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1 Introduction this paper is in demonstrating a specific nontrivial and novel ap-

d)rgach to resolving the above two issues. The approach applies
i h A . é%-line training of the controller and use of nonlinear parametric
ive controller for disturbance compensation in a nonlinear plarﬁpproximation towards the problem of compensating external
Model predictive contro(MPC) is a well-established industrial measured disturbances

:_echnology useld_lz rr|1any prc_Jce_tss r;lantsl_antq som'\e/lggﬂr a.ppl'c"j‘The reference trajectory about which the system of interest is
lons, €.9., seé . . In a majority of applications, €SN jinearized is affected by disturbance inputs. Here, we consider a
and implementation assumes linear time-invariaiit) models of practically important class of systems in which disturbances are
a process. These models are usually formulat_ed as(.F'ﬁ“?. ssumed to be either slow quasistatic changes or instantaneous
Impulse Respon$ernode|s and can be conv_entlently_ldentlfle tep changes to respective variables. The step disturbances can be
from the input—output data collected in experiments with the prag, o eterized by initial setpoints and an amplitude of the step.
cess. One of the reasons for practical success of MPC is beCajig yenendencies of the reference trajectory and reference control

thedse Fllglmcr)]delg Canfbﬁsgs.”y understoo;lj and |.d$]r}t|f|ed. ;’un the disturbance parameters are approximated using a nonlinear
and troubleshooting o Is conceptually straightforward ang, .5 metric approximation approach similar to neural networks.

directly linked to the model. Specifi L .
. . . ecifically, a form of a multivariable Chebyshev polynomial ex-
According to a recent survg], MPC is advantageous in con- gnsion isyused for the approximation. y poly

strained control problems as well as in unconstrained no”"“é‘)"‘rThough the control technology presented in this paper is meant

plants. Much of the technical MPC literature, includiitd, deals  y, 1)aye more general industrial applicability, the paper is focused

with the former types of problems. This paper is focused on trb% Py ; ; ot

; a specific automotive engine control application—control of a
latter types of problems. Related work includes the paf@+sl. y,iaple cam TimingVCT) internal combustion engine. The use
These papers use linearization around a steady-state regime ;

This paper considers an approach to designing a model pre

. - - ; . S control of the engine. In our earlier pad&, a linear predictive

_In this paper, a nonlinear process is linearized in a vicinity of @cT controller for small-signal fixed setpoint tracking was de-
given reference trajectory. An extension of the MPC for I'neﬁgned in a form suitable for embedded engine controller imple-
time-varying(LTV) plants is considered. In order to formulate anchenation. This paper extends the linear predictive controller de-
implement an MPC controller for an LTV linearization of a nonygioped in[9] toward a nonlinear predictive controller using
linear process, the following issues need to be addresgelde- techniques fronf10-12.
fining a refe_r(_ance trajectory gnd (_:ontrol for the Ilnearlgatlt_mr); The validity of the proposed approach is partially supported by
model identification for the linearized system. A contribution ofyisting theoretical justifications of predictive control in LTV sys-
tems[13,14]. Validity of the approximation based model of the
THEOX&E;%AWS%% Igr:(agti ngi“éﬂ:f?@m& F?gdf Conttf)?l Division gfonlinear system in question is verified by simulation. Another

or publication in jnartant issue is finding an optimal control for the reference

the ASME DURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. . . . . .
Manuscript received by the ASME Dynamic Systems and Control Division, March gransient response to th_e d|5_turbance- This tran5|e_3nt regime CanUOt
2000; final revision, June 26, 2002. Associate Editor: P. Voulgaris. be computed from the linearized model and requires control opti-

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2003, Vol. 125 / 429
Copyright © 2003 by ASME

Downloaded From: http://dynamicsystems.asmedigital collection.asme.or g/pdfaccess.ashx?url=/data/j our nals/jdsmaa/26320/ on 04/28/2017 Terms of Use: http://www.asme.or g/al



tmh!za}tlon fqr the full non_Ilne_ar system. In t_he propose_d approaph, RPM Disturbancg| ] Control
is is achieved by on-line iterative updating in experiments with CAM Variables ] Plant Model Variable
the system. The update is similar to parametric approximation TA (YCT Engine with AIF
algorithms studied 110,12, where convergence proofs are pre- Manipulated A/F Estimator)

sented. Such updates were earlier appliefli to be control of Fuel l}lpalﬁable

transients in an automotive engine, though not in an MPC setting.

When using MPC in process industry applications, high conys
putational capabilities of the hardware and long sampling intervad.gqI
can allow for extensive optimization computations in the feedback
loop. In this paper a nonlinear MPC controller is developed using
a parametric approximation of certain static mappings. Different
parametric approximation schemes for static mappings such
neural networks, Radial Basis Functions, or polynomial networ
are presently well understood, both theoretically and practically, ~ .
At the same time, the developed combination of the MPC al _Is_ﬁ'te thel_effect of (tjhe.DV changltlas. desi he followi
neural network technologies represents a promising novel practi- e nonlinear predictive contlro er design uses the following
cal approach. assumptions about the problem:

Previous approaches that have been applied to automotive e
gine control problems similar to the one considered here inclu
traditional linear feedback control designs based on a lineariz
first-principle nonlinear model of the engif&5,16 as well as a
nonlinear recurrent neural network control|&7,18. The former
approach is problem-specific and requires labor-intensive dev
opment to achieve satisfactory control performance for nonline
regimes. The latter approach is more generic and is based on
on-line update of the controller input—output characteristic
There is, however, little analysis available to support engineeri . . . . . .
methods for design of suchy controllers. The r?(?vel co?ntrol ap(_:‘]The main practical consideration behind A3 and A4 is that the

proach based on the nonlinear MPC methodology proposed in tig1r0lled plant is stable. For a stable plant, a time-limited change
aper has the advantages of the two above anproaches in"the input variables will always cause an asymtotically decaying
pap 9 PP ' transient. For any practical purposes the transient duration can be

) considered finite, hence, the FIR or FSR models are adequate. The
2 Process Model Overview assumptions Al and A2 are practically reasonable for DV inputs

The goal of the VCT engine control, as considered in thiiat are either slowly varying or undergo a step change.
project, is to minimize engine emissions in response to rapidz 2 Nominal Transients. Let us consider a single transient
changes of throtti¢TA), engine speedRPM), and camshaft tim- process caused by a step change in one or more of the DV inputs.
ing (CAM). The three disturbance variables—RPM, TA, anthssume that the step change has occurred at tjvend prior to

CAM—are assumed to change in an uncontrollable way. The COfjs time the system was in the following steady-state regime
troller can modify the Fuel input in response to this change and is

.1 Input and output variables used for the predictive con-
ler design

?/Fuel Ratio (A/F) deviation from the stoichiometry, which
ould be maintained as close to zero as possible at all times and

r{_\l Variations in the DV and the MV are small around a given
ime which is either a steady state-regime or a step change in
with known amplitude.

A2 Given the condition Al, the plant can be linearized around
a given steady-state regime or around a nominal transient regime
81)_rresponding to a step change in DV or MV.

A3 Step changes in the DVs result in Finite Step Response
R transients in the CV.

4 A pulse change in the MV causes a Finite Pulse Response
IR) change in the CV.

required to maintain the Air/Fuel ratig\/F) at the stochiometric u(t)=0, fort<t,, 4)
value of A/[F=14.64 at all times. The controller can use additional
measured variables, such as Mass Air FIOMAF) and Manifold y(t)=0, fort<t,, )
Pressure R,), for computations. This paper uses the model de-
veloped in[15,16,19,20 The VCT engine model was embedded v()=vo=[TAg RPMy CAM,]" for t<t,, (6)

in the simulation software and was used as a black-box for tQPnereu(t) is the MV (Fue) input, y(t) is the CV(A/F deviation

purpose of the controller development. o 3 . ;
: : fl the stoichiometry output, andv(t) e R° is the DV input
The controller design and performance requirements depend B%ptor for the VCT engine system. At time-t, the DV change

the dynamical characteristics of the disturbances acting in the cdl
trol loop. In this project it is assumed that TA and CAM Cadnstantaneously to a new steady state
change in a stepwise manner within a certain range and that RPM v()=v,=[TA; RPM, CAM,]" for t=t, . @)
can change with a bounded increment within some limits. The *
limits and ranges for the disturbance variable change can, in genin (7) it is assumed that unlike TA and CAM, the engine RPM
eral, be described as follows: never changes instantaneously. This is a realistic assumption since
there is inertia in the system associated with the rotating engine
TA() e[7.6, 23, @ parts and the moving vehicle. For automated transmission ve-
RPM(t) e[ 750, 2009, |RPM(t)—RPM(t—1)|<2, (2) hicles, this inertia prevents rapid jumps in RPM for the limited
torque generated by the engine. Slower, not instantaneous, varia-
CAM(t) [0, 39 (3) tions of the DVs including RPM are modeled and controlled in the

The controller performance measure is taken to be a metcl(cher parts of this paper by considering them quasi-static. This

square deviation of the A/F output from the stoichiometry. esz(?tr;tria#]}; n;te:; sck?:rr:;)éng;] %%agneﬁﬁzgdgg;‘%g& t(r;?si?a\éacr)ig-b s

2.1 Model Structure. The first step in controller develop- curred, the engine controller reacts by changing the fuel input
ment is definition and identification of the process model. Thaccording to the control agorithm. Since the control algorithm
model formulated in this section is a nonlinear extension of th@ovides for a stable closed-loop operation, it is assumed that after
linear FIR model considered i®]. Figure 1 illustrates the input a transient process in MV and CV the system returns to a steady
and output variables for the VCT engine control problem. Thstate. Even if the variables might decay asymptotically in the tran-
Manipulated VariablédMV) is the Fuel Input increment, which is sient process, for all practical purposes the transient can be
added to the fuel estimator cascade loop. The Disturbance Vargunted on to have a finite duration, which will be denoted by
ables(DV) are Throttle AnglgTA), Cam Phase ShifCAM), and N, . The change of the DV and MV in the transient can be math-
the Engine SpeedRPM). The Controlled VariablgCV) is the ematically described as
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feasible method to find the approximation is to do a direct search
N S— for all values oft, within the history time horizon. For each value
of t, , the approximation function, (t) (14) is linear in param-
step model etersvy andv . It is straightforward to determine these by mini-
veal DV /m mizing the mean quad_ratlc error of_ t_he approximation. Finding a
evolution Ve value oft, corresponding to the minimum quadratic error of the
\ / approximation, and taking respective values of the parameters
\ andv, solves the approximation problem.
~ time
~  ~J 2.3 Linear Predictive Model in a Vicinity of a Steady-State
tﬁ t Regime. In accordance with the Assumptions A3 and A4, the
dynamical evolution of the system can be defined through its input
Fig. 2 Identification of the step change in the disturbance his- and output variables collected over some history horikign A
tory buffer linear dynamical model of the VCT engine in a vicinity of a
steady-state regime was considered[9. This model has the
form
u,(t—t,), for t,<t<t, +N, N ny  Ng
u(t 0, for t=t, +N, ' ® y0=3 ntout—kr 1)+ 3, 3 hy(kdv; -k 1),
= =1 ic
Y. (t—t,), for t,<t<t, +N, (15)
(t 0, for t=t, +N, ©) whereAv (t)=v(t)—v(t—1)eR"™ is a change in DV at timé,

- . L ny= 3, h(k) e R is an element of the FIR pulse responses for MV,
In the predictive control formulation to follow, it will be con- _° hy,(k) (j=1,2,3;k=1, ... N;) describes the FSR element

Yﬁgaen;é(t)ogescnbe the transient process with the following Wy jth component of the DV vectar(t). The components of the
: v s pulse responses ifil5) can be joined into vectors of the FIR

V. (N,—1) u, (N, —1) model parameters in the following way:
Y= y :(1) , U= u :(1) (10) F:[hl h¥A hEPM hEAM]TE RN, (16)
Yi(o) U:(O) Similar to[9] let us introduce the lifted vectors describing his-

. _ toric input (MV, DV) and output(CV) sequences
The control command sequenté, in the transient process

generated by the control algorithm as well as the respective output y(t) u(t)
transientY, are completely defined by the DV valué8), (7) _ y(t—1) _ u(t—1)
before and after the step change. These values can be collected Yi= : ' t : ’
into a single transient parameter vector y(t—N;+1) u(t—Ng+1)
p=[RPM, TA, CAM, TA; CAM,]". (12) Av(t)
The vectom (11) has only 5 components since(i8) and(7) RPM Av(t—1)
does not undergo any step change. AVi=ve : , (17
The transient regime vectofd0) are defined by the transient Av(t—N;+1)
parameter vectofl1) and these dependencies can be represented f
as two vector fields of the form whereAv (t) =[ATA(t) ARPM(t) ACAM(t)] is a 1X 3 matrix;
Y, e ®Vr; by vec(d), whereA is a matrix, we denote a vector
Us(p), Yi(p). (12)  optained by stacking all entries éfinto a single vector, column

In what follows, the vector field12) are approximated by para- by column; andAV, e 333"
metric functions of the vectqs and the approximations are adap- For the controller design, it is convenient to re-write the model
tively updated based on the system closed-loop performand®) in a predictive form. Let us introduce the predicted future

results. histories of the MV, DV, and CV over a prediction horizdl,
The transient process descriptit8)—(9) is only valid for step
changes in DV or MV that are more th&f, samples apart from y(thh) u(tJ.rNh)
each other. It can, however, be extended towards a more generat, _ : O.= : AV, =0 e %3N
class of disturbances where the DV sequence is either slowly ' | y(t+2) |* ~' | u(t+2) |’ ! '
changing or can be approximated by a step. More specifically, y(t+1) u(t+1)
consider a DV sequence of the form (18)
v(t)=v, (t)+dv(t), (13) where as commonly done in predictive control and similg©iat
is assumed that at any point in time nothing is known about the
. vg, for t,st<t,+N, -1 14 future disturbancedv(7), 7>t, and therefore, they are assumed
0x(t vy, for t=t +N, -1 ' (14) " to be zero.

) ) ) Assume for a moment that(7)=0, AV(7)=0 for 7<<t—N;.
wherevg, v, are as defined it6), (7) anddv(t) is assumed to be | [9], a predictive Linear Time-Invariant model corresponding to

a small deviation from the nominal step input(t). In practice, the steady-state linearizati¢h5) was considered. This model has
the algorithms described in this paper would work evedvift) is  the form

not very small.

In a practical controller, the representati¢i), (14) can be
obtained on-line based on the available DV data sequefige
Consider a DV history with a memory horizd, as illustrated in NetN
Fig. 2. For this sequenceg, v;, andt, in (13), (14) are approxi- WhereGNiNng mNi+Nn NetNn and G/ T e gRNr N 3Ni+Nn) are
mation parameters, whilév(t), is an approximation error. One Toeplitz and block-Toeplitz matrices with the entries consisting of

Y.
Y.

t+Np

U
— NNy Yt
G U

t

A\A/t}

N
6 v

(19)

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2003, Vol. 125 / 431

Downloaded From: http://dynamicsystems.asmedigital collection.asme.or g/pdfaccess.ashx?url=/data/j our nals/jdsmaa/26320/ on 04/28/2017 Terms of Use: http://www.asme.or g/al



the pulse response elemetigk) andhy ;(k) (15), respectively.

In accordance witlg15), vector\?I (18) in (19) does not depend on
u(7) andAwv(r) for 7<<Nj.

QI_Q*(t_t* ;p)
Y=Y, (t=t,;p)

Ut_0*<t_t* vp)}

=GN*Nn(t—t, ;
} ( * P) UI*U*(t*t*;p)

+GL Mt —t, ;p)x

AV— AV, (t—t, ;p)}

2.4 Predictive Model Linearized in a Vicinity of a Tran- AVi= AV, (-1, :p)
sient Process. The LTI model (19) can be generalized to de- (24)
scribe a linearization of the VCT engine plant around a transient
regime caused by a step change of the DV of the fofh@ and where GNi*Na(t—t, ;p) e ‘NN Niv N and GU Mot —t, ;p)
(14). As mentioned above the transient responses are assumedg tgNr+Nn.3Nr+Nn) zre input/output mapping Jacobian matrices.
have a maximum lengtN, . Thus, after a single step change ofThe predictive mode{24) shows that for the DV input6)—(7),
DV occuring att, , for t>t, +N, , the plant dynamics are de- (11) and the MV input(4), (8), (22), the CV output should have
scribed by the steady-state modg$). The same model holds for the form (5), (9), (21).
t<t, because the transient response is causal. In this work, the Jacobian matriceNf*Nn(t—t, ;p) and

Let us now assume that the step tifjeis such thatt—N, Ng+Np, . ) : :
: : G t—t, ;p) are defined off line as discussed below. The
<t =t. In accordance wnk(lQ), (12), the tran5|ent reSpOnsesn(;/mina(l trar?sizaus described b§2) are determined as a result of
(8)—(9) of the MV and CV at timet can be written in the form

. ) an on-line update. This on-line update can be considered as
u, (t—t, ;p) andy, (t—t, ;p). Here, the dependence of the trans, .. " TR
sient response on the transient parameter vextbi) is explicitly training of the controller. Once the training is CO“?P'Et?‘.’ and
emphasized. The assumed dynamical model linearized in the dpproximate models of the nominal transients are identified, the

cinity of a transient response can be mathematically presentquﬂ{mouer can operate on-line W.ith the tran_sien; update dis‘?‘b'.ed-
uch operation without the on-line adaptation is preferred in in-

dustrial practice.

y()=2, h(k—ty;p)lu(t—k+1)—u,(t—k+1+t,;p)]
1

=
Il

3 Process Model Identification

ny - N¢ . . .
The previous section has described the general structure of the

+Z kz hy,j(k—=t, ;p)(K[Avj(t—k+1+t, ;p) nonlinear predictive model used herein for the controller design.
I=1k=1 This section describes the model in more detail and explains how
—Av, j(t—k+1+t,;p)], (20) the model parameters can be identified from the experimental

where the nominal and current DV incremenis;(t;p) and o )

Av, ;(t;p) are defined in accordance with), (7), (11), (13), and 3.1 Mode_l |dent|f|cat|on Issues. _A steady-state regime of
(14). The model20) is an extension of the steady-state linearizethe VCT engine operation can be defined by the following param-
model(15) and, similar to(15), Av(t)=v(t)—v(t—1)eRVisa €ter vector.

change in DV at time, n,= 3, h(k) € R is an element of the FIR =[TA RPM CAM] = 25
for MV, and hy ;(k) (j=1,2,3;k=1,... N¢) describes the FSR a=[ I'=v, (25)
element forjth component of the DV vectar(t). where TA, RPM, and CAM are the average steady-state values of

In accordance with8), (9) the vectors(12) describe the tran- the respective disturbance variables. As a first step in building a
sient process from its beginningtat 0 to its end at=N, — 1. In nonlinear model, let us approximate dependencies on the vgctor
the predictive control formulation, the same transient is describ&p) for the steady-state plant mod€l5). The pulse responses
by the vectorg17), (18). These vectors have length, andN;, (16) define a linearization of the original nonlinear plant in the
respectively. The vectord?) have lengthN, . The vectorg12), Vicinity of a steady-state regime. The plant model depends
(17), (18) describing the same transient are related by the ttmesmoothly on the paramete(®5). Consider the following four
=t—t, elapsed after the DV step that caused the transient. Taooth maphis— RNt
past history and predicted history vectors of the forih# and

(18) in the nominal transient process can be obtained ffb2nin he(d),  ha(@), hrem(@),  hcam(a). (26)
the form. In this work, the nonlinear mappings are approximated by a
N . N regression linear in parameters and with nonlinear regressor vec-
Ye(m,p)e R Y, (7,p) e R, (21)  tor. For a general mapping(q)%R3—9%N1, whereg can represent
N N N any of the four vector field§26), the regression has the form
U,(r,p)eR™; U, (7,p) eRM. (22) N
The vectorg21) and(22) are obtained by padding components of ~ y Dy () =T'W¥ 27
the vectorg12) with zeros on either side. In case if the vegban 9(a) 121 Y@ (@ ")
(21) and(22) corresponds to a zero step,7if-Ns, or if 7<0, the (1) (N
vectors(21) and(22) are zero vectors and the dynamic moti) =[y" . 7] (28)
can be used. _ T
Similarly, consider the disturbance history vectors correspond- V@)=l .. 'wNa(q)] ' (29)
ing to the nominal step disturbanc¢e3) and (14) where y) e ®Nf are parameteréveights of the regression, and

. ) ~ L i(p) e R are scalar-valued nonlinear regression functions. Re-
AV, (mip) e R AV, (7p)=0e RN, (23) " gressions of the forrt27) are widely used in Applied Approxima-
For 0<7<N;s, all components oAV, (7;p) are zero except tion Theory as well as in engineering practice. The regression
for AV, (7;p)=p(4)—p(2), and AV, x, :+.(7;p)=p(5) functions can be polynomials, B-splines, harmonic functions, Ra-
—p(3). dial Basis Functions, wavelets, or other. In this work, Chebyshev
The predictive dynamics modell9) corresponding to(15) Pelynomials are used as the regression function. )
should be replaced by a predictive model corresponding to the!n€ nonlinear regression model7) was built as follows. First
plant linearizatior(20) in the vicinity of the transient dynamics. In the FIR responseg! for steady-state regimes were identified in
accordance with(20), (21)—(23) this predictive model has the the nodesgy® of a regular grid in a domain of the steady-state
form regime parameter vectaor (25). For each parametef® this was
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done by using an input—output experiment with the black bokhe pulse responses are taken to be constant and corresponding to
simulation model of the engine as described9h the respective steady-state outside the time intefial,t,

The regression functiong;(q) were chosen semiempirically. + N, ]. The pulse response approximation on the interval
These regression functions are designed to perform Chebyshgy,t, +N, ] has the following form:
polynomial approximation of the target nonlinear mappings. The S . - . .
Chebyshev polynomial€;(x) are a system of polynomials or-  9(iP)=(1=ali=7)g(i:q0(p)) +a(i = 7)g(i;a(p)),
thogonal on[—1, 1]. These polynomials are defined by the fol- 34)

lowing recursive formulas: 0, j<0
Cix)=1; Co(x)=%; Ci(x)=2xCi_1(X)—=Cj_2(x), a(j)=1 i/dn, 0<j=d, (35)
for i=3. (30) 1, j>dy
The nonlinear dependences of the pulse response ve@®rs ao(p)=[TA, RPM, CAM,]", (36)
on the parameter@5) are such that the strongest nonlinearity is T
associated with change of TA. The dependences on RPM and g.(p)=[TA; RPMy CAM,]’, (37)

CAM are very close to being affine in TA and CAM. To reflectyherei in (34) indexes the pulse response elemeris the input
this, the nonlinear regression functid(q) in (27) was chosen in pyise application time, and, is the model parameter introduced

the form to describe the transient duration.(B#), g(i; 7;p) corresponds to
X(TA) any of the pulse responsé€zb).
W(q)= Xl(TA)(O.10025RPI\/’r5) , (31) For the fuel input response, the Jacobian matrix has the form
X1(TA)(0.05CAM—1) N B he(i—j+1;7;p), i=]

G "(7;p) (38)

X1(TA)=[C(0.05TA-1) ...Cy_,(0.05TA-1)]", (32) 0, i<j
. N¢+N . P

whereC;(x) are the Chebyshev polynomials. The variables TA, EXxpressions foG," ™" are defined similarly td38). The ap-
RPM, and CAM in(31)—(32) are scaled such that the range of th@roximations of the JacobiangN*Nn(t—t, ;p) and G\N,f+Nh(t
scaled variables is close to beifig1, 1. —t, ;p) are defined solely based on the pulse respof&&sden-

The weights of the regression mode7) and (32) can be tified in steady-state. The identification procedure described in
identified by solving the following linear least-square fit probleniore detail in[9] is straightforward. A potential downside of such

_ . (1) (Ng\T_ (1) (N2 a simplified easy-to-build model is that it might be potentially
F=argmif[[¥(q™) ... ¥(q™)]-[g(a™) ... g(q™ )](ég) inaccurate because somewhat arbitrary assumptions were made.

The simulation results presented below, however, show that such a

where||-||r is a Frobenius norm of the matrix andy denotes model is adequate for the design of the proposed controller and
number of the nodes in the data grid. The Moore—Penrose pseudohieves a good disturbance rejection. The performance is
inverse solutiorl” to (33), (27)—(29) can be easily computed.  achieved because the control scheme developed herein tunes the

The accuracy of the nonlinear approximati@y), (28), (30)— feedforward parameters in an on-line adaptation process. An error
(33), depends on the maximal degrlg,, of the approximating in the Jacobians might slow down convergence on the adaptive
Chebyshev polynomials i81), (32). By approximating the pulse update without having a major influence on the performance that
response$26) computed on a grid of the parameter values, it wais eventually achieved.
found thatNc,=7 provides an optimal tradeoff between the ap- . . . ) -
proximation accuracy and the numteéy of the regressiofshape 3.3 Nominal Transient Regime. In I\t‘th affine predictive
functions ¢;(q) used in the expansiof27). For N¢,=7, the re- mgfied (24) the Jacobian matricesG™ " "n(t—t, ;p) and
gressor vecto® (q) (31), (32) hasN,=21 components. The rela- G,,"" ""(t—t, ;p) defined in accordanc&8) characterize the in-
tive accuracy of such approximation was checked on regular gpdt output dependency slope. The intercept of this dependency is
of the 11X4X4=176 nodes covering the domain of the transierdefined by the nominal transient regime vect@%) and(22). As
parameter§ TA RPM CAM](26) The 176 responses correspondmentioned above, the latter are obtained by padding components
ing to the grid nodels were identified from the simulated experef the vectord, (p) andY, (p) (12) with zeros. In what follows,
ments and had the approximation error better than 3%. the mappingsJ, (p) and Y, (p) defining the nominal transient

will be approximated by a Chebyshev network. This approxima-

3.2 Approximation Model of the Transient Regime tion cannot be dett_ermined from the identification of the stead_y

Jacobian. Now consider a nonlinear transient regime correstate regime behavior of the plant as done above for the Jacobian

sponding to a step change of DV as defined(Byand (7) and matrices. Instead, the approximations for the mappidggp)
described by the transient parameter ve¢id. If the DV step andY, (p) will be determined as a result of a closed-loop update
change occurs at timg, , the transient process will take a finiteProcess with the operating engine. This closed-loop update is the
duration of time betweety, andt, +N, , whereN, describes the Major new algorithm developed in this work and it is described in
transient duration. Fot<t, andt=t, +N, the system can be SOMe detail in the next section. The overall structure of the control
considered in a steady state and a steady-state linearized moddp@p With the described update of the nominal transient process is
the process pulse response can be used. This model can be cBiirated in Fig. 3.
puted through the parametric approximation as described in the
previous subsection. Lag(go(p)) € RNt and g(q,(p)) € KN be
such approximations of the pulse responses, whgfe) =voand 4 predictive Controller Design
g.(p)=v, are related to the parameter vecr(11) in accor- ) ) i o
dance with(6) and (7). The previous sections have defined the predictive ma2#l

The predictive mode(24) requires defining the Jacobian matri-rélating the DV input(6)—(7), (11) and the MV output(4), (8),
cesGNNn(t—t, :p) and Gcfmh(t_t* 'p). Columns of these (10), (22), to the CV outputb), (9), (10), (21) of the process. This

. . o section uses this model to build a nonlinear receding horizon
matrices are pulse responses of the process linearization arouBflroller

the nominal transient regime. In this work, the transient pulse
responses are approximated by assuming linear interpol@i&on 4.1 Optimization Problem and the Control Law. To de-
scheduling of the response shape during the transient processesge the predictive control optimization problem, let us partition
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- = —t MTC(t—t - -1
TA E;ﬁ;;iz:i;g Fuel VCT Engine with AJE R=(G(t=t,:p) G(t=te:p)+pl) 7, (48)
RPM > Controller MAF compensator
CAM Mol f(H)=-Z{G(t—t, ;p)RM, (49)
/ +
predicted A/F T where G(t—t, ;p), H(t—t,;p) are defined by(39), Hy(t
Identification and —t, ;p) is defined by(40), R, is defined by(48), andZ; is defined
| model update by (47). Note that the control law43) has the form similar to that
of the predictive control law derived if@] for the disturbance
Fig. 3 Transient regime model computation in the designed rejection in the vicinity of a steady-state regime. There are two
controller main features in(43) that reflect the fact that it is derived for

control of nonlinear transients. First, 43) there is a feedforward
term f(t) (47), (49) that is aimed at optimization of the nominal
. NetNrry s Ni+Nnry s oy transient. Second43) is a time-variant control law because it is
the matngesG (-t ,.p) and G, (t, ,t* jp) in the obtained by linearization of a nonlinear process around a transient
model (24) in accordance with the vector partitioning as regime. This is reflected in the FIR windows(t) andhp(t) (46)
G(t—t, :p) H(t—t, ;p) being time-varyng.
G n(t—t, ;p) =
4.2 Controller Structure. The overall structure of the de-
< RNr N NEEN (39) signed controller(43)—(49) is illustrated in Fig. 4. The three
’ DVs—TA, RPM, and CAM—are the main inputs of this nonlinear

N oo Hy(t—t, ;p)} controller; the Fuel MV is the main output. The DVs are fed to the

Gy

Nt —t, :p)= e RNFNSINEEND - input of a Disturbance Analyzer block that approximates the past
DV data sequence as a sequence of step changes and steady-state
(40) constant setpoint periods. Note that steady-state constant setpoints
where ... denotes the terms irrelevant for subsequecdn be considered as a special case of a step: one with zero incre-
calculations. ment. The output of the disturbance analyzer is an approximation
Following the model24) and notation(18), the predicted fu- of the DV signal coded through the step parameter vegtdrl)
ture values of the process output can be represented in the fornd the step timeé, . These parameters enter the control compu-

tations as described in the previous subsection. As shown in Fig.

Y=Y, (t=t, ;p) +G(t—t, :p)(U= U, (t—t, ;p)) 4, the nominalapproximateti disturbance is subtracted from the
o _ o overall disturbance signal to give the approximation residual. This
FHE-L P (U= UL (-t 5p) residual is then fed into a linear time-variant predictive controller
+Hy(t—t, i p)(AV— AV, (t—t, ;p)). (41) described by the first two terms i@3). Note that the FIR win-

. . . dows in this linear controller are computed based on the ste
In accordance with the standard receding-horizon controlr?{g P P

; e arameterp andt, as described in Section 2. The output of the
\?vrilcl)abcgif)l[\?é[g at each step the following optimization problemj,e ;. controller, which provides compensation for the approxima-

tion residual DVs input, is then added to the nominal regime
J=|I?1||2+p|\0t||2—>min, (42) feedforwa_rd that provides an optimal compensation for the nomi-
nal step disturbance.
wherep is a scalar controller design parameter defining a tradeoff The most important transient regime computations, shown as a
between performance and robustness. By substitu#ly into  single block in Fig. 4, are illustrated in more detail in Fig. 5. The
(42) and finding an optimum with respect td,, we obtain the step parameter vectqr (11) and the step timé, in (13), (14)
optimal predicted control sequence. In the receding horizon algaifow the computation of the linearized transient regime model.
rithm, only the first value of the computed optimal control seThis affine input—output modé#1) is described by its gains and
quence is applied. The optimal control is then re-computed at tb#sets. As shown in Fig. 5, these gains and offsets define the
next step. This control law can be presented in the form nominal disturbanc€3) and nominal feedforwart#9) to be used
in the control scheme illustrated in Fig. 4. The gains and offsets of

T W7
u(t+1)=—hc(U—hp(AV+ (1), 43) the model are also used for computing the linear controller gains
hi(t)=H(t—t, :p)TG(t—t, :p)RN, 44 (46). Further, the linearized model allows the prediction of the A/F

c(t) (=L ip) G-t PR (“4) output, as described in the following subsection. This prediction is
ho(t)=Hy(t—t, ;p)TG(t—t, ;p)RN, (45) needed in the on-line update scheme presented below.

_ T Consider now in more detail how the transient regime model

n=[0 ... 0 1], (46)  computations work. This is illustrated in Fig. 6. Based on the step

parameter vectgp (11) the four pulse respons€g6) are approxi-

Zi==Y, (=t ;p) + Gt ;p)Uy (1=, ;p) mated for the steady states=v, (6) andq=v, (7) before and

+H(t—t, :p)U, (t—t, :p) after the transient respectively, in accordance W&, (28), (30),
oI * (31), (32), and(33). Based on these FIR approximations, and de-
+Hy(t—t, ;p)AV, (t—t, ;p), (47) pending on the DV step timg, the approximations for the Jaco-
TA Linear
RPM™ Predictive
CAM Nominal Controlier
step ?ﬁwﬁr:ﬂc&w Linearized
: Transient d
ayore - ] regime ol fondtorward
fime | mode!
Fig. 4 The overall structure of the designed controller
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Nominal disturbance
Nominal >
disturbarnce, Nominal feedforward
step | Transient gains__ | (feedforward
—Pregime > |and output Nominal .
—inZ model v output Model-based) Fredicted A/F
L L >
e Linearized Linearized ) prediction
modeil
model Linear controller gaing
computation ganz

Fig. 5 Transient regime computations in the designed controller

bian matriceGN Nt —t, ;p) andG\N/ﬁNh(t,t* 'p) (39 inthe The nonlinear regressor vect®(p) is chosen semigmpirically
affine predictive mode(24) are computed as described in revio, the form of a Chebyshev polynomial network, similar(&9)—
ous seF():tion P P (33). Several different forms of the regression vector have been

In addition to this, the step parameter veqiof11) is used to tried in the simulations. The form that was eventually used can be

L . ! . described through the following partial regressor vectors:
compute an approximation to the nominal transient description

vectors(12). This computation is describled in more detail in the .
next subsection. From the vectds?) and the step time, , the X7a(TA)=[C1(0.05TA-1) ...Cy a(0.05TA-1)]", (55)
transient regime vector®1) and(22) are computed.

The above described controller structure assumes that the para- _ B
metric vector field mapping6l2) describing the nominal regime Xp(ATA)=[0.1ATAC,(0.05TA-1) . ..
dependence on t_he transient regime parameter vpcam_known O-MTACND(0-05TA— 1) 0.0,ACAM]", (56)
and can be readily approximated. In fact, these mappings are un-
known and their estimates are dynamically updated on-line based
on the controller operation data. The next subsection describes the X=Xp(ATA)®@X7a(TA), (57)
update in more detail.

: : . : - here ® denotes a Kroneckeirec) product of matrices and
4.3 Transient Regime Approximation. Similar to the ap- w . ;
proximations(27), (28), (30)—(33), the vector field412) are ap- C;(x) are the Chebyshev polynomid0). Note that the variables

proximated by expansions of parametric functions of the vqco:torin (55—(57) are scaled such that the domain of the parameter

(11). When presented as linear parametric regressions these Y%—ues. corresponds to each of the five scaled varigis-(54)
pansions have the form changing on the intervg-1 1]. _ _ _
The regressor vectab(p) in (50)—(51) is defined with help of

U,(p)=Ud(p), UeRMNa d(p)enr, (50) (55-(57 as

Y (p)=Y®(p), YeRMNa, (51) X(TA)
whereU and Y are weights of the regression ade(p) is the é(p)=| X(TA)(0.0025RPM-5) | (58)
nonlinear regressor vector containing shape functions for the ap- X(TA)(0.05CAM-1)

proximation. In what follows, the form of the regressor vector

®(p) is chosen once in the beginning_of the_controller design ngte that the regression approximatieg®)—(51), (55)—(58) is

process. Conversely, the weight matriddsand Y are updated affine in RPM, CAM, andACAM and defines a strongly nonlinear
on-line based on the controller operation observations. dependence on TA anATA.

In order to describe the nonlinear regressor vedi¢p), con- ) )
sider the following variables that can be computed from the com-4.4 Transient Regime Control Update. Assume that cor-
ponents of the vectgp (11) rect values of the approximation weightsandY in the regres-
sion approximation(50)—(51) are not exactly known. These

TA=(p2+Pa)/2, ATA=(pa—p2)/2, (52)  weights can be updated on-line by observing the controller opera-
RPM=p,, (53) tion datg. . o
Consider the following predictive model of the process that can
CAM=ps+ps, ACAM=ps—p;3. (54) be obtained by considering one-step ahead prediction @dly
NN Approximator 1/0 Jacobian 6 i 2t
TAL for FIR steady for the transient inearization,,
TA2 step state model —» at current time gains
RPM parameter . ]
CAML vector p « | NN Aproximator Current segments| . _ . ..
CANZ for transient I/0 of the transient 2?:::1;“""}
Uand ¥ »| (past, prediction)
step
time 7
A/F prediction Tdentification
error update
(NN training)

Fig. 6 Transient regime model computation in the designed controller
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J(t+1)=vy, (t—t, :p)+n'G(t—t, :p)(0,— 0, (t—t, : (67) for the regression matriX in (51) complements the update
v )7V (7P (LU Ua = tp)) of U. The updatg67) is synchronized witH66) so that for the
+RTH(t—t, ;p)(U— U, (t—t,:p)) current value o, the change iy, (p) and the change it (p)
— . i are related in accordance with the affine mod@s).

T HVE= L) AV AV, (1L 5p)), (59) Note that the derived updates of the regression model weights
wherey(t+1) is a model-based prediction of the process outpin (50)—(51) closely follow the parametric optimization algo-
andy, (t—t, ;p) is an instantaneous value of the current estimatéhms described in10]. Therefore, the convergence of these up-
of the optimal transient obtained as a respective component of tigies can be established following the result§16X.
vectorY, (p) (10).

Define the model prediction error as a difference between the
predicted(59) and measured value of the system output 5 Simulation

e(t)=y(t)—9(1). (60) The overall controller des_ign, implem_en_tation and validation
procedure was as follows. First the predictive model of the VCT
To eliminate the model mismatch err@®0), there is a need to engine was identified and modeled as described above. At this
update the transient response output in the transient nib@efor  stage, the nominal transient sequences for cotdrpland mea-
the current value of the transient parametdsy sured outputY, were initialized to be zero through the entire
_ domain of the transient parameters. Next, the training of the neu-
AYx(r)=e(rti 1), (61) ral network approximator was performed. This training update is
By accumulating the component updateg, (t) we obtain the performed while running the designed controller with the plant
vector update Y, . Different algorithms for updatiny, can be and on-line updating the approximation for the nominal transients.
used in principle, e.g., update at every time sample or once piditer the training process convereges, the adap(iraning up-
every transient. In this project the update Wf and Y, was date of the control law is disabled. The run-time implementation
implemented once per each transient. In any case, the approximgthe controller has fixed weights for approximation of the nomi-
tion error can be eliminated by updating the regression weightsnal transients. The two following subsections present the results
the approximation modeébl) using the projection update for controller training and verification.

7+:7+AY*(DT(D)/“¢(p)”2‘ (62) 5.; _Controller Desi_gn and Training. The _receding horiz_on

_ predictive control algorithng48), (43)—(49) requires downloading
where Y, denotes the regression weight mat(&l) after the weights of the Chebyshev network for approximating input—
update. output Jacobian matrices. These weights are computed as de-

An error in the model of the transient procé56)—(51) would  scribed in Section 3 and stored in a disk file.

lead to a suboptimal transient feedforwaig (p). The optimality The transient regime upda{®0)—(51), (61)—(62), (65)—(67)
of the transient feedforward can be determined directly from theased on the transient regime regression approximéi@r-(51),
input-output data in the transient. The regression model can th@&2)—(58) was also implemented as a part of run-time.
be updated by feeding back the optimality condition error. To After the nonlinear regression approximation schemes in ap-
derive the optimality condition and the update scheme, assumeraximating JacobiangSections 3.1 and 3)2and the transient
linearized model of the relationship betwedp andY, in (10) regime(Section 3.3 have been chosen, only a few parameters of
around the nominal transient. For the derivation it will be assumelde controller design need to be selected. These free controller
that the transient duration is the same as the prediction horizaesign parameters were chosen as follows. The control pemalty
N, =Nj. In the vicinity of the transient regime, the followingin the performance index2) was selected to bp=0.04. The
affine model relating the transient input estiméitg and the tran- predictive control horison was chosen to ldg=N;=90. Finally

sient output estimatéf* can be assumed the duration of the transient process was assumed td,be90.
R . The developed algorithms were used in learning the transient
Y, =Y. (p)+G(0;p)(U,—U,(p)). (63) feedforward for a generic sequence of step and gradual changes in

the disturbance variables as specified in Section 2. In the process
of training the Chebyshev netwofkonlinear regressiorfor ap-

roximating the transient model, the step changes in the DVs were

[fQ)' cessed such that only some of them were selected for the tran-

sient update. The update of the transient model was only per-
I=[%, 112+ p| O, = min. (64) formed if two consecutivz_e steps in the DVs are more than

=90 samples apart. In this way a complete transient process has

By substituting(63) into (64) and finding an optimum with time to evolve and converge to a new steady state. Note that this

respect toU, we obtain the optimal transient control sequencdimitation was only applied to the update of the transient model.
This sequence corresponds to updating the current estiméatg of The feedforward based on the transient model for current transient

The optimal transient process defined by the vectdgsand
Y, should satisfy an optimality condition of the for@#2). For the
transient process parameters this optimality condition takes
form

with the update step parameter vectop was computed in all cases irrespective of the
T 1 T time interval between two consecutive step changes of the DVs.
AU, ==(G(0;p) 'G(0;p)+pl) H(G(0;p) Yy +pUy). Overall, the trainingon-line adaptive updatdor the nonlinear

Chebyshev network model of the transient was performed for the

The update steg65) is the update ofJ, for current value of duration of about 100000 samples, which corresponds to 5.5
the parameter vectop. To achieve this update, the regressiofours of real time. In the_ process of the training the amplitude of
weight matrixU in the approximation modeb0) can be updated the change of DVs was initially scaled down to a fraction of the

by using the projection algorithm as full range of the DV change and was gradually expanded before
o reaching the full specified range of change for the DVs. In this
U, =U+AU, T (p)/|®(p)]? (66) way a reasonable amplitude of the transients was maintained

throughout the training process.

- . T 2
o Y+:Y+G(0,p)AU*<I> (P2 ©7) 5.2 Simulation Results for On-line Operation. After the
whereU, and Y. denote the updated values of the respectiveompletion of the training process, the obtained regression weight
weight matrices of the regressiof0), (51) and the regression matricesU (50) andY (51) were stored into a disk file. By down-
matrix ®(p) is as defined by50)—(51), (52)—(58). The update loading these matrices into the memory during the controller ini-
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VCT ENGINE SIMULATION: TRAINING UPDATE FOR A TRANSIENT
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Fig. 7 Simulation results with the designed controller after the end of the training process.
The plots top to bottom are: The Air—Fuel ratio deviation from stoichiometry, the control effort
(incremental Fuel input ), TA, RPM, and CAM histories

tialization, the designed nonlinear controller is able to operateherey(t) is the plant outputA/F deviation from the stochiom-

without the necessity of any further training update. etry) at simulation time& andNg= 2000 is the simulation duration.
To demonstrate the performance of the obtained controller,Fbr the simulation results in Fig. 7 the loss indé$) is

was tested in a simulation run 2000 samples long. Results are

illustrated in Fig. 7. The lower three plots in Fig. 7 show the J1=9.3541. (69)

history of the three DVs: CAM, RPM, and Tfbottom to top.  The performance index valug9) indicates excellent controller

The uppermost plot displays the history of the CV outoM~  performance. The results for the designed controller were com-

deviation from the stochiometryThis deviation determines the hared with the results for the controller describedi8,2d. The

controller performance. The second upper plot illustrated the ntroller of[19,20 is a nonlinear controller designed assuming a

(Fuel inpuy history. Overall a good quality of the distrurbancejetajled knowledge of the nonlinear dynamics equations for the

rejection is demonstrated in Fig. 7. ) ) VCT engine. The loss index for this controller is only about 5%
The controller performance can be described by a single logaller than for the controller developed in this work.

index The predictive controller described in this paper is designed
Ng using an automated black-box model based process. It has a A/F
J:E y2(1), (68) regulation performance comparable to that of contro[20],
t=1 which uses a detailed plant model, and depends on the accuracy of
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. - . Control, 42, No. 7, pp. 912-927.

used the model to determine the best cam setpoints to meet enyisy ontro o 1 PP
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for the plant and can be used even if a detailed model of the plafi2] Gorinevsky, D., and Vukovich, G., 1998, “Control of flexible spacecraft using

is not available. nonlinear approximation of input shape dependence on reorientation maneuver
parameters,” Control Eng. Prach, No. 2, pp. 1661-1671.

[13] De Nicolao, G., and Strada, S., 1997, “On the stability of receding-horizon LQ

References control with zero-state terminal constraint,” IEEE Trans. Autom. Con#a),
[1] Bitmead, R. R., and Wertz, VAdaptive Optimal Control: The Thinking Man's pp. 257-260. ) ) ) )
GPC, Prentice-Hall, Englewood Cliffs, NJ, 1990. [14] Zheng, A., and Morari, M., 1994, “Robust control of linear time-varying sys-
[2] Garcia, C. E., Prett, D. M., and Morari, M., 1989, “Model predictive control: tems with constraints,” Proc. American Control Conf., Baltimore, MD, June,
Theory and practice—a surveyAutomatica 25, No. 3, pp. 335—348. pp. 2416-2420.
[3] Muske, K. R., and Rawlings, J. B., 1993, “Model predictive control with [15] Hsieh, S. C., Stefanopoulou, A. G., et al. 1997, “Emission and drivability
linear models,” AIChE J.39, No. 2, pp. 262—287. tradeoffs in a variable cam timing S| engine with electronic throttlerdc.

[4] Qin, S. J., and Badgwell, T. J., 1997, “An overview of industrial model pre- American Control Conf.Albuquerque, NM.
dictive control technology, Chemical Process Control;\édited by J. C. Kan-  [16] Jankovic, M., and Frishmuth, M., 1997, “Disturbance rejection in Sl engine
tor, C. E. Garcia, and B. Carnahan, pp. 232-256, Tahoe, CA. with variable cam timing,”Proc. American Control ConfAlbuquerque, NM.

[5] Maine, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., 2000{17] puskoris, G. V., and Feldkamp, L. A., 1994, “Neurocontrol of nonlinear dy-
“Constraint model predictive control: Stability and optimalityXutomatica namical systems with Kalman filter-trained recurrent networks,” IEEE Trans.

306' NF’- ? pp. 78’?/'—81,4- g i R, 1097 “Stabilizing Predicii Neural Netw.,5, No. 2, pp. 279-297.
[6] De Nicolao, G., Magni, G., and Scattolini, R., 1997, “Stabilizing Predictive [18] Puskoris, G. V., Feldkamp, L. A., and Davis, Jr., L. I., 1996, “Dynamic neural

control of nonlinear ARX models,Automatica 33, No. 9, pp. 1691-1697. : vahinla i »

[7] Parisini, T., and Zoppoli, R., 1995, “A receding-horizon regulator for nonlin- Eetwlo(;k meT:gf izgl(')ed to on-vehicle idle speed control,” Prac. IBEE,
ear systems and a neural approximatioAytomatica 31, pp. 1443-1451. 0. 10, pp. - i B .

(8] Prasad, G., Swidenbank, E., and Hogg, B. W., 1998, “A local model networkd19] Stefanopoulou, A. G., Cook J. A. et al., 1998, “Control-oriented model of 2
based multivariable long-range predictive control strategy for thermal power ~ dual equal variable cam timing spark ignition engin&SME Journal of Dy-

plants,” Automatica 34, No. 10, pp. 1185—-1204. namic Systems, Measurement and Control .

[9] Gorinevsky, D., Cook, J., Feldkamp L., and Vukovich, G., 1999, “Predictive [20] Stefanopoulou, A. G., Cook J. A. et al., 1995, “Modeling and control of a
design of linear feedback—feedforward controller for automotive VCT en- spark ignition engine with variable cam timingProc. American Control
gine,” American Control Conferenc&an Diego, CA. Conf, Seattle, WA, pp. 2576—2581.

438 / Vol. 125, SEPTEMBER 2003 Transactions of the ASME

Downloaded From: http://dynamicsystems.asmedigital collection.asme.or g/pdfaccess.ashx?url=/data/j our nals/jdsmaa/26320/ on 04/28/2017 Terms of Use: http://www.asme.or g/al



