAM, RPM, and TA~bottom to top!.
The uppermost plot displays the history of the CV output~A/F
deviation from the stochiometry!. This deviation determines th
controller performance. The second upper plot illustrated the
~Fuel input! history. Overall a good quality of the distrurbanc
rejection is demonstrated in Fig. 7.

The controller performance can be described by a single
index

J5(
t51

Ns

y2~ t !, (68)
mic Systems, Measurement, and Control

icsystems.asmedigitalcollection.asme.org/pdfaccess.ash
ate

, it
are
e

V
e

oss

wherey(t) is the plant output~A/F deviation from the stochiom-
etry! at simulation timet andNs52000 is the simulation duration
For the simulation results in Fig. 7 the loss index~68! is

J159.3541. (69)

The performance index value~69! indicates excellent controlle
performance. The results for the designed controller were c
pared with the results for the controller described in@19,20#. The
controller of@19,20# is a nonlinear controller designed assuming
detailed knowledge of the nonlinear dynamics equations for
VCT engine. The loss index for this controller is only about 5
smaller than for the controller developed in this work.

The predictive controller described in this paper is design
using an automated black-box model based process. It has a
regulation performance comparable to that of controller@20#,
which uses a detailed plant model, and depends on the accura
SEPTEMBER 2003, Vol. 125 Õ 437

x?url=/data/journals/jdsmaa/26320/ on 04/28/2017 Terms of Use: http://www.asme.org/about-asme/terms-of-use



a

t

r

0

v

in

w

iv
e

ar
m.

n-
g.,

ng
uver

LQ

s-
e,

lity

ine

y-
ns.

ral

f a

a

Downloaded F
this model. It must be noted here that the controller in@20# had
multiple objectives~good torque response and A/F control~and
used the model to determine the best cam setpoints to meet e
sion objectives!. The main advantage of the controller designed
this work is that it is based exclusively on the input–output d
for the plant and can be used even if a detailed model of the p
is not available.
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