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Abstract—The paper considers one of the fundamental issues  This paper primarily pursues frequency domain representa-
in design and analysis of sampled multidimensional systems tion and analysis. In the frequency domain analysis of sampled
- that of uncertainty modeling and robust stability analysis.  1idimensional systems, multiple complex Laplace variables

Methods of structured uncertainty analysis (u-analysis) are . . S
extended towards systems with dynamical and non-causal spatial are introduced to represent the shift operators in time and along

coordinates. The stability is understood in a broad sense and Spatial coordinates, e.g., see [4]. Thus, study of the dynamical
includes decay (localization) of system response along the non-properties for such systems is replaced by complex analysis of
causal spatial coordinates. Robustness of dynamical stability the resulting multivariable transfer functions. A very efficient
and spatial localization of response and boundary effects are yainematical approach for dealing with a practically important
addressed in a unified way. The main technical condition enabling . Lo . .

the technical results of the paper is that the feedback loop class_ of ratlongl multivariable cc_)mplex functions is based
including a multidimensional plant and controller does not have On Linear Fractional Transformations (LFTs) [31]. The LFT
a feedthrough in the dynamical (time) coordinate sense. As approach is very attractive for this work because it provides a

an example, the paper applies the multidimensional structured convenient way to incorporate structured uncertainty models
uncertainty analysis to closed-loop control of a cross-directional into the analysis [31]

paper machine process. The paper formulates multidimensional ’
models of the process, its controller, and a structured uncertainty.  Systems with rational multivariable transfer functions can

The uncertainty corresponds to a combination of errors in the  phe modeled using finite difference equations in time and in

actuator mapping, the cross-directional response gain, and the 1 iinje spatial coordinates. The equations might contain un-
response width. - . . . .

o _ y certain parameters or functions. Multidimensional difference

Inlde_x Ter:lns— mgltlg]mggsmgal system, robust stability, mu  equation systems, possibly with uncertainties are considered

analysis, well posed, distributed process in [2], [31]. These are Roesser systems [24], causal in all

coordinate variables that can be represented in the form
I. INTRODUCTION

INEAR sampled multidimensional systems have been
studied in many applications, most prominently in array zolt +1,k1,. .. k)
signal processing, image processing, and numerical metho le(t, ey 4+ 1, k)
for solving partial differential equations. Presently, control )
applications for systems incorporating large actuator and sen- :
sor arrays are becoming increasingly important. Theory and @n(t, k1,...,k, +1)
applications of array signal processing are well established. = [zf T .0 20T ()
At the same time, applied analysis approaches to control _
systems with large distributed actuator and sensor arrays are Ytk k)= Gt by, ok + DA3)
much less developed. This paper aims to establish fundamental
robust stability analysis concepts for practical analysis of
multidimensional systems similar to existing concepts for muf!
tivariable control systems [12]. Although the main focus an

motivation for this work is in feedback control applications, it B, C, D are constant matrices of appropriaie sizes. An

is believed that the results and concepts can be useful in otﬂgﬂomy ofa R(_)esser s_y;'Fem can_b_e cc_)mpute_q f“’”.‘ the_ Input
applications. u by propagating an initial condition in positive directions

This paper focuses on Linear Spatially Invariant (LS long each coordinate. The stability and robustness analysis

systems. Modal decomposition of such system can be obtai roaches for such systems are conceptually straightforward

through spatial Fourier transform; see [1] for discussio _xtensions of the approaches for standard dynamical systems

Spatial frequency analysis of array control systems is in ma gpendmg on time only.
respects similar to usual frequency domain analysis of LinearUnfortunately, in many (perhaps most) important practical
Time Invariant (LTI) dynamical systems. The multidimenapplications, multidimensional systems are not causal in spa-
sional frequency domain analysis is used in image processiiaj coordinates, and Roesser models are not applicable. An
[4] and stability analysis of finite-difference PDE solvers [23]-FT-based approach to analysis and control design for non-
_ _ _ causal multidimensional systems was proposed in [8] and is
Honeywell Laboratories, Freemont, CA 94539; gorlnevsky@leee.or{;i_,jrther developed in a number of follow-on papers including
dimitry. gorinevsky@honeywell.com
Honeywell Laboratoriess, Minneapolis, MN 55418 [9], [10]. These papers consider non-causal pseudo state-gpaseises

= Axz(t,ki,...,k,) + Bu(l)

hereuw = wu(t, k1,...,kN), ¥, 2, o, ..., T, @re vector-
lued multidimensional functions of integer arguments and
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models of the form corresponding to the same transfer function. This realization
zo(t+1,k1, ..., ky) cor_responds _to the update in (7) being performed in the the
zy(t ki +1,... ky) anti-causal direction and has the form
eoa(tk =1 kN) | = At k... kn) + Bu, (4) il
. x(k) = Z a "w(k+n) 9
n=0

:L'_n(t, kl, ey kN - 1)
z=[l 2T 27, ... 2T 17, (5) Clearly, stability properties and behavior of the system (9) are
" different from those of system (7) realized as (8). In other
ylt k.o k) = Calt by, k) + Du, (8) yyorgs, the stability conditions derived in [8], [9], [10], are
wherey, z, zo, ..., z_n, u = u(t,ky1,...,ky) are vector- necessary, but not sufficient. Some closely related issues for
valued functions and4, B, C, D are constant matrices ofdouble-sided time axis setups were recently brought to the
appropriate sizes. The system (4)—(6) can be representec@@ntion of the control community in [21].
an LFT of a constant matrix with a frequency structure that One contribution of this paper is in identifying a large
includes discrete Laplace variables for the spatial coordina®lgss of practically important multidimensional systems with
and their inverses. In [8], [9], [10] the stability, closed-loomon-causal coordinates for which closed-loop BIBO stability
control design, and other dynamics issues for such multigionditions derived for multidimensional transfer function are
mensional systems are studied through algebraic propertiesisob sufficient. The example system (7) does not belong to this
the multivariable transfer functions given by the LFT. class. The key property of systems in this class is that their
For causal systems, including Roesser multidimensiorgdmpled-time feedback loops do not have direct feedthrough
systems (1), the ambiguity between a transfer function atefms (i.e. there is a delay in the causal time coordinate). If
one of its realizations “is benign and convenient and cahis property holds, the closed-loop system will be well posed
be always resolved from the context” [31, Section 10.2, pthenever both the multidimensional plant and the controller
257]. Unfortunately this is not the case for non-causal multie separately well posed. In practice, a sampled-time feedback
dimensional systems. First, it is important to note that unlikeop would never have feedthrough terms because of the com-
(1)—(3) the equations (4)—(6) cannot in fact be consideredpatation and communication delay inherent in the feedback
realization of a non-causal multidimensional system. Some @introl. In most practical cases, it can also be established
the update schemes corresponding to an “equivalent” modigi-front whether the plant and the controller realization are
of the form (4)—(6) can be stable, others unstable in the nageparately spatially stable (well-posed).
causal coordinates. This is similar to the mathematical theoryThe main theoretical contributions of this work are: (i)
of PDEs where key issues of existence, uniqueness and welarification of robust stability and well-posedness issues for
posedness of solution need to be resolved before analytigalltidimensional systems; (ii) definition of practical analysis
techniques, such as ones based on operator transforms, caagpeoaches for such systems based on an extension of existing
used. pu-analysis tools; and (iii) natural integration of the modeling
Well posedness of a multidimensional system means tl@ator caused by boundaries into the analysis framework. The
its pulse response is absolutely summable along the spaisalue of boundary effects was brought up in the recent litera-
coordinates. This property is accepted as a basic assumptiore on the subject (e.g., see [10]), but no convenient analysis
in [8], [9], [10]. For a system given by equations (4)—(6)approach has been proposed so far.
these papers assume dealing with a unique well-posed systemis an example, the proposed multidimensional structured
realization, if such exists. Unfortunately, there are problemscertainty analysis fanalysis) methodology is applied to
with using such approach in control loop analysis. Considelosed-loop control of a cross-directional (CD) paper ma-
the following simple closed-loop system of the form (4)—(63hine process. CD control of paper machines is perhaps the
with one non-causal coordinate. most prominent example of a real-life industrial systems with
. . ) spatially distributed measurement and control actuation. CD
ok +1) = u(k), u(k) = az(k) + w(k), (7) control design and analysis are the subject of many of papers.
wherew(k) is a feedforward input. It is implied in (7) andMost relevant to this work are [25], [26], [27], [13], discussing
we assume that the solutianis computed from the inputy tuning and analysis of CD controllers with industrially es-
by performing the update in the causal direction (the directidablished structures. The example of this paper shows how a
of increasing indext). This solution can be described by astructured uncertainty analysis of such closed-loop CD control

)

convolution systems can be carried out in a computationally efficient way
o while maintaining insight into the process.
2(k) = a"w(k —n) (8)  The paper is organized as follows: Section 2 provides a
n=1 formal problem statement and studies well-posedness issues
The system (8) is ill-posed (BIBO unstable) for> 1. for a general class of multidimensional systems. In Section

The closed-loop transfer function for (7)ig(A—a), where 3, an approach to Structured Singular Value analysis of such
A is a discrete Laplace variable corresponding to a unit positisgstems is presented. Section 2 and 3 contain the main results
shift operator. Following the approach of [8], [9], [10], forof the paper. Section 4 contains an application example of
a > 1 there is a unique well-posed (BIBO stable) realizatiopaper machine cross-directional process control.
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Il. MODELS OFMULTIDIMENSIONAL SYSTEMS

Consider a model of a discrete-time spatially distributed A Pulse response satisfying Definition 1 grows more slowly
system controlled by aiv-dimensional array of actuator andthan o’ in time uniformly in the spatial coordinates, and it
sensor units. Each unit hascontrol inputs andn measure- decays at least as rapidly asl'l in space uniformly in time,
ment outputs. The control, measurement, and dynamical stéfeere|!| is thel-norm distance from the response center along
coordinates of such system can be described as functions oft{} Spatial coordinates.
discrete timef (an integer sample number) and integer spatial The transfer function expansion (11) for an absolutely
coordinatesk,, ..., ky (corresponding to the unit numbersummable response with a spatial decay rand dynam-
along each of the array dimensions). In a 3-D physical spaé€d growth ratea converges uniformly (is analytic) for any
an actuator array cannot have more thén= 3 dimensions. complex numbers;, Ay, ..., Ay in the domain
In the existing applications of array contraN = 1 (e.g.,

linear actuator arrays in paper or printing machines)yoe 2 Aar ={2A1,..., An € C:

(actively controlled reflectors, other imaging applications). 2 > a;r™ < AN <> La>0) (14)
In what follows, vector or matrix-valued functions ] ) ) )
a(t,k1,..., ky) of integer time and spatial coordinates will As discussed in more detail later, the spatial decay rate

be considered. The following notations for the norms wiftloWs us to specify an acceptable influence of the boundary
be used:z| will denote a Euclidean norm of a vector or arfonditions. This influence decays exponentially at the rate
operator norm (maximal singular value) of a matrix; for a funé/_\llth the distance from the bounda_rles. In what follows, a class
tion (multidimensional sequencejt, k1, . .., kn) thels norm of Welll-ppsedsystems Wlll_be studied .

is denoted||z||3 = Y77, >0, (t, ke, .. k)| Definition 2: A system is called well-posed if (13) holds

= 15k N=—00 s 1y ey .
The multidimensional system in question is assumed Brr=1 anq somex > 0. | -
be LTI/LSI. The relationship between the control input The following fact will be central in establishing our results

u(t, k1, ..., kx) and the measurement outplt, k1, . . ., ky) Proposition 1: Consider a multidimensional system that is

can be described by a multi-dimensional convolution of tHéescribed by difference equations (4)—(6) and is known to be

input u with a pulse responsél (¢, k,, ..., ky) € ®™" of Well posed. Consider a formal transfer function of the system

the form P(z,A1,..., 1) obtained as an LFT from (4)—(6) and assume
o o that it is analytic in the sef\ (14), wherer,« > 1. Then

y(t,k1,... kn) = Z Z the system has a spatial decay ratand dynamical growth
7=04q1,...,gN=—00 rate a.

Ht -7k —q,....kxn —aqn)u(T,q1,...,qn5), (10) Proof. Since the transfer functio®(z, Ay,...,\;) is ana-

) ) lytic in A4, it can be expanded as
System (10) is stable in the Bounded Input Bounded Output

(BIBO) sense if for any input such that|u||s < co the output . as >
y is such that||y||s < oco. BIBO stability requires the pulse Pz A1) = Z Z

response to be absolutely summable. A transfer fundtion =Lk, sk =—o00

H(z, A1, ...,\) of the distributed system can be calculated as P(r, k1, ... kn)z7TATR LAY, (15)
a multi-dimensional discrete Laplace transform (z-transform) i ) )

of the pulse responsH (10): and the expansion converges uniformly i, ,. Now

. consider the transfer function expansion (11) computed
H= Y H(rky,....kn)z "ATM LA™, (11) for the system pulse respongé. In accordance with the

k1, kN well-posedness assumption, the expansion (11) converges in a
wherez, \r, ..., Ay are complex Laplace variables. Thes§UbSet 0fAq . for [z~ < A™1 (A >0) and|);| = 1. The
variables correspond to unit shift operators in time ar@'mal transfer function” coincides with// on this subset.
along each of theV spatial coordinates respectively. For arf hereforef (v, ky, ..., kn) = P(7, k..., ky), the transfer
absolutely summable response (10), the expansion (11)fqgct|on expansion (11)_CO|nC|<_je_s_ with (15_) and converges in
guaranteed to converge for any complex numbers,, ..., Ag . In a;pordance W|th.Def|n|t|on 1, this guarantees that
Ay in the domain the proposition statement is true. QED

A1 = Alyeeay A C: >1,|\]| =1 12 . . .
w1 =4z A Av e = LIAI=11 - (12) Proposition 1 requires us to know that that the system is

The following useful enhancement of the above BIB®vell-posed as a pre-requisite for the transfer function analysis.
stability definition and of the domain (12) will be further use€onsider some important examples of the systems that satisfy
in this paper. this requirement. In practical applications of multidimensional

Definition 1: A pulse response (10) hapatial decay rate: array control, the plant is usually well-posed and can be
(r > 1) anddynamical growth ratev (« > 0), if the following modeled to have a spatial decay rate- 1. This is because

series is absolutely summable modeling of an array control system as a multidimensional
0o 0o systems is only justified if the influence of the boundary
S > H(t k.. k)| r(BIFFEND < o6 (13) - conditions and cross influence of control inputs is small for

t=0 kq,...kn=—00 remote elements of the array. If the cross influence is large
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across the entire array, multidimensional system models shothdt (i) both the plant and the controller are well-posed (they
not be used in the first place. may be unstable dynamically); (ii) the cascade connection of
An important class of multidimensional systems consistee controller and plant does not have a feedthrough term;
of systems with distributed localized controllers. In suchnd (iii) the multidimensional closed-loop transfer function is
controllers, computations are distributed over nodes associad@adlytic in the stability domain.
with each array cell. At each time sample, control values Condition (ii) is not very limiting. All it requires is that
are computed using current data only from the node itselfe control action at each time sample influences the mea-
and past data supplied by a few neighboring cells, i.e., n@urements taken form the plant at the next time sample but
control values computed at other cells cannot be used. Suwht the measurements available at the time of computing the
controller designs reflect important communication constraintgentrol. This always holds in practice. Condition (ii) defines an
existing in large multidimensional array control systems. It camportant constraint in modeling of multidimensional systems.
be shown that distributed localized controllers implementékhis constraint must be honored for analysis to be conistent.
within the described physical constraint on the inter-cell confhe systems where Condition (i) it satisfied might include
munication are always well-posed. some where a feedback control loop is inside the computations
Proposition 1 helps to establish necessary and sufficienid no physical plant is a part of the loop. This might in
conditions of well-posedness and BIBO stability for a multiprinciple happen inside controllers, signal or image process-
dimensional systems consisting of interconnected subsysteings systems, or mathematical models of spatially distributed
The main types of system interconnections are parallel, casntrol.
cade, and feedback. Establishing well-posedness of a parallel
or cascade interconnection of well-posed subsystems is trivial.
The feedback case is considered below. Without a loss of
generality, consider a unit feedback loop. This section applies results of the previous section to show
Proposition 2: Consider a closed-loop dynamical systerhiow the robust stability analysis of a multidimensional control
that consists of an well-posed multidimensional plAnwith a loop can be performed by extending standard methods of
multidimensional controlle€ in a feedback configuration. As- Structured Singular Value analysig-@nalysis). A possibility
sume further that the feedback lo6pf has no feedthrough, of applying existing approaches pfanalysis to multidimen-

IIl. STRUCTUREDSINGULAR VALUE ANALYSIS

i.e., the loop pulse respons€GH)(0,ky,...,ky) = sional systems was mentioned in [31], [10]. This possibility
G(0,ky,...,kn) - H(0,ky,...,ky) = 0. Under these con- follows immediately from an LFT representation of multidi-
ditions, the closed-loop system is well posed. mensional systems discussed in [31], [10]. Compared to this

Proof. Since the loop does not have a feedthrough and éarlier work, the contributions of this paper are as follows:

well posed (as a cascade connection of well-posed plan{),This paper presents a study of theminal stabilityissues.

its transfer function can be represented in the fa@# (-) = Nominal stability includes the well-posedness requirement and

2~'L(-), whereL(.) is analytic for|z~'| < A=' and|);| = 1. is analyzed based on the results of the previous section. (ii)

In accordance with the Proposition assumptions, the closédprovision is made for a guaranteed spatial decay rate of

loop transfer functionﬁc(z, A1,...,An) can be representedthe system pulse response. This permits us to guarantee limits

for z — oo, and|);| =1,j=1,...,N as on boundary effects. (iii) The proposed computations can be
. 1s_1 13 implemented using the existing standard Mu-tools software [3]
H.=[I+z "L 2L (16)

and is convenient to apply practically.
Consider the system on the unit cirghg| =1, j =1,..., N.

. —17 -1 -1
ConsiderA. >0 such that 7 + z L| >0, fpr 27 < A1 A LET models
The expansion (16) converges uniformly an-1, A, ..., A1, _
for |2—1| < A7 L. This follows from [19, Theorem 2, Section Consider an LFT model corresponding to pseudo state space
2.4]. To demonstrate that such. exists, note that becausedifference equations of the form (4)—(6), see [8] for more
of the well-posedness the transfer function expansions &ligcussion. The LFT model shown in Figure 1 (left) has
uniformly summable fot);| = 1 and sufficiently large.. The ~frequency structuré of the form
following bound holds{L(z, A1,...,Ay)| < C for |z > A, , . 1 1
Thus, for|z| > A, = max(4, 2C) we have|l + z7'L| > A = diag{e™ o, Ay A s ANy A I} (A7)
1 — AZYL| > 1/2. Consider the closed-loop pulse responsghereI; is a unity matrix of the sizef and the dimensions
with zero lag. Since the loop has no feedthrough, this resporge as appropriate.

is zero and hence absolutely summable. The spatial transfer Al

function H.(z = 00, A1,...,Ax) = 0 corresponds to this =

zero-lag pulse response. Hence, by the argument similar to

that used in Proposition 1, the well posedness (BIBO stability)

follows from the uniform convergence of the expansion (16) <« M U

in the domainz~'| < A;', [N\;|=1,j=1,...,N. QED — M =
The essential meaning of Propositions 1 and 2 is that Y— —— U

a closed loop consisting of a multidimensional plant and

multidimensional controller is well-posed and stable providgdg. 1. LFT models
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The LFT model in Figure 1 (left) can be extended to take Consider the inner loop in the right diagram in Figure 1.
into account model uncertainth € A. Here A describes This inner loop includes the frequency structurg(17) and
a realization of uncertainty, and\ is the uncertainty set. defines a transfer functiod/(z, A1,...,Anx). The diagram
Consider the following uncertainty structure that is as usualin Figure 1 has a closed loop consisting of the system
the Structured Singular Value analysig-analysis. M(z,A1,...,An) and the uncertainty. The frequency de-
) pendent structured singular value with respect to the uncer-
A =diag{dil;,,...,0slrs, 0541141, -, 054Qlaq tainty A can be defined as usual [31]

Ay,...,Ap}, (18)
pa (M(2, M1, Ay)) =

where 6, are real or complex scalars, and; are square 1
complex matrix blocks. A more detailed discussion of the i "(Z(AV: det[T — M(2, \r,.... An)A] = 0.4 € A} (21)
uncertainty description (18) and explanation of its physical
meaning can be found in the textbook [31]. It what followsyhereA is as defined in (20) anal(A) is the largest singular
it is assumed that the complex uncertaidycorresponds to Value (operator norm) of the block matrix.
a transfer function of a well-posed and stable system (seelhe Structured Singular Value (SSV) for the system can
Definition 2). be defined as an inverse robust stability margif.. of the

The LFT model including the uncertainty is shown schemagystem with respect to the uncertainty (18), where the
ically in Figure 1 (right). The two upper blocks in the feedbaclétability’ is understood as the system being stable in time and
loop include the uncertainty description (18) and frequendjaving a spatial decay ratein accordance with Definition 1.
structure (17). The transfer function (11) with the uncertaintidde structured singular value can be defined as
(18) can be presented in the LFT form as

1
R _ N Ha A, (M) = = sup pa (M(z,M1,..., n)), (22)
P(Z,)\l,...,)\l;A):M22+M21A<1_M11A) , Gmax Aa,r
A = block diag A, A}, (19) where A, is the set (14). The robust stability condition is

. . . thenpaa, (M) -c(A) < 1.
where the submatriced/;; of the matrix M provide a par- . following formulas give a constructive way for com-
titioning compatible with (18), (17) and Figure 1 (right). As uting the SSV (22)

gjg? I’t:;f t?]sésubme?gntheigtr;estért]certmnt|es (18) have been chlelgroposition 3: Assume that the MD Nominal Stability Con-
y 9 ditions hold. Then, the structured singular value (21), (22) can

A={8,...,05 €R,I541,...,0510 € C,A; € C™™ . be computed as
0k < 1,0(A;) <1} (20) A A, (M) = sup faa,r(M;w, 7]23)

At this point it is important to emphasize that there are
. . . . . BA, o,
some differences in the modeling of multidimensional systems ) , i
compared to the standard system modeling:ianalysis of i, A (M(a™e™, pre™, ... pne™™)) , (24)
dynamical systems. Unlike standard LFT models, in (17), both
spatial Laplace variables; and their inverses are includedwherer = [vy,...,vn]7, the minimum is computed over all
as separate indeterminants. This is done because non-caggalbinations of the factors,, n = 1, ..., N, with each factor
FIR response models require using both positive and negatia&ing one of the two values or r~*.
powers of the spatial Laplace variables. The proof of Proposition 3 is based on the fact that the
structured singular valugia (M(z, A1,...,An)) (21), (22)
is a subharmonic function of each Laplace variable),
..., A\n, see [5]. Consider all the above Laplace variables,
In what follows, theMultidimensional (MD) Nominal Sta- except); fixed and in the domaim\, (14). By condition
bility Conditionsare considered to hold unless stated otheof Proposition 3, M(z,\,...,\n) is a regular analytic
wise. These conditions characterize the system in the absefurestion of \; inside the domain-—! < |)\;| < r. Hence
of uncertainty. ua (M(z,A1,...,An)) is @ subharmonic function ok, in
Definition 3 (MD Nominal Stability Conditions)Consider this domain (see [5]) and, thus, achieves it maximum on the
a system with uncertainty described by the transfer functi@omain boundary, i.e., on the dai| = {r,7—'}. By repeating
(19). Require that in the absence of uncertainty, e.g., fthis reasoning for each of; andz (23), the conclusion (24)
A = 0 the system is stable in time and has spatial decay rdtdlows immediately. Standarg-tools software can be used
r (see Definition 1). in computing (24). Of course, computation pfis NP-hard
In what follows, MD Nominal Stability Conditions will in the number of the uncertainties, the same difficulty that is
always be complemented with a condition on the uncertaingyncountered in computing the usyal
used in the robust analysis. The complex uncertataiy (19) Proposition 3 requires establishing the multidimensional
corresponds to a transfer function of an unknown uncertainmtgminal stability conditions in the absence of uncertainty.
system. Require that this systeh is also stable and hasVerification of these conditions can be facilitated by the
spatial decay rate. following fact

T(]V[;w,ﬁ) =

B. Structured singular value
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Proposition 4: Consider a well-posed multidimensionaffollowing steps:
system, with an LFT representation as in Figure 1 (right), Step 1: Verify well-posedness of the system fir = 0. In

where A = 0. Assume that the multidimensional transpractice this often can be done by presenting the system as
fer function of the systemM(z, A1,...,An) is such that an interconnected system and applying Propositions 1 and 2.
Muo(A1, .., n) = lim, oo M(2,A1,..., An) exists and is The well-posedness of each of the interconnected subsystems
an analytic function for—! < |X\;| <r, j=1,...,N. would follow from physical considerations

Then the system is well posed, has dynamical growth rateStep 2: Present system in the LFT form (19) and use
« and spatial decay rate provided that Proposition 4 to verify the MD Nominal Stability Conditions.

i N If the controller and the plant in a closed-loop configuration do
pimliinry ,,jz}(l)%ﬂ p (Mao(pre™, ... pye™™)) < a, (25) not simultaneously have feedthrough, the zero lag closed-loop

h is th | radi £ th a0 and th response can be decomposed into the zero lag responses of
w eTePW) IS the sp((ajctra ra Illus 0 bt e matr far? ft € the plant and controller. Thus the requirement that the pulse
maximum is computed over all combinations of the aCtorr%sponse with zero time lag decays faster thaff! in the

pron=1,...,N. N .. Spatial coordinates can be verified separately for the open-
Proof. Represent the system as shown in Figure 1 (”gmfop plant and controller. The remaining analytic condition
where (25) can be computed using standardiools software.
A = 7', Step 3: Perform robust stability test by verifying that
— A -1 -1 ta.a, (M) < 1. This can be done by using the frequency
A= diag{Adp AT s ATy A} (26) griddiné fo)rmulae (23)-(24) and standazeanalysis tools.
Note that the pulse response with the zero time lag corre-ln  multidimensional p-analysis, Step 2 requires veri-
sponds to the spatial transfer functidd(\1,...,Ax) = fying analyticity of a multidimensional transfer function
M(z = 00, A1,...,An). The result of Proposition 4 follows M (\;,..., \x) in the complex annulus domain—! <
from Proposition 1 and Proposition 3 after noticing that (ZE#)\J.| <r,j=1,...,N,andr > 1. Let us discuss this in
presents computation of the Structured Singular Value similgiore detail.

to (23)- (24) for the uncertaintd = 27'I,. The MD  Consider first the case of one spatial variablein this
Nominal Stability Conditions in Proposition 3 in this casease,)M.()) is a usual rational transfer function of a single
require that the transfer functioh/ (= = oo, A1,...,An) IS variable and its poles can be computed directly by one of the
analytic forr=' < [\j| < r, j = 1,...,N and the pulse well-known methods. The analyticity of the transfer function
response with zero time lag is summable. The latter followis a domain means that none of the poles is in the domain.
from the well-posedness of the system. QED. For multiple (two or three) spatial variables, an important
In analysis of controlled dynamical systems, the SSV ipecial case is an FIR plant. Practical identification of dis-
commonly computed on a grid of the dynamical frequengies triputed plants in many cases yields FIR models, e.g., see
In computing (23), (24), a multidimensional grid of dynamica15], [16]. This is because the spatial response decaying in
and spatial frequencies has to be considered. fEhelots spatial coordinate cannot be distinguished from zero once it
used for description of multivariable dynamical systems, hegacays below the level of the measurement noise or other
change intoN + 1 dimensionalu hyper-surfaces (24). Suchidentification inaccuracies. For an FIR plaify, (A1, . .., Ay)
representation and computations are acceptable, becausgs @halytic for any variablea, ..., Ay.
present-day practical applications of array control there arepgr - — 1, a Linear Matrix Inequality approach applicable
only N = 1 or N = 2 spatial coordinates. At the samefor multiple spatial variables is presented in [8], [9], [10]. A
time, computers are presently more than 1000 times fastjmputationally efficient and conceptually clean exact solution
than 20 years ago when SSV was first introduced and usgdhe Step 2 problem for a general caseraf 1 is an inter-
in computations on one-dimensional frequency grids. In th&ting and challenging problem which we hope would attract
future, 3-D applications of array control might appear, but byttention in the control theory community. Such a solution
then, perhaps, available computing power will have increasgdpeyond the scope of this paper. An approximate solution
further. One important difficulty with the multidimensionalapproach is outlined below for the case &f = 2 spatial
SSV plots will be their visualization and interpretation. dimensions. This approximate solution can be extended, in
Similar to frequency gridding in standard SSV ana'VSi%rinciple, toN = 3 (or more) dimensions.

multidimensional frequency gridding is a reasonable approachconsider the case df = 2, where Mo (A1, A2) is an LFT
to take in many practical applications. Of course, the pefith the frequency structure

formance of multidimensional SSV computation is ultimately

limited by the fact that underlying problem is NP-hard. This A =diag{I, 1 M, T At Ipode, Tnos ')

limits the complexity of uncertainty models that can be )

practically analyzed. Gridding by itself adds computationdin® Solution steps are as follows:

complexity that is exponential in the number of dimensions « Introduce a large parameter and replace)\j*l, J =

in the multidimensional system. This is in line with the result {1, 2} by approximations\j_1 ~af(l+Xja). Fora>>r

of [29]. this approximation is very accurate in the ridg. =
Overall the process of the SSV analysis for an uncertain  {\; € C': =1 < |\;| < r}. With this approximation the

multidimensional system in the LFT form (19) consists of the  frequency structure becomeés, = diag{I,, \1, [, A2},



where I,,;, j = {1,2} are unity matrices of the sizes
n; = Mpj; + Ny . Thus, the condition of the transfer
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Figure 4 shows a representation equivalent to that in
Figure 3 and obtained after collecting the indeterminants

\; together. The matrix4 is a block matrix consisting
of permutations of the blocksl;; belonging to the two
matricesA in Figure 3.

function analyticity can be presented in the form

det[I — AA4] #0,  for A1 2 € R, (27)

where A is a matrix obtained after representing the
transfer function as an LFT with the new frequency A

structureA 4. The LFT structure in (27) is illustrated in j
Figure 2 ] A&

A Aiz]

A Ay

I n, CZ

Fig. 4. An equivalent LFT representation of the 2-D spatial response transfer
function after transforming\2 into (2 = %()\2 + )\2_1)

Note that the LFT for the lower part in Figure 4 (below
the dotted line) can be representedg(,). Similar to
how it was done to prove (29), it can be proved that (27)
is equivalent to

det[I — 2(A2(¢2) + 1)1 A2(¢2)C1] #0, (Cu2 € Ey) (30)

Fig. 2. LFT Representation of the 2-D spatial response transfer funcion

« Introduce a mag, = (A2 +A;"). This map transforms
the domain\, € R, into the domain; € E,., whereFE,

is the ellips
4(Imag ¢)2 An LFT representation of the matrix in the condition (29)
E.={¢eC: (Real¢)*r* + M <1} (28) is shown in Figure 5.
Note that each pair of points, \™* € ®, are mapped Ak = Al
onto the same € F,.. It can be proved that (27) is
equivalent to .
S, S
det[l —2(A3+ 1)1 A1) #0, (A € R, € E,), (29) W | ¢
n,o2 n,»2
where A; = A;(A\1) corresponds to the LFT including
the inner loop in Figure 2 (the loop with;). The
expression (29) follows from the fact that € R, iff 0 -1, 0
Ay !' € R, and the fact that | ' |
. | '2n 0 - 2m <
1—2(A§+1)*1A1%: 0 -21,, 0 |
(AT + D)7 (Ade = D(AN 1) L» | 30, G

An LFT representation of (29) is shown in Figure 3.
Fig. 5.
function after transforming\; into {; =

=35+

LFT Representation of the 2-D spatial response transfer
(M 4+ ATh and A2 into

1
2

« Finally, an approximation of the domain (28) can be
obtained by substituting; = r~'6; + 3(r — r=1)¢;,
(7 = {1,2}), where |§;| < 1 is real uncertainty and
|€;| < 1 is complex uncertainty. By substituting this
approximation into the LFT in Figure 5, ‘pulling out’
the indeterminants; and¢; the transfer function can be
presented in a standard LFT form suitable for standard
p-analysis. Since the domadi » € E, is a subset of the
domain|dy 2| <1, |&1,2| < 1, suchu- analysis would give
a sufficient condition of the transfer function analyticity.
The above solution steps are described foe= 2, but can
Fig. 3. LFT Representation of the 2-D spatial response transfpe extended tdV = 3. As mentioned earliertN > 3 are not
function after transforming\z into ¢2 = 5(A2 +A; ") encountered in practical applications.

b
I n2C2
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For modeling and analysis purposes, the summation owze. Structured uncertainty analysis for such systems is briefly
an infinite spatial domain is considered in (10). In reality, theurveyed in [6]. Robust analysis in such problems is com-
spatial domain in question is always bounded, though it may patationally unfeasible in most cases because;tfamalysis
very large. There is usually a need for considering edge effept®blem is NP-hard and quickly gets out of hand for large plant
that (10) does not address. Edge effects can be proven toskz [7]. For unstructured uncertainty, significant improvement
contained in a boundary layer provided the system resporisecomputational efficiency of the analysis can be achieved
taking into account the boundary effects is BIBO stable arny exploiting the problem structure and performing a modal
decays sufficiently fast in the spatial coordinates. The analysiscomposition of the problem (singular value decomposition
of the edge effects can be performed by embedding thé certain spatial operators) [14], [20]. A spatially invariant
spatially bounded system into a spatially inifinite one. TheD process model can be diagonalized by using the spatial
latter should be setup to match the bounded system inskeurier transform. The papers [25], [26], [27] use such 2-D
the bounds to the extent possible. The spatial responses infteguency analysis to deal with an unstructured uncertainty in
system decay exponentially. Therefore, the part of the spatiadlyCD control problem.
inifinite system solution that is outside of the spatial bounds The example of this section demonstrates an application
will influence the solution inside the bounds with an effeaf Section Ill methodology to a CD control problem. The
that is exponentially vanishing away from the edges. Henadiscussed issues of structured uncertainty analysis and edge
in general, the spatially inifinite model solution will be closeffects in CD control have not been addressed in earlier
to the spatially finite solution except for a bounday layer. papers. The structured uncertainties correspond to errors in

The definition of the structured singular value used imodeling the spatial CD response shape and its center position
(22) differs somewhat from the standard definition because(@ctuator mapping). A two-dimensional description of CD
includes requirements on the spatial decay rate of the systeamtrol processes without uncertainties was discussed earlier in
pulse response. For a given spatial decay ratbe effects [18], [30] using Roesser models. Unlike Roesser systems, real-
of the boundary conditions can be guaranteed to be contaitiéel CD processes are non-causal in the spatial coordinate. The
in a boundary layer with a characteristic widthg » near the models of this paper are non-causal in the spatial coordinate.
boundaries of the spatial domain. Through the parameter
therefore, the impact of the boundary effects can be explicité{ Problem Formulation

included in control design and analysis tradeoffs. ) ] )
The CD process variables depend on two integer coordi-

nates: a sampled cross-directional coordinate Z corre-

. . o sponding to an actuator number and sampled time Z.
This section demonstrates an application of the analy@ey zctuators are numbered by the CD coordinateThe

approaches described above to a cross-directional procgssiar control variable is, thus, a function of time and CD

control problem. This is an important industrial appncaﬂo'éoordinateu = u(z,t). There is a scalar output error variable
where multidimensional modeling provides adequate tools fgr: y(z,1).

IV. EXAMPLE: CROSSDIRECTIONAL PROCESS CONTROL

practically useful analysis. A paper machine CD process is commonly modeled as a
separable process that can be described as a cascade connec-
A. Motivating industrial application tion of a dynamical response and spatial response subsystems

Paper machines make continuous webs of paper from lig§the form
pulp stoc!<. Paper webs with width up to 10 m go thr(_)u_gh y(@,t) = GO, A Dg(z"Nu(z, t) + E(z, t), (31)
the machine at speeds up to 100 km/h. Maintaining sufficient
uniformity of such critical process variables as paper weighthere {(z,t) is an external disturbance acting on the con-
moisture, and caliper (thickness) across the web width tiolled process;~! is a unit time delay operator and ! is a
achieved by using cross-directional (CD) control systems. Git left shift operator. In industrial CD process control prac-
control can include hundreds of spatially distributed actuatdige, parametric models of the spatial response and dynamical
influencing the paper process. Measurement systems dovw@sponse are identified from the process data [15], [16]. The
stream from the actuators sample the cross-directional profigggtial operatoG in (31) is a two-sided:-transform of the
of the quality variables and provide feedback errors. spatial pulse response [22]. A model of spatial response for a
Physics of processes, actuators, and measurements VaByprocess is assumed to be of the form:
greatly in different industrial CD control applications. At the 1 1
same time, CD process models with the same structure are GAAT) = golp()‘ml()\ ), (32)
successfully used in industrial practice for different processes. TN = EVE (33)
In the industry, CD process response is commonly modeled 1 — 2wl + w2A
as a cascade connection of a dynamical process respombkere g, is a scalar gain of the process amd)) is a
and spatial process response. It is usually assumed that ¢hasal sampled data spatial transfer function. The Wiener-
spatial response shapes for all actuators are the same andHbef decomposition (32) allows realization of the non-causal
responses differ only by corresponding spatial shifts. operator G(A\,A~1) as a composition of causal and anti-
A CD control problem can be in principle considered as @ausal filters with the transfer functiong(A=1) and ¥(\)
standard multivariable control problem, though of very largespectively.
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As commonly assumed in the industry, the dynamical r&. LFT models for-analysis
sponse of the process (31) is a first order response with & unifrhe structured uncertainty analysis of Section Il requires

dead time. representing the closed-loop CD process (33) with the con-
. 51 troller (39) in an LFT form. Following the standard practice
9(z7") = 1_ gz-1 (34) [31], the closed-loop multidimensional process (36) with the

, . . controller (39) is shown in Figure 6 as an interconnection of
In the numerical analysis the following values of the Proce¥Smple blocks including the structured uncertainty model in
parameters are assumed (36). The spatial and dynamical transfer functians?, c,
=1 w=055 (=0315, a=07 (35) K S in the diagram are defined ir_1 (33), (34), (39)—(41). The
input of the closed loop system in Figure 6 is the external
In many CD processes, the general shape of the spaflifiturbance. The control performance can be judged by how
response is well defined. At the same time, the process gdmmich this disturbance is suppressed in the system oytput
location of the response maximum, and response width might
differ from the nominal model. This can be well described by oo :

a structured (multiplicative) uncertainty replacing (31) | W) [ 1+d,¢ =] g(z?h) %?
y=GM\AT) (1+dos(A\ A1) g(2)u + ¢, (36) e ’
where§ is an uncertain spatial transfer functigéich, \=1)| < N e 5
1, and the scalaily gives the relative size of the uncertainty. u<— 1 - < K(A,A™) [+ c(z?) |«
Similar to (31),¢ is the external disturbance. P [12 {
The analysis for the structured uncertainty model (36) ] S(A,A™) 7t
is further compared with the analysis for an unstructured | CONTROLLER |

(additive) uncertainty model of the form
Fig. 6. Closed-loop model of a controlled CD process
y=GMA Hg(2)u+ grdod(AM A 27 Hu + &, (37)
The block-diagram model in Figure 6 was used to derive
an LFT model shown in Figure 1 (right), whefe=§ is the
model uncertainty, and the frequency structure is as follows

where|§(\,A71, 271)| < 1 andg, is a scalar gain introduced
to make the uncertainty scal& in (37) to have the same
meaning as in (36).

The control goal is to reduce the influence of the unmea- A =diag{z""I,,,, AL, A\ I, } (43)
sured disturbancé = ¢(z,¢) on the process outpuj = The dimension parameters ang — 4, ny — ng — 5. The

y(z,t). The focus of this example is on the robustalysis ... i Figure 1 (right) can be partitioned in accordance
of a controlled paper machine process. A specific controller. the di Qf — (A3
structure is assumed herein as commonly used in the industfiz € diagram asl = (M5} J=L N

S y L onsider the requirement of spatial response localization
CD controllers. The controller is similar to one studied in [25]f

[26], where more background and explanation can be four{ﬁ.r the glosed-loop system. In' the numerical gxample below
e spatial decay rate = 0.8 is assumed. This means the
The controller has the form

response decays by an order of magnitude within 10 steps
Au = —c(z"HKMA Yy — S\, A1)z, (38) from its center. The response decay rate defines widths of
oY) = kp(l—2Y) + ks (39) boundary zones near the edges of the spatial domain of the
’ process. Outside of these boundary zones, the closed-loop
where K (X, A7) and S(A\, A~!) are spatial operators andSystem behavior is well approximated by the assumed 2-D
¢(2~1) is a dynamical PI feedback controller in velocity formmodel with an infinite spatial domain. _
The operatork (A, A~!) is chosen to equalize the loop gain TO guarantee Qynam|9al stability and spatial response local-
across the controllable spatial frequencies while the operatgtion, the multidimensional closed-loop transfer function of
S(X\, A~1) is chosen to prevent large control action for théhe system is required to be analytic in the domain= A,
poorly controllable modes near the spatial Nyquist frequen({;l"r)
For the numerical examplg below, .these operators are nony {Z’)\ €eC: |2 >1Lr<]N<rlr< 1}7 (44)
causal FIR operators designed using a spatial loopshaping

technique similar to [27], [26] as The structured singular value analysis outlined in Subsec-
tion 11I-B begins by verifying the MD Nominal Stability

K =kod 2+ kA + 1+ kA + koA (40) conditions (see Definition 3). At Step 1, the well posedness

S =by+bi(—0.5A71+1-0.5)) (41) of the closed-loop system can be established by applying

Proposition 2. The plant (37) and the controller (38)—(41) are

The following controller parameters were assumed each well posed. At Step 2, the condition of the closed-loop

k= 0.18. ko = —0.39. by = 0.005. be — —0.0001 zero lag response decaying faster than the chosen rate.8
1= H28 Rz = 7ad, A1 = WA, Bo = T ’ can be verified separately for the plant and the controller since
kp =0.1, k; =0.02, do =0.5 (42) the latter does not have a feedthrough term. The controller zero
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STRUCTURED SINGULAR VALUE FOR ROBUST STABILITY3=0.5

lag response is given by the FIR operator (40). The plant zero
lag response is given by (32) and its decay rate can be checked
by computing poles o ()\) in (32). Verifying (25) concludes
the nominal stability analysis.

The robust stability condition (Step 3 in Subsection 111-B)
involves the following two-dimensional transfer function from
the diagram in Figure 1 (right)

M(z,\) = My + MoA (I - ]\/-"22/\)71 Moy, (45)

where M, is the transfer function between the inputib and o1
output from M associated witld. The robust stability margin

can be defined through a structured singular valueith the
structured uncertainty. In accordance with Proposition 3 the
structured singular value can be evaluated as (23), (24), where 3 v
a =1andA, = A,; is given by (44). Instead of a usual o1 SPATIAL FREQUENCY
w plot, a u surface us,.(Ms;w,v) is used, wherev is the LOG(DYNAMICAL FREQUENCY)

dynamical frequency and is the spatial frequency.

The same LFT model of the closed loop can be used f
robust performance analysis very much as described in [31] for
dynamical systems. As a performance specification, consider
a requirement of the disturbance attenuation: the norm of the
transfer function frong to y in Figure 1 (right) should be less
thatd, , whered, < 1. By pulling outd, introduce a2 x 2
closed-loop multidimensional transfer functidf, (z, A) from P
¢ andé to y and . Similar to what is discussed in [31], the o5 &=
robust performance requirement can be analyzed by computing .
the structured singular value similar to (23), (24)

/LA,l(MP;w, l/) = A (Mp(eiwa eiu)) ; (46)
A = block diag{d,d,},

whereé € C' is the process uncertainty (36) afige C' is an
auxiliary complex uncertainty introduced for the performance
analysis. The robust performance requirement holds for all
frequenciesv, v, wherepa 1 (M,;w,v) < 1.

An important application of the robust performance analysis
is in evaluation of the closed-loop bandwidth of the systerfig- 8. Unstructured robust stability margin.
A common definition of the control loop bandwidth is as
the frequency range, where the external disturbances are
attenuated by a factor of/2. The bandwidth of the loop obtained fromu-analysis (the same as using the Small Gain
subject to the uncertainties can be evaluated by assumirfgeorem here) and comparable to that in Figure 7 is shown in
d, = 1/+/2 and computing the structured singular value (46Figure 8. In this case the maximal singular value= 1.0240
For the two-dimensional process in the question the bandwidsh almost twice as large as for the structured uncertainty.
is defined by a two-dimensional doma® = {w,v € ® : This means the estimated robustness is twice as bad. This

0.5

0.4

0.3

Fig. 7. Generalizedu for robust stability.
or

STRUCTURED SINGULAR VALUE FOR ROBUST STABILITY3=0.5

0.4

0.2

0 1 SPATIAL FREQUENCY

LOG(DYNAMICAL FREQUENCY)

a1 (Mp;w,v) < 1} comparison shows that unstructured uncertainty analysis can
give overly conservative results for the robustness. The worst
D. Numerical example deterioration of robustness for unstructured (additive) uncer-

Consider now results of the numerical analysis for tH@inty happens near Nyquist spatial frequency. This is because
closed-loop multidimensional process (36), (33), (34) aribe influence of the structured (multiplicative) uncertainty at
the controller (39)—(41) with process parameters (35) afis frequency is filtered through the plant transfer function
controller parameters (42). with small gain at this frequency.

The closed-loop robustness with respect to the complexFinally, consider the issue of the robust performance and
structured uncertainty in (36) is given by the structured sin-closed-loop bandwidth for the system in question. The struc-
gular valueys 1 . (Ms; w,v) (24) and is illustrated in Figure 7. tured singular valueua i (M,;w,v) (46) that defines the
One can see that the robust stability is maintained with a larggbust performance is plotted in Figure 9. This surface defines
margin. bandwidth of the closed-loop system. The closed-loop band-

The structured singular value in Figure 7 can be compareddth corresponds to the two-dimensional set of the dynamical
against the robust stability margin with respect to the unstrugnd spatial frequencies, where the structured singular value in
tured additive uncertaintyin (37). The robust stability margin Figure 9 is less thar/2/2. Figure 10 shows both the robust
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analysis, and the robust closed-loop (spatial-dynamical) band-

width.

1 LOG(DYNAMICAL FREQUENCY)

SPATIAL FREQUENCY

Fig. 9. u for robust performance

ROBUST BANDWIDTH DOMAINS

-1 T T
[ NO UNCERTAINTY
[ UNCERTAINTY3=0.5
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P R R |
N o o & W
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!
@

!
©

o
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0.3
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(11]

(1]

(2]

(3]
(4
(5]

(6]

(7]

(8]

El

(20]

Fig. 10. 2-D bandwidth domains corresponding to robust disturbance

attenuation gains of/2/2

bandwidth and nominal 2-D bandwidth domain of the closed3!
loop system. The latter is the bandwidth domain in the abser[gg

(12]

of the uncertainty, the former is the domain of the guaranteed
performance with the structured uncertainty. The presence_ of

the uncertainty shrinks the guaranteed bandwidth, but not 1%(5)]

much because of the good robustness of the controller.

(16]

V. CONCLUSIONS

(17]
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