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Abstract— The paper considers one of the fundamental issues
in design and analysis of sampled multidimensional systems
- that of uncertainty modeling and robust stability analysis.
Methods of structured uncertainty analysis (µ-analysis) are
extended towards systems with dynamical and non-causal spatial
coordinates. The stability is understood in a broad sense and
includes decay (localization) of system response along the non-
causal spatial coordinates. Robustness of dynamical stability
and spatial localization of response and boundary effects are
addressed in a unified way. The main technical condition enabling
the technical results of the paper is that the feedback loop
including a multidimensional plant and controller does not have
a feedthrough in the dynamical (time) coordinate sense. As
an example, the paper applies the multidimensional structured
uncertainty analysis to closed-loop control of a cross-directional
paper machine process. The paper formulates multidimensional
models of the process, its controller, and a structured uncertainty.
The uncertainty corresponds to a combination of errors in the
actuator mapping, the cross-directional response gain, and the
response width.

Index Terms— multidimensional system, robust stability, mu
analysis, well posed, distributed process

I. I NTRODUCTION

L INEAR sampled multidimensional systems have been
studied in many applications, most prominently in array

signal processing, image processing, and numerical methods
for solving partial differential equations. Presently, control
applications for systems incorporating large actuator and sen-
sor arrays are becoming increasingly important. Theory and
applications of array signal processing are well established.
At the same time, applied analysis approaches to control
systems with large distributed actuator and sensor arrays are
much less developed. This paper aims to establish fundamental
robust stability analysis concepts for practical analysis of
multidimensional systems similar to existing concepts for mul-
tivariable control systems [12]. Although the main focus and
motivation for this work is in feedback control applications, it
is believed that the results and concepts can be useful in other
applications.

This paper focuses on Linear Spatially Invariant (LSI)
systems. Modal decomposition of such system can be obtained
through spatial Fourier transform; see [1] for discussion.
Spatial frequency analysis of array control systems is in many
respects similar to usual frequency domain analysis of Linear
Time Invariant (LTI) dynamical systems. The multidimen-
sional frequency domain analysis is used in image processing
[4] and stability analysis of finite-difference PDE solvers [23].
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This paper primarily pursues frequency domain representa-
tion and analysis. In the frequency domain analysis of sampled
multidimensional systems, multiple complex Laplace variables
are introduced to represent the shift operators in time and along
spatial coordinates, e.g., see [4]. Thus, study of the dynamical
properties for such systems is replaced by complex analysis of
the resulting multivariable transfer functions. A very efficient
mathematical approach for dealing with a practically important
class of rational multivariable complex functions is based
on Linear Fractional Transformations (LFTs) [31]. The LFT
approach is very attractive for this work because it provides a
convenient way to incorporate structured uncertainty models
into the analysis [31].

Systems with rational multivariable transfer functions can
be modeled using finite difference equations in time and in
multiple spatial coordinates. The equations might contain un-
certain parameters or functions. Multidimensional difference
equation systems, possibly with uncertainties are considered
in [2], [31]. These are Roesser systems [24], causal in all
coordinate variables that can be represented in the form




x0(t + 1, k1, . . . , kn)
x1(t, k1 + 1, . . . , kn)

...
xn(t, k1, . . . , kn + 1)


 = Ax(t, k1, . . . , kn) + Bu,(1)

x = [xT
0 xT

1 . . . xT
n ]T , (2)

y(t, k1, . . . , kN ) = Cx(t, k1, . . . , kN ) + Du,(3)

where u = u(t, k1, . . . , kN ), y, x, x0, . . . , xn are vector-
valued multidimensional functions of integer arguments and
A, B, C, D are constant matrices of appropriate sizes. An
outputy of a Roesser system can be computed from the input
u by propagating an initial condition in positive directions
along each coordinate. The stability and robustness analysis
approaches for such systems are conceptually straightforward
extensions of the approaches for standard dynamical systems
depending on time only.

Unfortunately, in many (perhaps most) important practical
applications, multidimensional systems are not causal in spa-
tial coordinates, and Roesser models are not applicable. An
LFT-based approach to analysis and control design for non-
causal multidimensional systems was proposed in [8] and is
further developed in a number of follow-on papers including
[9], [10]. These papers consider non-causal pseudo state-space, pp. 1557-1568
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models of the form


x0(t + 1, k1, . . . , kN )
x1(t, k1 + 1, . . . , kN )
x−1(t, k1 − 1, . . . , kN )

...
x−n(t, k1, . . . , kN − 1)




= Ax(t, k1, . . . , kN ) + Bu, (4)

x = [xT
0 xT

1 xT
−1 . . . xT

−n]T , (5)

y(t, k1, . . . , kN ) = Cx(t, k1, . . . , kN ) + Du, (6)

where y, x, x0, . . . , x−n, u = u(t, k1, . . . , kN ) are vector-
valued functions andA, B, C, D are constant matrices of
appropriate sizes. The system (4)–(6) can be represented as
an LFT of a constant matrix with a frequency structure that
includes discrete Laplace variables for the spatial coordinates
and their inverses. In [8], [9], [10] the stability, closed-loop
control design, and other dynamics issues for such multidi-
mensional systems are studied through algebraic properties of
the multivariable transfer functions given by the LFT.

For causal systems, including Roesser multidimensional
systems (1), the ambiguity between a transfer function and
one of its realizations “is benign and convenient and can
be always resolved from the context” [31, Section 10.2, p.
257]. Unfortunately this is not the case for non-causal multi-
dimensional systems. First, it is important to note that unlike
(1)–(3) the equations (4)–(6) cannot in fact be considered a
realization of a non-causal multidimensional system. Some of
the update schemes corresponding to an “equivalent” model
of the form (4)–(6) can be stable, others unstable in the non-
causal coordinates. This is similar to the mathematical theory
of PDEs where key issues of existence, uniqueness and well-
posedness of solution need to be resolved before analytical
techniques, such as ones based on operator transforms, can be
used.

Well posedness of a multidimensional system means that
its pulse response is absolutely summable along the spatial
coordinates. This property is accepted as a basic assumption
in [8], [9], [10]. For a system given by equations (4)–(6),
these papers assume dealing with a unique well-posed system
realization, if such exists. Unfortunately, there are problems
with using such approach in control loop analysis. Consider
the following simple closed-loop system of the form (4)–(6)
with one non-causal coordinate.

x(k + 1) = u(k), u(k) = ax(k) + w(k), (7)

wherew(k) is a feedforward input. It is implied in (7) and
we assume that the solutionx is computed from the inputw
by performing the update in the causal direction (the direction
of increasing indexk). This solution can be described by a
convolution

x(k) =
∞∑

n=1

anw(k − n) (8)

The system (8) is ill-posed (BIBO unstable) fora > 1.
The closed-loop transfer function for (7) is1/(λ−a), where

λ is a discrete Laplace variable corresponding to a unit positive
shift operator. Following the approach of [8], [9], [10], for
a > 1 there is a unique well-posed (BIBO stable) realization

corresponding to the same transfer function. This realization
corresponds to the update in (7) being performed in the the
anti-causal direction and has the form

x(k) =
∞∑

n=0

a−nw(k + n) (9)

Clearly, stability properties and behavior of the system (9) are
different from those of system (7) realized as (8). In other
words, the stability conditions derived in [8], [9], [10], are
necessary, but not sufficient. Some closely related issues for
double-sided time axis setups were recently brought to the
attention of the control community in [21].

One contribution of this paper is in identifying a large
class of practically important multidimensional systems with
non-causal coordinates for which closed-loop BIBO stability
conditions derived for multidimensional transfer function are
also sufficient. The example system (7) does not belong to this
class. The key property of systems in this class is that their
sampled-time feedback loops do not have direct feedthrough
terms (i.e. there is a delay in the causal time coordinate). If
this property holds, the closed-loop system will be well posed
whenever both the multidimensional plant and the controller
are separately well posed. In practice, a sampled-time feedback
loop would never have feedthrough terms because of the com-
putation and communication delay inherent in the feedback
control. In most practical cases, it can also be established
up-front whether the plant and the controller realization are
separately spatially stable (well-posed).

The main theoretical contributions of this work are: (i)
clarification of robust stability and well-posedness issues for
multidimensional systems; (ii) definition of practical analysis
approaches for such systems based on an extension of existing
µ-analysis tools; and (iii) natural integration of the modeling
error caused by boundaries into the analysis framework. The
issue of boundary effects was brought up in the recent litera-
ture on the subject (e.g., see [10]), but no convenient analysis
approach has been proposed so far.

As an example, the proposed multidimensional structured
uncertainty analysis (µ-analysis) methodology is applied to
closed-loop control of a cross-directional (CD) paper ma-
chine process. CD control of paper machines is perhaps the
most prominent example of a real-life industrial systems with
spatially distributed measurement and control actuation. CD
control design and analysis are the subject of many of papers.
Most relevant to this work are [25], [26], [27], [13], discussing
tuning and analysis of CD controllers with industrially es-
tablished structures. The example of this paper shows how a
structured uncertainty analysis of such closed-loop CD control
systems can be carried out in a computationally efficient way
while maintaining insight into the process.

The paper is organized as follows: Section 2 provides a
formal problem statement and studies well-posedness issues
for a general class of multidimensional systems. In Section
3, an approach to Structured Singular Value analysis of such
systems is presented. Section 2 and 3 contain the main results
of the paper. Section 4 contains an application example of
paper machine cross-directional process control.
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II. M ODELS OFMULTIDIMENSIONAL SYSTEMS

Consider a model of a discrete-time spatially distributed
system controlled by anN -dimensional array of actuator and
sensor units. Each unit hasn control inputs andm measure-
ment outputs. The control, measurement, and dynamical state
coordinates of such system can be described as functions of the
discrete timet (an integer sample number) and integer spatial
coordinatesk1, . . . , kN (corresponding to the unit number
along each of the array dimensions). In a 3-D physical space,
an actuator array cannot have more thanN = 3 dimensions.
In the existing applications of array control,N = 1 (e.g.,
linear actuator arrays in paper or printing machines), orN = 2
(actively controlled reflectors, other imaging applications).

In what follows, vector or matrix-valued functions
x(t, k1, . . . , kN ) of integer time and spatial coordinates will
be considered. The following notations for the norms will
be used:|x| will denote a Euclidean norm of a vector or an
operator norm (maximal singular value) of a matrix; for a func-
tion (multidimensional sequence)x(t, k1, . . . , kN ) the l2 norm
is denoted‖x‖22 =

∑∞
t=0

∑∞
k1,...,kN=−∞ |x(t, k1, . . . , kN )|2.

The multidimensional system in question is assumed to
be LTI/LSI. The relationship between the control input
u(t, k1, . . . , kN ) and the measurement outputy(t, k1, . . . , kN )
can be described by a multi-dimensional convolution of the
input u with a pulse responseH(t, k1, . . . , kN ) ∈ <m,n of
the form

y(t, k1, . . . , kN ) =
∞∑

τ=0

∞∑
q1,...,qN=−∞

H(t− τ, k1 − q1, . . . , kN − qN )u(τ, q1, . . . , qN ), (10)

System (10) is stable in the Bounded Input Bounded Output
(BIBO) sense if for any inputu such that‖u‖2 < ∞ the output
y is such that‖y‖2 < ∞. BIBO stability requires the pulse
response to be absolutely summable. A transfer functionĤ =
Ĥ(z, λ1, . . . , λ1) of the distributed system can be calculated as
a multi-dimensional discrete Laplace transform (z-transform)
of the pulse responseH (10):

Ĥ =
∑

τ,k1,...,kN

H(τ, k1, . . . , kN )z−τλ−k1
1 . . . λ−kN

N , (11)

where z, λ1, . . ., λN are complex Laplace variables. These
variables correspond to unit shift operators in time and
along each of theN spatial coordinates respectively. For an
absolutely summable response (10), the expansion (11) is
guaranteed to converge for any complex numbersz, λ1, . . .,
λN in the domain

Λ1,1 = {z, λ1, . . . , λN ∈ C : |z| ≥ 1, |λj | = 1} (12)

The following useful enhancement of the above BIBO
stability definition and of the domain (12) will be further used
in this paper.

Definition 1: A pulse response (10) hasspatial decay rater
(r > 1) anddynamical growth rateα (α > 0), if the following
series is absolutely summable
∞∑

t=0

∞∑

k1,...,kN=−∞
|H(t, k1, . . . , kN )|α−tr(|k1|+...+|kN |) < ∞, (13)

A pulse response satisfying Definition 1 grows more slowly
than αt in time uniformly in the spatial coordinates, and it
decays at least as rapidly asr−|l| in space uniformly in time,
where|l| is the1-norm distance from the response center along
the spatial coordinates.

The transfer function expansion (11) for an absolutely
summable response with a spatial decay rater and dynam-
ical growth rateα converges uniformly (is analytic) for any
complex numbersz, λ1, . . ., λN in the domain

Λα,r = {z, λ1, . . . , λN ∈ C :

|z| ≥ α; r−1 ≤ |λ1,...,N | ≤ r; r ≥ 1; α > 0
}

(14)

As discussed in more detail later, the spatial decay rater
allows us to specify an acceptable influence of the boundary
conditions. This influence decays exponentially at the rater
with the distance from the boundaries. In what follows, a class
of well-posedsystems will be studied

Definition 2: A system is called well-posed if (13) holds
for r = 1 and someα > 0.

The following fact will be central in establishing our results
Proposition 1: Consider a multidimensional system that is

described by difference equations (4)–(6) and is known to be
well posed. Consider a formal transfer function of the system
P̂ (z, λ1, . . . , λ1) obtained as an LFT from (4)–(6) and assume
that it is analytic in the setΛα,r(14), wherer, α ≥ 1. Then
the system has a spatial decay rater and dynamical growth
rateα.

Proof. Since the transfer function̂P (z, λ1, . . . , λ1) is ana-
lytic in Λα,r, it can be expanded as

P̂ (z, λ1, . . . , λ1) =
∞∑

τ=1

∞∑

k1,...,kN=−∞
P (τ, k1, . . . , kN )z−τλ−k1

1 . . . λ−kN

N , (15)

and the expansion converges uniformly inΛα,r. Now
consider the transfer function expansion (11) computed
for the system pulse responseH. In accordance with the
well-posedness assumption, the expansion (11) converges in a
subset ofΛα,r: for |z−1| < A−1 (A > 0) and |λj | = 1. The
formal transfer functionP̂ coincides withĤ on this subset.
ThereforeH(τ, k1, . . . , kN ) = P (τ, k1, . . . , kN ), the transfer
function expansion (11) coincides with (15) and converges in
Λα,r. In accordance with Definition 1, this guarantees that
the proposition statement is true. QED

Proposition 1 requires us to know that that the system is
well-posed as a pre-requisite for the transfer function analysis.
Consider some important examples of the systems that satisfy
this requirement. In practical applications of multidimensional
array control, the plant is usually well-posed and can be
modeled to have a spatial decay rater > 1. This is because
modeling of an array control system as a multidimensional
systems is only justified if the influence of the boundary
conditions and cross influence of control inputs is small for
remote elements of the array. If the cross influence is large
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across the entire array, multidimensional system models should
not be used in the first place.

An important class of multidimensional systems consists
of systems with distributed localized controllers. In such
controllers, computations are distributed over nodes associated
with each array cell. At each time sample, control values
are computed using current data only from the node itself
and past data supplied by a few neighboring cells, i.e., new
control values computed at other cells cannot be used. Such
controller designs reflect important communication constraints
existing in large multidimensional array control systems. It can
be shown that distributed localized controllers implemented
within the described physical constraint on the inter-cell com-
munication are always well-posed.

Proposition 1 helps to establish necessary and sufficient
conditions of well-posedness and BIBO stability for a multi-
dimensional systems consisting of interconnected subsystems.
The main types of system interconnections are parallel, cas-
cade, and feedback. Establishing well-posedness of a parallel
or cascade interconnection of well-posed subsystems is trivial.
The feedback case is considered below. Without a loss of
generality, consider a unit feedback loop.

Proposition 2: Consider a closed-loop dynamical system
that consists of an well-posed multidimensional plantH with a
multidimensional controllerG in a feedback configuration. As-
sume further that the feedback loopGH has no feedthrough,
i.e., the loop pulse response(GH)(0, k1, . . . , kN ) =
G(0, k1, . . . , kN ) · H(0, k1, . . . , kN ) = 0. Under these con-
ditions, the closed-loop system is well posed.

Proof. Since the loop does not have a feedthrough and is
well posed (as a cascade connection of well-posed plants),
its transfer function can be represented in the form̂GH(·) =
z−1L̂(·), whereL̂(·) is analytic for|z−1| < A−1 and|λj | = 1.
In accordance with the Proposition assumptions, the closed-
loop transfer functionĤc(z, λ1, . . . , λN ) can be represented
for z →∞, and |λj | = 1, j = 1, . . . , N as

Ĥc = [I + z−1L̂]−1z−1L̂ (16)

Consider the system on the unit circle|λj | = 1, j = 1, . . . , N .
ConsiderAc > 0 such that|I + z−1L̂| > 0, for |z−1| < A−1

c .
The expansion (16) converges uniformly inz−1, λ1, . . . , λ1,
for |z−1| < A−1

c . This follows from [19, Theorem 2, Section
2.4]. To demonstrate that suchAc exists, note that because
of the well-posedness the transfer function expansions are
uniformly summable for|λj | = 1 and sufficiently largez. The
following bound holds:|L̂(z, λ1, . . . , λN )| < C for |z| > A.
Thus, for |z| > Ac = max(A, 2C) we have|I + z−1L̂| ≥
1 − A−1

c |L̂| > 1/2. Consider the closed-loop pulse response
with zero lag. Since the loop has no feedthrough, this response
is zero and hence absolutely summable. The spatial transfer
function Hc(z = ∞, λ1, . . . , λN ) = 0 corresponds to this
zero-lag pulse response. Hence, by the argument similar to
that used in Proposition 1, the well posedness (BIBO stability)
follows from the uniform convergence of the expansion (16)
in the domain|z−1| < A−1

c , |λj | = 1, j = 1, . . . , N . QED
The essential meaning of Propositions 1 and 2 is that

a closed loop consisting of a multidimensional plant and
multidimensional controller is well-posed and stable provided

that (i) both the plant and the controller are well-posed (they
may be unstable dynamically); (ii) the cascade connection of
the controller and plant does not have a feedthrough term;
and (iii) the multidimensional closed-loop transfer function is
analytic in the stability domain.

Condition (ii) is not very limiting. All it requires is that
the control action at each time sample influences the mea-
surements taken form the plant at the next time sample but
not the measurements available at the time of computing the
control. This always holds in practice. Condition (ii) defines an
important constraint in modeling of multidimensional systems.
This constraint must be honored for analysis to be conistent.
The systems where Condition (ii) isnot satisfied might include
some where a feedback control loop is inside the computations
and no physical plant is a part of the loop. This might in
principle happen inside controllers, signal or image process-
ings systems, or mathematical models of spatially distributed
control.

III. STRUCTUREDSINGULAR VALUE ANALYSIS

This section applies results of the previous section to show
how the robust stability analysis of a multidimensional control
loop can be performed by extending standard methods of
Structured Singular Value analysis (µ-analysis). A possibility
of applying existing approaches ofµ-analysis to multidimen-
sional systems was mentioned in [31], [10]. This possibility
follows immediately from an LFT representation of multidi-
mensional systems discussed in [31], [10]. Compared to this
earlier work, the contributions of this paper are as follows:
(i) This paper presents a study of thenominal stabilityissues.
Nominal stability includes the well-posedness requirement and
is analyzed based on the results of the previous section. (ii)
A provision is made for a guaranteed spatial decay rate of
the system pulse response. This permits us to guarantee limits
on boundary effects. (iii) The proposed computations can be
implemented using the existing standard Mu-tools software [3]
and is convenient to apply practically.

A. LFT models

Consider an LFT model corresponding to pseudo state space
difference equations of the form (4)–(6), see [8] for more
discussion. The LFT model shown in Figure 1 (left) has
frequency structureΛ of the form

Λ = diag
{
z−1In, λ1Ip1 , λ

−1
1 In1 , . . . , λNIpN

, λ−1
N InN

}
, (17)

whereIj is a unity matrix of the sizej and the dimensions
are as appropriate.

M

Λ

¾ u¾y
¾

-

M ¾ u¾y

Λ

¾

-

∆

¾

-

Fig. 1. LFT models
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The LFT model in Figure 1 (left) can be extended to take
into account model uncertainty∆ ∈ ∆. Here ∆ describes
a realization of uncertainty, and∆ is the uncertainty set.
Consider the following uncertainty structure that is as usual in
the Structured Singular Value analysis -µ-analysis.

∆ = diag
{
δ1Ir1 , . . . , δSIrS

, δS+1Iq1 , . . . , δS+QIqQ
,

∆1, . . . , ∆F } , (18)

where δs are real or complex scalars, and∆f are square
complex matrix blocks. A more detailed discussion of the
uncertainty description (18) and explanation of its physical
meaning can be found in the textbook [31]. It what follows,
it is assumed that the complex uncertainty∆ corresponds to
a transfer function of a well-posed and stable system (see
Definition 2).

The LFT model including the uncertainty is shown schemat-
ically in Figure 1 (right). The two upper blocks in the feedback
loop include the uncertainty description (18) and frequency
structure (17). The transfer function (11) with the uncertainties
(18) can be presented in the LFT form as

P̂ (z, λ1, . . . , λ1;∆) = M22 + M21∆̄
(
I −M11∆̄

)−1
,

∆̄ = block diag{∆, Λ}, (19)

where the submatricesMij of the matrixM provide a par-
titioning compatible with (18), (17) and Figure 1 (right). As
usual, it is assumed that the uncertainties (18) have been scaled
such that they belong to a set

∆ =
{
δ1, . . . , δS ∈ <, δS+1, . . . , δS+Q ∈ C, ∆j ∈ Cmj ,mj :

|δk| ≤ 1, σ̄(∆j) ≤ 1} (20)

At this point it is important to emphasize that there are
some differences in the modeling of multidimensional systems
compared to the standard system modeling inµ-analysis of
dynamical systems. Unlike standard LFT models, in (17), both
spatial Laplace variablesλk and their inverses are included
as separate indeterminants. This is done because non-causal
FIR response models require using both positive and negative
powers of the spatial Laplace variables.

B. Structured singular value

In what follows, theMultidimensional (MD) Nominal Sta-
bility Conditions are considered to hold unless stated other-
wise. These conditions characterize the system in the absence
of uncertainty.

Definition 3 (MD Nominal Stability Conditions):Consider
a system with uncertainty described by the transfer function
(19). Require that in the absence of uncertainty, e.g., for
∆ = 0 the system is stable in time and has spatial decay rate
r (see Definition 1).

In what follows, MD Nominal Stability Conditions will
always be complemented with a condition on the uncertainty
used in the robust analysis. The complex uncertainty∆ in (19)
corresponds to a transfer function of an unknown uncertainty
system. Require that this system∆ is also stable and has
spatial decay rater.

Consider the inner loop in the right diagram in Figure 1.
This inner loop includes the frequency structureΛ (17) and
defines a transfer functionM(z, λ1, . . . , λN ). The diagram
in Figure 1 has a closed loop consisting of the system
M(z, λ1, . . . , λN ) and the uncertainty∆. The frequency de-
pendent structured singular value with respect to the uncer-
tainty ∆ can be defined as usual [31]

µ∆ (M(z, λ1, . . . , λN )) =
1

min {σ̄(∆) : det[I −M(z, λ1, . . . , λN )∆] = 0, ∆ ∈ ∆} (21)

where∆ is as defined in (20) and̄σ(∆) is the largest singular
value (operator norm) of the block matrix∆.

The Structured Singular Value (SSV) for the system can
be defined as an inverse robust stability marginαmax of the
system with respect to the uncertainty∆ (18), where the
‘stability’ is understood as the system being stable in time and
having a spatial decay rater in accordance with Definition 1.
The structured singular value can be defined as

µ∆,Λα,r (M) =
1

αmax
= sup

Λα,r

µ∆ (M(z, λ1, . . . , λN )) , (22)

whereΛα,r is the set (14). The robust stability condition is
thenµ∆,Λα,r (M) · σ̄(∆) < 1.

The following formulas give a constructive way for com-
puting the SSV (22)

Proposition 3: Assume that the MD Nominal Stability Con-
ditions hold. Then, the structured singular value (21), (22) can
be computed as

µ∆,Λα,r (M) = sup
ω,ν1,...,νN∈[0,2π]

µ∆,α,r(M ; ω, ν̄),(23)

µ∆,α,r(M ; ω, ν̄) =
min

ρn={r−1,r}
µ∆

(
M(α−1eiω, ρ1e

iν1 , . . . , ρNeiνN )
)
, (24)

where ν̄ = [ν1, . . . , νN ]T , the minimum is computed over all
combinations of the factorsρn, n = 1, . . . , N , with each factor
taking one of the two valuesr or r−1.

The proof of Proposition 3 is based on the fact that the
structured singular valueµ∆ (M(z, λ1, . . . , λN )) (21), (22)
is a subharmonic function of each Laplace variablez, λ1,
..., λN , see [5]. Consider all the above Laplace variables,
exceptλ1 fixed and in the domainΛα,r (14). By condition
of Proposition 3, M(z, λ1, . . . , λN ) is a regular analytic
function of λ1 inside the domainr−1 ≤ |λ1| ≤ r. Hence
µ∆ (M(z, λ1, . . . , λN )) is a subharmonic function ofλ1 in
this domain (see [5]) and, thus, achieves it maximum on the
domain boundary, i.e., on the set|λ1| = {r, r−1}. By repeating
this reasoning for each ofλk andz (23), the conclusion (24)
follows immediately. Standardµ-tools software can be used
in computing (24). Of course, computation ofµ is NP-hard
in the number of the uncertainties, the same difficulty that is
encountered in computing the usualµ.

Proposition 3 requires establishing the multidimensional
nominal stability conditions in the absence of uncertainty.
Verification of these conditions can be facilitated by the
following fact
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Proposition 4: Consider a well-posed multidimensional
system, with an LFT representation as in Figure 1 (right),
where ∆ = 0. Assume that the multidimensional trans-
fer function of the systemM(z, λ1, . . . , λN ) is such that
M∞(λ1, . . . , N ) = lim|z|→∞M(z, λ1, . . . , λN ) exists and is
an analytic function forr−1 ≤ |λj | ≤ r, j = 1, . . . , N .

Then the system is well posed, has dynamical growth rate
α and spatial decay rater provided that

max
ρj={1/r,r}

sup
νj∈[0,2π]

ρ
(
M∞(ρ1e

iν1 , . . . , ρNeiνN )
) ≤ α, (25)

whereρ(M) is the spectral radius of the matrixM and the
maximum is computed over all combinations of the factors
ρn, n = 1, . . . , N .

Proof. Represent the system as shown in Figure 1 (right)
where

∆ = z−1In,

Λ = diag
{
λ1Ip1 , λ

−1
1 In1 , . . . , λNIpN

, λ−1
N InN

}
,(26)

Note that the pulse response with the zero time lag corre-
sponds to the spatial transfer functionM∞(λ1, . . . , λN ) =
M(z = ∞, λ1, . . . , λN ). The result of Proposition 4 follows
from Proposition 1 and Proposition 3 after noticing that (25)
presents computation of the Structured Singular Value similar
to (23)– (24) for the uncertainty∆ = z−1In. The MD
Nominal Stability Conditions in Proposition 3 in this case
require that the transfer functionM(z = ∞, λ1, . . . , λN ) is
analytic for r−1 ≤ |λj | ≤ r, j = 1, . . . , N and the pulse
response with zero time lag is summable. The latter follows
from the well-posedness of the system. QED.

In analysis of controlled dynamical systems, the SSV is
commonly computed on a grid of the dynamical frequenciesω.
In computing (23), (24), a multidimensional grid of dynamical
and spatial frequencies has to be considered. Theµ plots
used for description of multivariable dynamical systems, here
change intoN + 1 dimensionalµ hyper-surfaces (24). Such
representation and computations are acceptable, because in
present-day practical applications of array control there are
only N = 1 or N = 2 spatial coordinates. At the same
time, computers are presently more than 1000 times faster
than 20 years ago when SSV was first introduced and used
in computations on one-dimensional frequency grids. In the
future, 3-D applications of array control might appear, but by
then, perhaps, available computing power will have increased
further. One important difficulty with the multidimensional
SSV plots will be their visualization and interpretation.

Similar to frequency gridding in standard SSV analysis,
multidimensional frequency gridding is a reasonable approach
to take in many practical applications. Of course, the per-
formance of multidimensional SSV computation is ultimately
limited by the fact that underlying problem is NP-hard. This
limits the complexity of uncertainty models that can be
practically analyzed. Gridding by itself adds computational
complexity that is exponential in the number of dimensions
in the multidimensional system. This is in line with the result
of [29].

Overall the process of the SSV analysis for an uncertain
multidimensional system in the LFT form (19) consists of the

following steps:
Step 1: Verify well-posedness of the system for∆ = 0. In

practice this often can be done by presenting the system as
an interconnected system and applying Propositions 1 and 2.
The well-posedness of each of the interconnected subsystems
would follow from physical considerations

Step 2: Present system in the LFT form (19) and use
Proposition 4 to verify the MD Nominal Stability Conditions.
If the controller and the plant in a closed-loop configuration do
not simultaneously have feedthrough, the zero lag closed-loop
response can be decomposed into the zero lag responses of
the plant and controller. Thus the requirement that the pulse
response with zero time lag decays faster thanr−|x| in the
spatial coordinates can be verified separately for the open-
loop plant and controller. The remaining analytic condition
(25) can be computed using standardµ-tools software.

Step 3: Perform robust stability test by verifying that
µ∆,Λα,r

(M) < 1. This can be done by using the frequency
gridding formulae (23)–(24) and standardµ-analysis tools.

In multidimensional µ-analysis, Step 2 requires veri-
fying analyticity of a multidimensional transfer function
M∞(λ1, . . . , λN ) in the complex annulus domainr−1 ≤
|λj | ≤ r, j = 1, . . . , N , and r ≥ 1. Let us discuss this in
more detail.

Consider first the case of one spatial variableλ. In this
case,M∞(λ) is a usual rational transfer function of a single
variable and its poles can be computed directly by one of the
well-known methods. The analyticity of the transfer function
in a domain means that none of the poles is in the domain.

For multiple (two or three) spatial variables, an important
special case is an FIR plant. Practical identification of dis-
tributed plants in many cases yields FIR models, e.g., see
[15], [16]. This is because the spatial response decaying in
spatial coordinate cannot be distinguished from zero once it
decays below the level of the measurement noise or other
identification inaccuracies. For an FIR plant,M∞(λ1, . . . , λN )
is analytic for any variablesλ1, . . . , λN .

For r = 1, a Linear Matrix Inequality approach applicable
for multiple spatial variables is presented in [8], [9], [10]. A
computationally efficient and conceptually clean exact solution
of the Step 2 problem for a general case ofr > 1 is an inter-
esting and challenging problem which we hope would attract
attention in the control theory community. Such a solution
is beyond the scope of this paper. An approximate solution
approach is outlined below for the case ofN = 2 spatial
dimensions. This approximate solution can be extended, in
principle, toN = 3 (or more) dimensions.

Consider the case ofN = 2, whereM∞(λ1, λ2) is an LFT
with the frequency structure

Λ = diag{Ip,1λ1, In,1λ
−1
1 , Ip,2λ2, In,2λ

−1
2 }.

The solution steps are as follows:

• Introduce a large parameterα and replaceλ−1
j , j =

{1, 2} by approximationsλ−1
j ≈ α/(1+λjα). Forα À r

this approximation is very accurate in the ringRr ≡
{λj ∈ C : r−1 ≤ |λj | ≤ r}. With this approximation the
frequency structure becomesΛA = diag{In1λ1, In2λ2},
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where Inj , j = {1, 2} are unity matrices of the sizes
nj = np,j + nn,j . Thus, the condition of the transfer
function analyticity can be presented in the form

det[I −AΛA] 6= 0, for λ1,2 ∈ Rr, (27)

where A is a matrix obtained after representing the
transfer function as an LFT with the new frequency
structureΛA. The LFT structure in (27) is illustrated in
Figure 2

2221

1211

AA

AA

11
λnI

22
λnI

Fig. 2. LFT Representation of the 2-D spatial response transfer funcion

• Introduce a mapζ2 = 1
2 (λ2 +λ−1

2 ). This map transforms
the domainλ2 ∈ Rr into the domainζ2 ∈ Er, whereEr

is the ellips

Er ≡ {ζ ∈ C : (Realζ)2r2 +
4(Imag ζ)2

(r − r−1)2
≤ 1} (28)

Note that each pair of pointsλ, λ−1 ∈ <r are mapped
onto the sameζ ∈ Er. It can be proved that (27) is
equivalent to

det[I − 2(A2
1 + I)−1A1ζ2] 6= 0, (λ1 ∈ Rr, ζ2 ∈ Er), (29)

whereA1 = A1(λ1) corresponds to the LFT including
the inner loop in Figure 2 (the loop withλ1). The
expression (29) follows from the fact thatλ2 ∈ Rr iff
λ−1

2 ∈ Rr and the fact that

I − 2(A2
1 + I)−1A1

λ2 + λ−1
2

2
=

(A2
1 + I)−1(A1λ2 − I)(A1λ

−1
2 − I)

An LFT representation of (29) is shown in Figure 3.
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Fig. 3. LFT Representation of the 2-D spatial response transfer
function after transformingλ2 into ζ2 = 1

2
(λ2 + λ−1

2 )

Figure 4 shows a representation equivalent to that in
Figure 3 and obtained after collecting the indeterminants
λ1 together. The matrixĀ is a block matrix consisting
of permutations of the blocksAij belonging to the two
matricesA in Figure 3.

A

12 1
λnI

2S

22
ςnI

Fig. 4. An equivalent LFT representation of the 2-D spatial response transfer
function after transformingλ2 into ζ2 = 1

2
(λ2 + λ−1

2 )

Note that the LFT for the lower part in Figure 4 (below
the dotted line) can be represented asA2(ζ2). Similar to
how it was done to prove (29), it can be proved that (27)
is equivalent to

det[I − 2(A2(ζ2)2 + I)−1A2(ζ2)ζ1] 6= 0, (ζ1,2 ∈ Er) (30)

An LFT representation of the matrix in the condition (29)
is shown in Figure 5.

A

2S

A

2S

22
ςnI

020

0

00

1

11

1

2

22

2

n

nn

n

I

II

I

−
−

−

12 1
ςnI

22
ςnI

Fig. 5. LFT Representation of the 2-D spatial response transfer
function after transformingλ1 into ζ1 = 1

2
(λ1 + λ−1

1 ) and λ2 into
ζ2 = 1

2
(λ2 + λ−1

2 )

• Finally, an approximation of the domain (28) can be
obtained by substitutingζj = r−1δj + 1

2 (r − r−1)ξj ,
(j = {1, 2}), where |δj | ≤ 1 is real uncertainty and
|ξj | ≤ 1 is complex uncertainty. By substituting this
approximation into the LFT in Figure 5, ‘pulling out’
the indeterminantsδj andξj the transfer function can be
presented in a standard LFT form suitable for standard
µ-analysis. Since the domainζ1,2 ∈ Er is a subset of the
domain|δ1,2| ≤ 1, |ξ1,2| ≤ 1, suchµ- analysis would give
a sufficient condition of the transfer function analyticity.

The above solution steps are described forN = 2, but can
be extended toN = 3. As mentioned earlier,N > 3 are not
encountered in practical applications.
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For modeling and analysis purposes, the summation over
an infinite spatial domain is considered in (10). In reality, the
spatial domain in question is always bounded, though it may be
very large. There is usually a need for considering edge effects
that (10) does not address. Edge effects can be proven to be
contained in a boundary layer provided the system response
taking into account the boundary effects is BIBO stable and
decays sufficiently fast in the spatial coordinates. The analysis
of the edge effects can be performed by embedding the
spatially bounded system into a spatially inifinite one. The
latter should be setup to match the bounded system inside
the bounds to the extent possible. The spatial responses in the
system decay exponentially. Therefore, the part of the spatially
inifinite system solution that is outside of the spatial bounds
will influence the solution inside the bounds with an effect
that is exponentially vanishing away from the edges. Hence,
in general, the spatially inifinite model solution will be close
to the spatially finite solution except for a bounday layer.

The definition of the structured singular value used in
(22) differs somewhat from the standard definition because it
includes requirements on the spatial decay rate of the system
pulse response. For a given spatial decay rater the effects
of the boundary conditions can be guaranteed to be contained
in a boundary layer with a characteristic widthlog r near the
boundaries of the spatial domain. Through the parameterr,
therefore, the impact of the boundary effects can be explicitly
included in control design and analysis tradeoffs.

IV. EXAMPLE : CROSS-DIRECTIONAL PROCESS CONTROL

This section demonstrates an application of the analytic
approaches described above to a cross-directional process
control problem. This is an important industrial application
where multidimensional modeling provides adequate tools for
practically useful analysis.

A. Motivating industrial application

Paper machines make continuous webs of paper from liquid
pulp stock. Paper webs with width up to 10 m go through
the machine at speeds up to 100 km/h. Maintaining sufficient
uniformity of such critical process variables as paper weight,
moisture, and caliper (thickness) across the web width is
achieved by using cross-directional (CD) control systems. CD
control can include hundreds of spatially distributed actuators
influencing the paper process. Measurement systems down-
stream from the actuators sample the cross-directional profiles
of the quality variables and provide feedback errors.

Physics of processes, actuators, and measurements vary
greatly in different industrial CD control applications. At the
same time, CD process models with the same structure are
successfully used in industrial practice for different processes.
In the industry, CD process response is commonly modeled
as a cascade connection of a dynamical process response
and spatial process response. It is usually assumed that the
spatial response shapes for all actuators are the same and the
responses differ only by corresponding spatial shifts.

A CD control problem can be in principle considered as a
standard multivariable control problem, though of very large

size. Structured uncertainty analysis for such systems is briefly
surveyed in [6]. Robust analysis in such problems is com-
putationally unfeasible in most cases because theµ-analysis
problem is NP-hard and quickly gets out of hand for large plant
size [7]. For unstructured uncertainty, significant improvement
in computational efficiency of the analysis can be achieved
by exploiting the problem structure and performing a modal
decomposition of the problem (singular value decomposition
of certain spatial operators) [14], [20]. A spatially invariant
CD process model can be diagonalized by using the spatial
Fourier transform. The papers [25], [26], [27] use such 2-D
frequency analysis to deal with an unstructured uncertainty in
a CD control problem.

The example of this section demonstrates an application
of Section III methodology to a CD control problem. The
discussed issues of structured uncertainty analysis and edge
effects in CD control have not been addressed in earlier
papers. The structured uncertainties correspond to errors in
modeling the spatial CD response shape and its center position
(actuator mapping). A two-dimensional description of CD
control processes without uncertainties was discussed earlier in
[18], [30] using Roesser models. Unlike Roesser systems, real-
life CD processes are non-causal in the spatial coordinate. The
models of this paper are non-causal in the spatial coordinate.

B. Problem Formulation

The CD process variables depend on two integer coordi-
nates: a sampled cross-directional coordinatex ∈ Z corre-
sponding to an actuator number and sampled timet ∈ Z.
CD actuators are numbered by the CD coordinatex. The
scalar control variableu is, thus, a function of time and CD
coordinate,u = u(x, t). There is a scalar output error variable
y = y(x, t).

A paper machine CD process is commonly modeled as a
separable process that can be described as a cascade connec-
tion of a dynamical response and spatial response subsystems
of the form

y(x, t) = G(λ, λ−1)g(z−1)u(x, t) + ξ(x, t), (31)

where ξ(x, t) is an external disturbance acting on the con-
trolled process,z−1 is a unit time delay operator andλ−1 is a
unit left shift operator. In industrial CD process control prac-
tice, parametric models of the spatial response and dynamical
response are identified from the process data [15], [16]. The
spatial operatorG in (31) is a two-sidedz-transform of the
spatial pulse response [22]. A model of spatial response for a
CD process is assumed to be of the form:

G(λ, λ−1) = g0Ψ(λ)Ψ(λ−1), (32)

Ψ(λ) =
1

1− 2wζλ + w2λ2
, (33)

where g0 is a scalar gain of the process andΨ(λ) is a
causal sampled data spatial transfer function. The Wiener-
Hopf decomposition (32) allows realization of the non-causal
operator G(λ, λ−1) as a composition of causal and anti-
causal filters with the transfer functionsΨ(λ−1) and Ψ(λ)
respectively.
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As commonly assumed in the industry, the dynamical re-
sponse of the process (31) is a first order response with a unit
dead time.

g(z−1) =
z−1

1− az−1
(34)

In the numerical analysis the following values of the process
parameters are assumed

g0 = 1, w = 0.55, ζ = 0.315, a = 0.7 (35)

In many CD processes, the general shape of the spatial
response is well defined. At the same time, the process gain,
location of the response maximum, and response width might
differ from the nominal model. This can be well described by
a structured (multiplicative) uncertainty replacing (31)

y = G(λ, λ−1)
(
1 + d0δ(λ, λ−1)

)
g(z)u + ξ, (36)

whereδ is an uncertain spatial transfer function,|δ(λ, λ−1)| ≤
1, and the scalard0 gives the relative size of the uncertainty.
Similar to (31),ξ is the external disturbance.

The analysis for the structured uncertainty model (36)
is further compared with the analysis for an unstructured
(additive) uncertainty model of the form

y = G(λ, λ−1)g(z)u + g1d0δ(λ, λ−1, z−1)u + ξ, (37)

where|δ(λ, λ−1, z−1)| ≤ 1 andg1 is a scalar gain introduced
to make the uncertainty scaled0 in (37) to have the same
meaning as in (36).

The control goal is to reduce the influence of the unmea-
sured disturbanceξ = ξ(x, t) on the process outputy =
y(x, t). The focus of this example is on the robustanalysis
of a controlled paper machine process. A specific controller
structure is assumed herein as commonly used in the industrial
CD controllers. The controller is similar to one studied in [25],
[26], where more background and explanation can be found.
The controller has the form

∆u = −c(z−1)K(λ, λ−1)y − S(λ, λ−1)z−1u,(38)

c(z−1) = kP (1− z−1) + kI , (39)

where K(λ, λ−1) and S(λ, λ−1) are spatial operators and
c(z−1) is a dynamical PI feedback controller in velocity form.
The operatorK(λ, λ−1) is chosen to equalize the loop gain
across the controllable spatial frequencies while the operator
S(λ, λ−1) is chosen to prevent large control action for the
poorly controllable modes near the spatial Nyquist frequency.
For the numerical example below, these operators are non-
causal FIR operators designed using a spatial loopshaping
technique similar to [27], [26] as

K = k2λ
−2 + k1λ

−1 + 1 + k1λ + k2λ
2 (40)

S = b0 + b1(−0.5λ−1 + 1− 0.5λ) (41)

The following controller parameters were assumed

k1 = 0.18, k2 = −0.39, b1 = 0.005, b0 = −0.0001,

kP = 0.1, kI = 0.02, d0 = 0.5 (42)

C. LFT models forµ-analysis

The structured uncertainty analysis of Section III requires
representing the closed-loop CD process (33) with the con-
troller (39) in an LFT form. Following the standard practice
[31], the closed-loop multidimensional process (36) with the
controller (39) is shown in Figure 6 as an interconnection of
simple blocks including the structured uncertainty model in
(36). The spatial and dynamical transfer functionsg, Ψ, c,
K, S in the diagram are defined in (33), (34), (39)–(41). The
input of the closed loop system in Figure 6 is the external
disturbanceξ. The control performance can be judged by how
much this disturbance is suppressed in the system outputy.

)( 1−zc),( 1−λλK

1−z),( 1−λλS

11
1

−− z

CONTROLLER

)( 1−zg)( 1−Ψ λ δ01 d+0g )(λΨ
PROCESS

ξ

 y

 u

 -

Fig. 6. Closed-loop model of a controlled CD process

The block-diagram model in Figure 6 was used to derive
an LFT model shown in Figure 1 (right), where∆ = δ is the
model uncertainty, and the frequency structure is as follows

Λ = diag
{
z−1In1 , λIn2 , λ

−1In3

}
, (43)

The dimension parameters aren1 = 4, n2 = n3 = 5. The
matrix M in Figure 1 (right) can be partitioned in accordance
with the diagram asM = {Mij}3i,j=1.

Consider the requirement of spatial response localization
for the closed-loop system. In the numerical example below
the spatial decay rater = 0.8 is assumed. This means the
response decays by an order of magnitude within 10 steps
from its center. The response decay rate defines widths of
boundary zones near the edges of the spatial domain of the
process. Outside of these boundary zones, the closed-loop
system behavior is well approximated by the assumed 2-D
model with an infinite spatial domain.

To guarantee dynamical stability and spatial response local-
ization, the multidimensional closed-loop transfer function of
the system is required to be analytic in the domainΛr = Λr,1
(14)

Λr =
{
z, λ ∈ C : |z| ≥ 1, r ≤ |λ| ≤ r−1, r ≤ 1

}
, (44)

The structured singular value analysis outlined in Subsec-
tion III-B begins by verifying the MD Nominal Stability
Conditions (see Definition 3). At Step 1, the well posedness
of the closed-loop system can be established by applying
Proposition 2. The plant (37) and the controller (38)–(41) are
each well posed. At Step 2, the condition of the closed-loop
zero lag response decaying faster than the chosen rater = 0.8
can be verified separately for the plant and the controller since
the latter does not have a feedthrough term. The controller zero
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lag response is given by the FIR operator (40). The plant zero
lag response is given by (32) and its decay rate can be checked
by computing poles ofΨ(λ) in (32). Verifying (25) concludes
the nominal stability analysis.

The robust stability condition (Step 3 in Subsection III-B)
involves the following two-dimensional transfer function from
the diagram in Figure 1 (right)

Ms(z, λ) = M11 + M12Λ (I −M22Λ)−1
M21, (45)

whereMs is the transfer function between the input toM and
output fromM associated withδ. The robust stability margin
can be defined through a structured singular valueµ with the
structured uncertaintyδ. In accordance with Proposition 3 the
structured singular value can be evaluated as (23), (24), where
α = 1 and Λr = Λr,1 is given by (44). Instead of a usual
µ plot, a µ surfaceµδ,r(Ms; ω, ν) is used, whereω is the
dynamical frequency andν is the spatial frequency.

The same LFT model of the closed loop can be used for
robust performance analysis very much as described in [31] for
dynamical systems. As a performance specification, consider
a requirement of the disturbance attenuation: the norm of the
transfer function fromξ to y in Figure 1 (right) should be less
that dp , wheredp < 1. By pulling out δ, introduce a2 × 2
closed-loop multidimensional transfer functionMp(z, λ) from
ξ and δ to y and δ. Similar to what is discussed in [31], the
robust performance requirement can be analyzed by computing
the structured singular value similar to (23), (24)

µ∆,1(Mp;ω, ν) = µ∆

(
Mp(eiω, eiν)

)
, (46)

∆ = block diag{δ, δp},
whereδ ∈ C is the process uncertainty (36) andδp ∈ C is an
auxiliary complex uncertainty introduced for the performance
analysis. The robust performance requirement holds for all
frequenciesω, ν, whereµ∆,1(Mp; ω, ν) < 1.

An important application of the robust performance analysis
is in evaluation of the closed-loop bandwidth of the system.
A common definition of the control loop bandwidth is as
the frequency range, where the external disturbances are
attenuated by a factor of

√
2. The bandwidth of the loop

subject to the uncertainties can be evaluated by assuming
dp = 1/

√
2 and computing the structured singular value (46).

For the two-dimensional process in the question the bandwidth
is defined by a two-dimensional domainB = {ω, ν ∈ < :
µ∆,1(Mp; ω, ν) < 1}.

D. Numerical example

Consider now results of the numerical analysis for the
closed-loop multidimensional process (36), (33), (34) and
the controller (39)–(41) with process parameters (35) and
controller parameters (42).

The closed-loop robustness with respect to the complex
structured uncertaintyδ in (36) is given by the structured sin-
gular valueµδ,1,r(Ms;ω, ν) (24) and is illustrated in Figure 7.
One can see that the robust stability is maintained with a large
margin.

The structured singular value in Figure 7 can be compared
against the robust stability margin with respect to the unstruc-
tured additive uncertaintyδ in (37). The robust stability margin
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Fig. 7. Generalizedµ for robust stability.
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Fig. 8. Unstructured robust stability margin.

obtained fromµ-analysis (the same as using the Small Gain
Theorem here) and comparable to that in Figure 7 is shown in
Figure 8. In this case the maximal singular valueµ∗ = 1.0240
is almost twice as large as for the structured uncertainty.
This means the estimated robustness is twice as bad. This
comparison shows that unstructured uncertainty analysis can
give overly conservative results for the robustness. The worst
deterioration of robustness for unstructured (additive) uncer-
tainty happens near Nyquist spatial frequency. This is because
the influence of the structured (multiplicative) uncertainty at
this frequency is filtered through the plant transfer function
with small gain at this frequency.

Finally, consider the issue of the robust performance and
closed-loop bandwidth for the system in question. The struc-
tured singular valueµ∆,1(Mp; ω, ν) (46) that defines the
robust performance is plotted in Figure 9. This surface defines
bandwidth of the closed-loop system. The closed-loop band-
width corresponds to the two-dimensional set of the dynamical
and spatial frequencies, where the structured singular value in
Figure 9 is less than

√
2/2. Figure 10 shows both the robust
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bandwidth and nominal 2-D bandwidth domain of the closed-
loop system. The latter is the bandwidth domain in the absence
of the uncertainty, the former is the domain of the guaranteed
performance with the structured uncertainty. The presence of
the uncertainty shrinks the guaranteed bandwidth, but not too
much because of the good robustness of the controller.

V. CONCLUSIONS

The paper presented practical approaches for the analysis of
dynamical stability and spatial response localization for linear
spatially invariant multidimensional systems. The systems are
modeled by multidimensional transfer functions. A Linear
Fractional Transformation model for such system can include
structured uncertainty. Mathematical analysis of such closed-
loop systems has been greatly assisted by that fact that in
practice the plant and the controller do not simultaneously
have feedthrough terms. The computationally efficient robust
stability and localization analysis turns out to be possible via
simple extensions of existingµ-analysis tools.

As an example, this paper considered a multidimensional
model of a controlled cross-directional (CD) process of web
manufacturing. The analysis and modeling approach was illus-
trated with numerical results representative of paper machine
weight control. The analyses were carried out on a modern
PC with little computational delay. The established robust
stability margins include guarantees on spatial localization of
the closed-loop response, that are important in edge effect

analysis, and the robust closed-loop (spatial-dynamical) band-
width.
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