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An Approach to Parametric Nonlinear Least
Square Optimization and Application

to Task-Level Learning Control
D. Gorinevsky,Member, IEEE

Abstract—This paper considers a parametric nonlinear least
square (NLS) optimization problem. Unlike a classical NLS prob-
lem statement, we assume that a nonlinear optimized system
depends on two arguments: an input vector and a parameter
vector. The input vector can be modified to optimize the system,
while the parameter vector changes from one optimization iter-
ation to another and is not controlled. The optimization process
goal is to find a dependence of the optimal input vector on the
parameter vector, where the optimal input vector minimizes a
quadratic performance index. The paper proposes an extension
of the Levenberg–Marquardt algorithm for a numerical solution
of the formulated problem. The proposed algorithm approximates
the nonlinear system in a vicinity of the optimum by expanding
it into a series of parameter vector functions, affine in the input
vector. In particular, a radial basis function network expansion is
considered. The convergence proof for the algorithm is presented.

The proposed approach is applied to task-level learning control
of a two-link flexible arm. Each evaluation of the system in the
optimization process means completing a controlled motion of the
arm. In the simulation example, the controlled motions take only
about 1.5 periods of the lowest eigenfrequency oscillations. The
algorithm controls this strongly nonlinear oscillatory system very
efficiently. Without any prior knowledge of the system dynamics,
it achieves a satisfactory control of arbitrary arm motions after
only 500 learning (optimization) iterations.

Index Terms—Approximation, convergence, flexible manipula-
tor, learning control, Levenberg–Marquardt optimization, para-
metric nonlinear least squares, parametric programming, radial
basis function network.

I. INTRODUCTION

NONLINEAR optimization problems arise in numerous
applications, many of them related to control, and a huge

body of literature is devoted to numerical methods for their
solution; e.g., see [9] and references thereof. In particular,
learning (adaptive) systems can be considered as performing
on-line optimization of the controlled process [43]. Such
systems optimize the performance index on-line by means of
input–output experiments with the controlled plant, which is
not known precisely.

This paper presents a novel optimization problem statement
and an algorithm for its solution. The algorithm is then applied
to a learning control problem. To explain the scope of this
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work, let us start from the following standard optimization
problem: we consider a continuously differentiable multivari-
ate vector-valued nonlinear mapping

(1)

The problem of finding an argument vector that
provides is called anonlinear least square(NLS)
minimization problem. In many applications, the NLS problem
is either ill-conditioned, or and the solution is not
uniquely defined. In those cases, a common approach is to
consider aregularizedproblem [41]

(2)

where is a small positive weight. In this paper, we consider
(2) and assume that can be zero, if not otherwise stated.
For many applications related to control, the goal of making

small does not define the argument (control input)
uniquely. This redundancy can be exploited to achieve a better
use of the control resources, as defined by (2).

The NLS problem (1), (2) is classical. This paper is devoted
to a parametric NLS optimization problem, which is an
extension of (1), (2). To formulate this problem, let us consider
a two-argument nonlinear mapping

(3)

which is twice continuously differentiable in both arguments
and , and where is a bounded domain. Throughout

this paper, we will use the control terminology to address the
mapping (3). We will call a parameter vector, , an input
vector, and , anoutput vector. We assume that the parameter
vector can take different values at different steps of the
optimization process. In other words, the parameter vector
can be regarded as an external (disturbance) input to (3). We
assume that is exactly known but cannot be controlled. The
problem considered in this paper can be formulated as follows.

On-Line Parametric NLS Optimization Problem:Let
be an optimal solution of the least square problem (2), (3) for
a given parameter vector. The form of (3) is assumed to be
unknown, but its values can be obtained for given arguments.
Given a sequence of the parameter vectors , compute
and apply an input vector sequence to find the mapping

for .
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The stated optimization problem can be interpreted as a
control problem, where the goal is to find controlthat keeps
the output (3) close to zero despite the changing disturbance
. The designed controller should be adaptive, as (3) is

initially unknown. In what follows, we make some additional
assumptions about the mapping (3) and the parameter vector
sequence . We further design and study a procedure
for computing an approximation for the optimizing mapping

.
The general problem of minimizing a nonlinear function,

which depends on additional parameters, is calleda nonlin-
ear parametric programming problem. Some aspects of this
problem were studied in applied mathematics and operations
research since the 1950’s. A comprehensive survey of the early
work in the field can be found in [28] and that of more recent
research in [24]. Most of the parametric programming studies
consider local properties of the optimizing mapping ,
its bifurcations, and qualitative partitioning properties for a
general type of optimized function and input constraints. A few
papers more relevant to our study regardlocal approximations
for the optimizing mapping in the vicinity of the given
parameter vector . However, to the best of the author’s
knowledge, no computational algorithm has been developed
for determining an approximation for the mapping in
an on-line regime, i.e., when the change of the parameteris
not controlled by the computational algorithm. The reason is
a high-computational complexity of the problem which has
made its treatment unfeasible until recently. In this paper,
we approximate the mapping in the entire domain ,
rather than considering a local approximation. We propose a
numerical algorithm for finding such an approximation and
demonstrate its feasibility and effectiveness in an example
problem. The algorithm works very well for an important class
of problems, where dimensions of and can be high while
dimension of is moderate. This is the case for many control-
related problems where and contain the history of system
input and output, respectively.

Some related work in parametric optimization with a scalar
parameter (time) is surveyed in [34]. This work is moti-
vated by control applications but differs significantly from the
approach of this paper since the time (parameter variable)
is always monotonically growing. Thus, approximation of
the optimal solution is only needed forward in time. Unlike
that, this paper considers avector of parameters, which can
arbitrarily change on-line. To the best of the author’s knowl-
edge, the results of this paper present the first attempt to
formulate a computational algorithm and provide a theoretical
background for on-line numerical multivariate parametric NLS
optimization.

The general scope of the algorithms proposed is related
to on-line approximation control approaches that have been
recently studied in intelligent control literature in context of
learning systems, neural networks, and fuzzy systems; e.g.,
see [10], [23], [30], [32], [35], and [39]. Some recently
published papers consider applications of on-line nonlinear
optimization to generalized predictive control [26] and to
nonlinear observer design [27]. These papers do not consider
parametric optimization problems; however, the spirit and

some parts of approaches studied there are related to this paper
topic.

A very successful numerical method for the classical NLS
problem of the form (1), (2) is theLevenberg–Marquardt
algorithm, which is derived using a local affine model for
the mapping (1). This paper proposes an extension of the
Levenberg–Marquardt algorithm for the parametric NLS op-
timization problem (2), (3). The proposed extension is also
based on a local affine model and is derived using tools of
linear control and estimation theory.

The most important envisioned applications of the proposed
algorithm are for on-line optimization in control and signal
processing. In these applications, the parameter vector can
describe the process parameters, such as setpoints or state
variables, which change in accordance with some factors exter-
nal to the optimization procedure. This paper demonstrates an
application of the parametric NLS optimization to a problem
of feedforward control learning. The problem studied differs
significantly from the standard learning control formulation
introduced in [2], [3], [22], and [29] and is related to the
task-level learning paradigm as considered in [1], [5], [14],
and [16]. A few more applied control problems related to
parametric NLS optimization of the feedforward control are
considered in [19] and [21].

The outline of the paper is as follows.
Section II considers a standard (parameter-independent)

NLS optimization problem and formulates results on the
convergence of a version of the Levenberg–Marquardt method
in the presence of noise. These results are a departure point for
further derivation and convergence analysis of the proposed
algorithm. Section III presents an informal derivation of
the parametric NLS optimization algorithm we propose. In
Section IV, we formally study convergence of the proposed
algorithm. Sections III and IV assume that certain nonlinear
mappings appearing in the optimization process can be
approximated by a functional series expansion. Section V
introduces a specific type of such an expansion—a radial
basis function (RBF) network approximation—and considers
a numerical example of the parametric NLS optimization.
Finally, Section VI demonstrates an application of the
parametric NLS optimization to learning control, dependent on
task parameters. We present simulation results for the learning
control of fast point-to-point motions of a planar flexible arm.

II. NLS MINIMIZATION IN THE PRESENCE OFNOISE

This section considers a standard NLS minimization prob-
lem (1), (2) and an iterative algorithm for finding its so-
lution numerically. We introduce a version of the standard
Levenberg–Marquardt minimization scheme using a one-step
projection update of the gradient matrix estimate. We ana-
lyze convergence of the algorithm in the presence of the
measurement noise. The main goal of this section is to
prepare a background for derivation and subsequent study
of the parametric NLS algorithm in the next sections. The
version of the Levenberg–Marquardt minimization algorithm
and the convergence proof presented in this section can be
conveniently generalized for the algorithm we propose later.
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At the first reading, only Sections II-A and II-B are needed
to understand the algorithm proposed further in Section III.
Section II-C contains technical results on the convergence
which are used later in the convergence proofs of Section IV
and can be omitted at the first reading.

A. Levenberg–Marquardt Algorithm

Let us first assume that the gradient matrix
of the mapping (1) can be obtained for a given argument.
Let and be input and output vectors
obtained at iteration. According to the Levenberg–Marquardt
algorithm, the minimizing input is updated as

(4)

where is a step length parameter, is a
unity matrix, and .

The motivation for (4) is as follows. Let us consider an
affine model of the mapping (1) of the form

(5)

Let us also demand that the minimization step length does not
exceed a value

(6)

By solving (2) and (5) with respect to , and using
the Lagrange multiplier method to satisfy the constraint (6),
we arrive at (4). The Lagrange multiplier is nonnegative
and can be computed once the gradientand the allowed
step length are given. With the increase of in (4), all
eigenvalues of the inverted matrix in (4) increase, hence the
step length decreases. Therefore, the dependence of

on is decreasing. In practice, instead of computing
from , usually itself is made a parameter of choice. More
details on the method can be found in [9].

A proof for local convergence of the method in the vicinity
of the optimal solution can be obtained by reformulating
[9, Th. 10.2.6] for the mapping . In
what follows, we will consider a modification of the Lev-
enberg–Marquardt method and prove its convergence under
more stringent conditions than in [9]. The advantage of the
proposed modifications of the method and of our proof is that
they can be conveniently generalized for the parametric NLS
optimization problem considered in Section IV.

B. Finite Difference Update of the Gradient

Let us proceed with a much more common situation, when
the gradient is not available and we can only estimate
the function (1) itself. In that case, a natural approach is to
consider an affine model (5) of the mapping (1) and update
estimates of parameters of this model from the available
input–output measurements.

The most common practically used method for estimating
the gradient is theBroyden secant update. Let be an
estimate of the gradient at the step. Denote by the
variation of input and by the corresponding variation of

the output at the previous minimization step. For a small step
length , the gradient should satisfy

(7)

The Broyden update rule can be considered as an application
to (7) of the projection estimation algorithm [13], which is very
popular in adaptive control and signal processing applications.
The Broyden update is used in conjunction with the input
update (4) and has the form

(8)

where is a scalar parameter used to avoid division by
zero.

Local convergence of the Levenberg–Marquardt algorithm
with the Broyden secant update can be proved using the
bounded deteriorationtechnique as considered in [9]. The idea
of such a proof is that in the vicinity of the optimum and for a
sufficiently small initial error of approximating the gradient,
the algorithm will converge before the gradient approximation
error will have time to grow due to the system nonlinearity.

Let us now consider another method for estimating the
gradient, which is more appropriate if the measurements are
corrupted with a noise. In the parametric NLS optimization
problems of the next section, the approximation error can be
considered as such a noise. Let us write the affine model for
the mapping (1) in the form of a linear regression

(9)

where is a positive scaling constant, is a
regression parameter matrix, and is a regressor vector.
The Broyden gradient update (8) is a two-step estimation
algorithm for the regression (9) that first sets

in (9) and then updates an estimate for with
the projection method. A more natural, one-step projection
estimation algorithm for the model (9) has the form

(10)

where , , and
is a scalar deadzone parameter which we will define

exactly later on. Unlike the secant update (7), (8), which uses
function values obtained ontwo consecutive steps, the update
(10) uses onlyone function value. This makes it possible to
generalize the update (10) for the parametric optimization case,
as shown in the next section.

Let us write a step of the Levenberg–Marquardt algorithm
for the affine model in the form (9). By solving (2) and (9) with
respect to and using the Lagrange multiplier method
to satisfy constraint (6), we obtain

(11)
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where . We have for the
projection update (10), as long as . Therefore, (11)
coincides with the Levenberg–Marquardt step (4).

C. Convergence in the Presence of Noise

We will concentrate on the convergence of the algorithm
(10), (11), since this algorithm is the basis for the parametric
NLS algorithm of the next section.

Let us review the standing assumptions about the function
(1) to be used in the convergence proof. First, we assume that
the mapping (1) is -Lipschitz in , that is

(12)

where defines the degree of the mapping nonlinearity. For
, the mapping is affine in . Property (12) infers the

following useful inequality which can be found in [9, Lemma
4.2.1]:

(13)

Second, we assume that the function values used in
(10) are obtained with an error as

(14)

where is a bound on the output perturbation. In the para-
metric NLS problem of the next section, such a perturbation
typically results from imperfect approximation of parametric
mappings in the algorithm.

Further, we assume that for (10), (11). We also
assume that a bounded excitation signal

(15)

is added to the right-hand side of (11). The signal
can include measurement and numerical errors, such as an
approximation error considered in the next sections, and a self-
excitation signal used to enhance convergence of the affine
model estimates.

In order to provide for the convergence of the estimation
algorithm (10) in the presence of the noise and modeling
error (nonlinearity), we will follow the standard approach of
adaptive control and parameter estimation theory [13, Sec. 3.6,
pp. 88–91] and introduce a deadzone:

if
otherwise.

(16)

Let us recall that is the optimum input to (1) mini-
mizing (2), and denote and . Let

define an affine model (5) corresponding
to the linearization of (1) at the optimum . The
following relations hold at the optimum (zero gradient of the
performance index and fit of the affine model):

(17)

We will use the following notation for variations of the
variables from their values at the optimum:

(18)

where , , and
.

For the assumptions made, it is difficult to obtain a clean
result on the algorithm convergence. First, for a general
nonlinear optimization algorithm, onlylocal convergence re-
sults can be obtained and are available in the literature.
Second, for bounded perturbations of the measurements, the
convergence can only be guaranteed into adeadzoneof the
estimator. Therefore, it is only possible to show that the local
convergence domain is much larger than the deadzone domain.
By assuming that the input and output disturbance bounds

and are small enough, we can formulate the following
result.

Theorem 1: Consider algorithm (10), (11) in the conditions
defined by (12) and (14)–(16). Assume that the regressor
vector sequence is strongly persistently
exciting as defined in [13, Sec. 3.4, p. 73]. If the deadzone in
(16) is chosen as , where is a parameter,
then the errors (18) of the algorithm converge into the domain
defined by

(19)

(20)

provided that the initial errors are in the domain

(21)

(22)

where is a constant estimated in the Theorem proof.
Remark 1: As one can observe from (19)–(22), if the

perturbation amplitudes and are small and the deadzone
parameter is of the same order of magnitude, then the size
of the local convergence domain (19) and (20) exceeds the
size of the deadzone domain (19)–(22) by a large factor of

. As can be expected, the initial con-
dition domain for which Theorem 1 guarantees convergence
is large for small nonlinearity parameter.

Remark 2: Theorem 1 accommodates for singular or
ill-conditioned, which is the case for many control problems.
This is provided thanks to the use of the regularized perfor-
mance index (2) with . For the regularized problem,
the modified Hessian matrix of the optimization problem is

and has minimal singular value not less than.
Remark 3: Signal (15) can be used to ensure the persistency

of excitation needed for the convergence of the estimator. Note
that as a particular case of such an exciting signal, we can
make small increments of the input vectoralong each of the
coordinate axes in turn, which would correspond to obtaining
a new finite-difference estimate of the gradienteach
iterations—a common practice in numerical optimization.

In the absence of the measurement noise, a natural way
of achieving convergence to the exact optimum is to set

. Note that, in general, the convergence rate of
the Levenberg–Marquardt method for ill-conditioned problems
is not better than [34].

Proof of Theorem 1:We give a constructive proof of this
result, which includes concrete estimates of the convergence
parameters.
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By substituting (18) into (11), using (17), and adding noise
(15), we obtain after some transformations

(23)

An estimate for the right-hand side (23) can be obtained
with help of the following useful fact. Consider any rectangular
matrix , scalar , and a unity matrix of appropriate
size. Denote by a maximal singular value of a matrix and
let be the singular values of . Then

(24)

By using (24) and recalling that , the
following estimates can be obtained:

(25)

(26)

By using (15), (25), and (26), we can obtain the following
inequality from (23):

(27)

where . According to [34, Lemma 1, ch. 2], (27)
means that converges into the region

(28)

Let us now return to the estimation algorithm (10), which
is based on the affine model (9). By using (17), we can write

(29)

From (13) and (29), we obtain .
By using (14), we get

(30)

In accordance with the standard results [13, Lemma 3.3.2,
Sec. 3.3], the error of the projection estimation al-
gorithm (10) is monotone nonincreasing, provided that the
nonlinearity influence in (30) is contained within the deadzone

. By using (28), we obtain that the errors and
never leave the initial condition domain (21) and (22).

Provided that the control input is persistently exciting, the es-
timate will converge to the deadzone, hence, we obtain
(21) from (27) similarly to (28). Since

always, the nonlinearity influence in (30) continues
to be bounded inside the estimation algorithm deadzone.
Thus, the estimation algorithm converges in accordance with

standard projection algorithm properties [13], provided the
control input is persistently exciting. The persistent excitation
can be provided by including a self-excitation in the signal

.

III. B ASIC ALGORITHM FOR PARAMETRIC NLS MINIMIZATION

This section, as well as the next one, contains the main
contribution of this paper. This section proposes an algo-
rithm for on-line parametric NLS minimization. It presents
a motivating discussion and an informal derivation of the
proposed algorithm. In Section IV, we analyze convergence
of the proposed algorithm in a more formal way.

A. Smoothness of the Parametric Optimum

Let us consider a parametric family of minimization prob-
lems of the form (2), (3) defined for the argument set

(31)

where is a bounded open set and is a bounded open
set for each . We assume that for any , a unique
solution to (2), (3) exists and that for some

and any , a -neighborhood of belongs to .
In what follows, we approximate the function by

means of a functional series expansion. In order for such an
approximation to have a small error, the function should
have bounded derivatives. By abuse of the previous section
notation, we will denote by the gradient
of the mapping (3) with respect to the input. We assume
that the second derivatives of (3) are uniformly bounded on

and that

for

(32)

where, similarly to (12), describes a degree of the system
nonlinearity.

In the available literature on parametric optimization (para-
metric programming), much attention was paid to optimizing
function properties. One can find a survey and some general
results in [24] and [36]. Below, we present a simple smooth-
ness condition which can be practically convenient for the
parametric NLS problem we study.

The optimality condition (2), (3) can be obtained by differ-
entiation and has the form

(33)

By computing the full derivative of (33) with respect to,
we obtain

(34)

where , and . By the
Implicit Function Theorem, will have a bounded deriva-
tive, provided that the lowest singular value ofis uniformly
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bounded from zero. This, for instance, can be ensured, pro-
vided the last term in the expression foris small. By using
(32), we obtain an estimate

(35)

Thus, the derivative of is bounded, provided the non-
linearity is not too severe (is sufficiently small).

B. Approximation by Functional Series

Let us introduce a set of -shape functions
and approximate the mapping with an expansion of

the form

(36)

where are the expansion weights and
is the approximation error. In the formulation of the

proposed parametric optimization algorithm in this section and
its analysis in the next section, we assume that the shape
functions are given piecewise continuous functions and
the approximation error is small.

If the mapping has a uniformly bounded derivative
on , as discussed in the previous section, the approximation
error bound can be made arbitrarily small, provided the
expansion order is sufficiently large and appropriate shape
functions are chosen. For a polynomial expansion, this is
ensured by a multidimensional version of the Weierstrass
theorem. In Section V, we consider another type of expansion
for which this is valid—an RBF expansion. Other types
of universal approximators linear in parameters can be also
used, e.g., B-splines. Further discussion of the approximation
approaches and their theoretical analysis is outside of the
scope of this paper, and we refer the interested reader to
standard applied mathematics and neural network literature.
Let us introduce functions related to the parametric optimum

(37)

Similarly to (36), we can write the expansions for approxima-
tion of the functions , and

(38)

(39)

where and are the expansion
weights. Derivatives of the functions and are
uniformly bounded on , provided that the derivatives of

are bounded. Hence, and can be made small for
high-order of the expansions (38), (39).

The algorithm that we are going to derive neglects the
approximation errors , , and . For , (37) can be
represented in the linear regression form

(40)

(41)

The Levenberg–Marquardt algorithm derivation in
Section II is based on an affine model (9) of the mapping (1).
Similarly to this, the proposed algorithm assumes an affine in

model of the mapping (3) for each. The dependence of
the affine model on is assumed to have the form defined
by the expansions (38) and (39)

(42)

(43)

The affine parametric model (42), (43) is the central part
of the approach. This model can be compactly written in the
form of a regression

(44)

(45)

where denotes the Kronecker (direct) product of
matrices and the parameter matrix has the form

. The affine model
(42)–(44) gives the linearization (37)–(39) of the mapping (3)
at the parametric optimum for , where

(46)

C. Basic Algorithm

Our goal is to find an approximation of the form (40) to the
optimal input mapping . We assume that a sequence of
the parameter vectors is given. Let be the
value of the input parameter matrix in (40) at the step.
Then, in accordance with (40), the input vector at stepis

. Let us denote by

(47)

the input , which would be obtained at step if the
matrix is not updated.

Let us derive an iterative algorithm that updates approxima-
tion (40) to the parametric optimum by using the affine model
(42), similarly to the Levenberg–Marquardt algorithm. Let us
demand that, similar to (6), the minimization step should be
bounded as

(48)
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By substituting (45) and (48) into (44), we obtain the affine
model output at the step as

(49)

where is the gradient estimate defined by the affine model
(42), (44). By substituting (49) as and (47)
as into (2), and finding a constraint optimum for the affine
model (49) with respect to the minimization step , we
obtain an analog of (11)

(50)

Now let us note that according to (40) and (48)

(51)

By finding a least square solution to (51) for the
and substituting (50) for , we obtain a step of the

proposed basic parametric NLS optimization method

(52)

(53)

where the gradient estimate is defined by (43);
is the optimal step control input computed before
the update in accordance with (41), (47); and

is the output of the affine model (44)
for the input . The sequence is a
self-excitation signal added to the computed control, and
it will be discussed in the next section. The parametric
optimization update (52) has the form reminiscent of the
Levenberg–Marquardt update (11).

The update (52), (53) is based on the affine model (42)
of the mapping (3). This model needs to be estimated from
the information about the mapping (3), obtained in the course
of the minimization. At each step of our parametric NLS
algorithm, we can apply a projection update similar to (9) to
the estimation of the parameter matrixin (42). The algorithm
is similar to (10) and has the form

(54)

where, as in (10), is a scalar deadzone parameter

if
otherwise.

(55)

We will discuss the choice of the deadzonein the next sec-
tion, in conjunction with a proof of the algorithm convergence.

Equations (41), (45), (52), (54), and (55) constitute the
proposed basic algorithm for on-line parametric NLS opti-
mization. The affine model update (54), (55) in this algorithm
uses only one, last data point for the update. This is similar

to the projection update (10) and differs from the secant
Broyden update (8) which uses two last data points. The affine
parametric model (44) can be updated using the data obtained
for different values of the parameter vectorat each step.

The proposed algorithm includes a single inversion of the
matrix in (52). As an alternative to the proposed

algorithm, the matrix in the approximation (40) of the para-
metric optimum could be directly optimized by using a stan-
dard optimization algorithm, such as the Levenberg–Marquardt
algorithm. In that case, however, the optimization algorithm
will work with optimized parameters (entries of the
matrix ). A Hessian matrix inverted by such a standard
algorithm will have size , which shows that
such a standard algorithm would be much more difficult to
implement compared to the proposed one.

It will be further demonstrated that the proposed parametric
optimization algorithm works fairly well in applications. A
theoretical justification of the algorithm convergence is given
in the next section.

IV. CONVERGENCE OF THEPARAMETRIC NLS ALGORITHM

In proving convergence of the proposed algorithm (41),
(45), (52), (54), (55) for parametric NLS optimization, we will
closely follow the scheme used in Section II-C.

A. Convergence Result

In order to present a formal result on the convergence, let us
briefly review the assumptions we make. These assumptions
are both technical and on the algorithm specifics.

A1) We assume that (3) is-Lipschitz and (32) holds.
A2) We assume that the approximation errors, , and

in the expansions (36), (38), and (39) can be
considered small.

A3) We assume that the step constraint in (52) is constant,
.

A4) Similarly to (14), we assume that in (3) the output
vector at step is related to the input vector

as

(56)

where is a bound on the output perturbation. In the
convergence analysis we will consider signals in
(53) and in (56) to be small.

A5) We assume that the sequences and are
such that the regressor vector sequences (41)
and (45), are persistently exciting (as
discussed in Lemma 1 below).

By using (38), (39), and inequality (13) [which follows from
(32)], we obtain the following estimate for the affine model
accuracy:

(57)

We will denote the error of evaluating the affine model
weight matrix at step by and the error
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of evaluating the parametric optimum approximation weights
(40) by

(58)

The convergence result can be formulated in the form similar
to Theorem 1.

Theorem 2—Convergence of the Proposed Parametric
Optimization Method:Let us consider algorithm (41), (45),
(52)–(55) under Assumptions A1)–A5). The convergence
condition can be formulated in terms of the following positive
parameters, depending on the system (3):

• nonlinearity parameter: ;
• parameter of the input–output mapping approximation

error: ;
• optimal control approximation error parameter:

;
• persistency of excitation parameters:and (

). These parameters are defined by the properties
of the sequences and , as discussed in Lemma
1 below.

If the deadzone in (55) is chosen as , where
is a parameter of the same order as, then the

algorithm errors converge into the domain defined by

(59)

(60)

provided that the initial errors are in the domain

(61)

(62)

where is a parameter estimated in the Theorem proof
along with and .

If the approximation errors and are small and ,
the initial condition domain (61), (62) is bigger than the
convergence domain (59), (60) by a large factor .

B. Proof of Theorem 2

Let us first consider evolution of the parametric optimum
error weights (58). We can present (52) in the form

(63)

where and .
By using (36), (40), (47), and (58), we can write

(64)

(65)

where is a bounded signal similar to (15). The sequence
includes the approximation error (36) and the self-

excitation signal (53). The self-excitation signal can
be chosen to provide persistent excitation required for the
estimator convergence.

Note that (33) and (37) give combined

(66)

Let us now consider the expression in the square braces in
(63). By substituting and
using (64), (66), we obtain after some transformations

(67)

where , and
are related to the parameter matrix

error in accordance with (42) and
(43). By substituting (67) into (63), we come to

(68)

where is an idem-
potent (projection) matrix. The matrix has the following
properties:

(69)

Equation (68) can be represented in the form

(70)

(71)

where matrix is symmetrical and positive definite. The
error matrix in (70) includes the last two
terms in (68) that are not proportional to . The following
estimates can be used:

(72)

where similarly to (27) we can obtain an estimate

(73)

The remaining part of the proof will require the following
auxiliary result.
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Lemma 1—Estimation with Persistent Excitation:Let us
consider system (70), (71), where the regressor vector se-
quence is persistently exciting so that for some , some

, and any

(74)

Then, for certain the following inequality holds:

(75)

where is the Frobenius norm of a matrix.
The proof of Lemma 1 is given in the Appendix. Lemma

1 together with the estimate (68) describes the evolution of
the parametric optimum error weight matrix (58). By
applying Lemma 1 and using (65) and (72), we obtain

(76)

To complete the proof, let us now consider evolution of the
affine model error in the projection estimation algorithm (54),
(55). This error diminishes monotonically as long as
the perturbation [modeling error plus measurement noise]
is within the deadzone [13].

The projection algorithm perturbation is evaluated in (57).
In accordance with (36) and (58), we obtain

(77)

Therefore, (57) gives

(78)

where , and
.

The estimates (78) and (76) are analogous to the estimates
(30) and (27), respectively, used in the proof of Theorem 1.
Therefore, we obtain the Theorem 2 convergence result simi-
larly to how the Theorem 1 result is proved in Section II-C.

Convergence of both the estimation algorithm (54) and
the optimization algorithm (52) requires the sequences of
the nonlinear regressor vectors and

to be persistently exciting (PE). The PE proper-
ties depend on the set of the nonlinear functions in (36),
(38), and (39). In the next section, we consider one particular
set of such functions.

V. RADIAL BASIS FUNCTION APPROXIMATION

In this section, we briefly survey an auxiliary problem of
approximating a smooth mapping using an expansion with
respect to certain shape functions. This problem is important
for justifying the use of the approximations (36), (38), (39) in
the proposed algorithm. We further apply the algorithm to a
simple illustrative problem.

A. Background

Let us consider a nonlinear mapping

(79)

where is an argument (input) vector, is a bounded domain,
and is an output vector. We assume that the mapping (79)
has the necessary number of continuous derivatives.

Let us consider an approximation of (79) with the expansion
of the form

(80)

where function depends on the radius and
are given vectors. Such expansions are known under the

name of RBF approximation. RBF approximation has been
extensively used in computer graphics and experimental data
processing applications (e.g., geophysical data) for more than
a decade and has been demonstrated to provide a high-quality
approximation. One can find further details and references in
[11], [33], [37], and [38]. Some of the most commonly used
radial functions are

(81)

where the first radial function is Gaussian, and the last two
are called Hardy Multiquadrics and Reverse Multiquadrics,
respectively. Usually, the radial function width parameterin
(81) is chosen to be about an average distance between the
neighboring node centers.

RBF approximation has a number of advantageous proper-
ties which make it very attractive to use in parametric NLS
problems. For the first and last functions (81), the expansion
(80) is semilocal, i.e., the radial function decays away from
its center. This is very advantageous for many applications.

Further, RBF approximation has an excellent accuracy com-
pared to other approximation methods, as it is shown in many
applications [11], [18]. This high accuracy has a theoretical
justification. It has recently been acknowledged that RBF
approximation minimizes a certain regularization performance
index that describes the interpolated surface roughness [33],
[37]. Different forms of radial functions (81) correspond to
a minimization of different regularization indexes. The RBF
approximation can be considered as a kind of low-pass spatial
filtering of the approximated mapping [38], [39]. Theoretically,
the RBF approximation can achieve an arbitrary small error
for a smooth mapping [31].

The accuracy of RBF approximation enjoys a high order of
convergence with growing density of available data. The most
remarkable fact is that the convergence order actuallygrows
with the dimension of the argument space [38, Ths. 7.2
and 8.2].

Recently, some authors have treated the RBF approximation
in the connectionist (neural) network context [6], [7], [31],
[33]. They consider the radial function centers —which
are called the network node centers—that do not coincide with
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Fig. 1. Evolution of the output errorkY k for the illustrative example.
Parameter vector sequencep(k) is randomly generated inside the unit square.

the arguments for which function values are available. This
coincides with the way we apply RBF expansion (79) in the
algorithms of Section III.

In our implementation of the RBF network approximation,
we assume that the expansion order and the centers

in (80) are given and fixed. We use the RBF
expansions in the algorithm for parametric NLS optimization
described in Section III so that in (36), (38), and (39)

. For the RBF network approximation, the regressor
vector (41) has the form

(82)

The persistence of excitation conditions for the RBF net-
work approximation are analyzed by the author elsewhere [17].
It can be proved that the sequence (82) is PE if the
inputs belong to certain neighborhoods of the RBF centers

. Similar PE conditions are proved in [17] for the affine
RBF approximation when the regressor vector has the form
(45).

B. Illustrative Example of the Parametric NLS Optimization

Let us illustrate the work of the developed on-line paramet-
ric NLS algorithm with a simple example. We consider the
parametric NLS problem (2) with the nonlinear function (3)
of the form

(83)

The optimization goal defined by (2) is to find the input
in (83) minimizing the system output for each .

Let us consider an RBF network approximation of the
parametric dependencies (36), (38), and (39) with regard to
the mapping (83). The regressor vector in (41) and (45)

Fig. 2. OutputY for the illustrative example system forU = 0 (the upper
surface) and for the approximated parametric optimumU = U�(p) (the lower
surface).

has the form (82), where is the Gaussian RBF—the first
function in (81). In the numerical results below, we used a
uniform 6 6 grid of the RBF network nodes ; thus,

. The Gaussian RBF width is chosen to be ,
which is 1.5 times the gridsize.

The parametric NLS algorithm (52), (54), (55) described in
Section III was coded in MATLAB. We used the following
parameters:

and the self-excitation in (52) was a pseudo-random
sequence with an absolute value bounded as. The sequence
of the parameter vectors was generated randomly inside
the unit square . Fig. 1 illustrates the evolution of the system
output in the parametric optimization process. The
algorithm converges in 100–200 steps.

Fig. 2 shows the system output for the zero
input (the upper surface) and the output
for the found approximation of the parametric optimum (the
lower surface). Despite some remaining error, the approx-
imated input brings the output close to zero. The
maximal remaining error is about 40 times smaller than
that for zero input.

Fig. 3 displays the approximation (40) for the parametric
optimum , as computed by the algorithm. Note that the
gain (gradient) of (83) varies from
0.5–1.5 in different parts of the unit square. Despite this,
the algorithm copes with the system reasonably well.

The results demonstrate the feasibility and satisfactory per-
formance of the proposed algorithm. Its application to a more
comprehensive control problem is considered in the next
section.

VI. A PPLICATION TO LEARNING CONTROL

This section considers an application of the proposed para-
metric NLS optimization algorithm to a learning control prob-
lem. Though we believe that the proposed algorithm can
be useful in many different applications, including feedback
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Fig. 3. Parametric optimumU = U�(p) computed for the illustrative
example.

control of nonlinear systems, it was this problem that provided
us with the initial inspiration for the algorithm development.

A. Learning Control Problem

Let us consider a nonlinear time-invariant system of the
form

(84)

(85)

where is a state vector, is an observation
vector, and is a control input vector. We further
assume that the nonlinear mappings and are not
known exactly, but are known to be smooth, and the nonlinear
system (84), (85) is known to be observable and controllable.
We consider a controlled motion of the system (84), (85) in
the given time interval and assume that the initial state
vector is defined by the vector , as

, where is a smooth mapping .
The control problem is to find a control input defined

in the time interval that allows us to achieve

(86)

Here is a vector that defines the desired system
state at time , and is a preplanned
desired output of the controlled plant. The preplanned output

depends on the initial condition vector and the control
goal vector . Section VI-B considers the learning control of
a rest-to-rest motion for a flexible manipulator arm. In this
example, vectors and correspond to rigid-body initial and
final coordinates of the arm, while the state vectorincludes
both rigid-body and flexible coordinates and velocities.

Let us introduce a task parameter vectorcomprising the
initial condition vector and the vector of the control goal

(87)

We further consider the learning control problem as stated
below.

Parametric Learning Control Problem:We assume that the
mappings (84) and (85) are unknown, but we can repeatedly
apply the computed feedforward control to the system
(84), (85), observe its output on the time interval ,
and use the obtained observations to update the control. For
each run with the feedforward control , we suppose that
the system time is reset to zero, and the initial condition is
defined by the vector . The control goal is defined by the
vector . The vectors and may take different values from
run to run. The problem is to minimize the performance index
(86) for each value of the parameter vector(87) in the given
domain .

Let us represent the time-histories of the feedforward input
to the system (84) and the system output (85)

by finite-dimensional vectors. We apply the assumed mode
expansion approach and introduce a set of shape functions

and consider a
feedforward input of the form

... (88)

where is a weight vector of the dimension . We
further assume that the shape function set is given and vector

defines the feedforward control on the interval . We
will call an input vector.

Similarly, we describe the system output with a finite-
dimensional output vector . We introduce a sampling time
sequence , where and anoutput vector

... (89)

where is the system measurement vector (85),
is the desired (planned) output, and . In most
practically important cases, under reasonable observability
conditions imposed on the sampling time sequence and on the
controlled system, we can evaluate the desired output of the
system (84), (85) by monitoring only the sampled output (89).
Due to signal sampling in a digital computer, the measured
output is of the form (89) in most practical cases.

The input vector defines the output vector in ac-
cordance with (84), (85), and (87)–(89). We can write this
dependence in the form (3)

(90)

where is a smooth mapping, which we assume to be
unknown. The task parameter vectorin (3) has the form
(87) and comprises the vectorsand that define the initial
condition and the control goal.

We will further consider a performance index (86) that has
the form (2)

(91)
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Assume temporarily that the initial and final condition
vectors and are exactly reproducible from run to run (in
(90) is fixed). Then, a solution to (91) can be found using an
iterative NLS optimization algorithm (e.g., such as discussed
in Section II). Each optimization step of such an algorithm
corresponds to a completed motion of the system with the
input vector (88) applied and the output (89) collected.
Thus, we have alearning control algorithm. Some learning
control approaches also known as repetitive or “betterment”
control were recently studied by a number of authors, mostly
with regard to robotics applications, in [2], [3], [22], [25], and
[29], and many other papers. A well-known practical limitation
of these approaches is that after learning the control to follow
a given trajectory, we still do not know control for following
other, even close, trajectories.

The above stated parametric learning control problem over-
comes this limitation. For this problem, the parameter
changes from motion to motion in accordance with the chang-
ing motion goals, which are generated externally to the learn-
ing (optimization) procedure. The parametric learning control
problem (90), (91) is a parametric NLS optimization problem
considered in Sections III and IV. The parametric optimal
input for this problem can be found using the algorithm
presented in Section III. At each step of the algorithm, the
output vector is obtained by actually completing the system
motion with the computed input .

A few published papers consider learning of input command
dependenceon task parameters [1], [14], [16], [21]. Unlike the
cited work, the algorithm of Section III works for an arbitrary
sequence of the task parameter vectorsand thus can be used
for improving the system performance without restricting the
sequence of the control tasks to be executed. This ability of the
algorithm to cope with an arbitrary task parameter sequence is
very important for practical implementation of the parametric
learning control.

Note that the discretization of the input (88) and output
(89) does not restrict the practical scope of the stated learning
control problem compared to other published works. This is
because a practical implementation of a learning algorithm
using a digital computer would work with sampled control
and system output data. More discussion on how the for-
mulated parametric learning approach relates to the learning
control literature can be found in [21]. Similarly to many on-
line optimization and approximation algorithms considered in
the neural network literature, the considered learning control
application is biologically inspired by some models of human
motor control [15].

B. Application Example: Control of Flexible Arm

In this section, we apply the formulated parametric NLS
algorithm optimization to the fast motion control of a flexible-
joint arm with noa priori knowledge of the system dynamics.

Let us consider a two-link articulated arm shown in Fig. 4.
We assume that inertial drives placed in the arm joints are
connected to the links through lumped elastic elements, and
all motion is in a horizontal plane. We employ commonly made
assumptions about the elastic-joint manipulator dynamics [40].

Fig. 4. Two-link planar arm with flexible joints.

In particular, we assume that the damping in the elastic
elements is negligible and that angular motion of the drive
rotors is decoupled from the arm structure motion. The latter
assumption holds for drives with high transmission ratios.

Let be the vector of the arm joint angles and
the vector of the rotation angles for the output shaft of

the drive. We further assume that the control torque vector
applied to the drives is computed in the usual way, as a sum of
proportional and derivative (PD) drive position feedback and
feedforward compensation

(92)

where is the reference drive position, is the
matrix of the proportional drive position feedback gains, and

is the matrix of the velocity feedback gains.
We consider the feedback gains and as fixed param-

eters and the vector of the feedforward joint torques
as an external (control) input to the system. We assume
that we can measure both the drive rotation anglesand
the elastic element deformations . For the considered
flexible manipulator system, the state vector has the form

and the observation vector,
.

Let us assume that the initial state vector has the form

(93)

where defines the initial joint angles of the arm
and the drive angles. The initial condition (93) means that

and .
Let us consider the control goal parameter vector

that is equal to the desired joint angle vector after
the motion of the arm. The preplanned output
describes the desired path of the arm motion, which is used
as a reference in the PD controller (92) and the planned joint
deformations. The joint motion is initially planned as a straight
line in the joint angle space and a third-order polynomial
in time. We assume that the planned values of the joint
deformations and their derivatives are always
zero. The control problem is to compute feedforward so
that the arm comes to the final position at time

without oscillations.
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We divide the motion interval into seven equal
subintervals , , , and ,
and consider the feedforward input (88), , that is
piecewise linear on these subintervals and zero at times zero
and . In other words, the shape functions in (88) are the
first-order (triangular) B-splines. We monitor the arm motion
on the interval , at uniformly
spaced output sampling instants .
The measurement vector comprises drive angles and joint
deformations, . By sampling the
vector at instants , we obtain the output vector .

The mapping (3) depends on the task parameter vector
(87) that includes the initial and desired final configurations
of the arm. Since the system is cyclic, the control depends
only on thevariation of the first joint angle. Thus, we can
write the task parameter vectorin the form

(94)

We consider the parametric NLS problem with the following
task parameter vector domain:

(95)

To implement the parametric NLS algorithm of Section III,
we use approximation with the Gaussian RBF network with
the fixed node centers placed on a uniform mesh 5
3 3 in the task parameter space. Whenimplementingthe
control algorithm, we assume the dynamical model of the
system to be completely unknown and set the initial estimate
of the parameter matrix in (54) to be zero.

The parametric NLS optimization algorithm was imple-
mented as a Matlab program on a 486/66 computer, and the
arm motion simulation was coded in C. The control (opti-
mization) algorithm does not exploit any initial knowledge of
the controlled system dynamics and uses just the input–output
data. Given the input and output dimensions and

and the number of the RBF network nodes ,
the sizes of the matrices in (45) are and

. These sizes cause no computational problems, as
the updates (52) and (54) only include matrix multiplications
and the matrix inverted in (52) has the size 1212.

For our Matlab implementation of the algorithm, the control
update (52) took 0.33 s and the affine model update (54),
0.55 s. These computational delays are acceptable for the
feedforward control since the updates need to be done only
once for each motion. The computation of control in accor-
dance with (53) takes less than 50 ms, which suggests that
the proposed algorithm could also be feasible for feedback
control, especially if the updates (52) and (54) are scheduled
outside the time-critical feedback loop.

When simulating the planar arm motion, we assume that
the arm links are uniform rods of unit mass and length.
We take the moments of inertia of the drive rotors as
diag , the damping in drives as diag ,
and the angular stiffnesses of the lumped elastic elements

Fig. 5. The progress of the terminal errorkY k with the optimization
iteration number. The arm moves through a randomly generated goal positions
sequence.

in the joints as diag . We further assume
that the angular position gain of the PD feedback controller
(92) is diag , and the angular velocity gain
is diag . Note that for the above parameters
of the system, the period of oscillations with the lowest
eigenfrequency is about one if the elbow angle is . The
motion time is close to this period, which makes the
control problem very difficult. We have found that adding a
small measurement noise to the simulated system output does
not change the algorithm performance in any visible way.
The reason is that for a random parameter vector sequence

, the deviation of the system mappings from the RBF
approximations used by the algorithm acts in the same way
as an output noise.

In the numerical experiment, the values of the task parame-
ter vector are generated so that the initial arm configuration
coincides with the final arm configuration at the end of the
previous task. Fig. 5 shows the progress of the error
with the optimization iteration number. One can see that the
control error converges to a small acceptable value over the
whole parameter vector domain. The error, which is achieved
at the end of the optimization process, is about 20 times less
than the initial error, which is obtained without feedforward.
The oscillations of the motion error in Fig. 5 are related to the
variation in the arm motion amplitude as new task parameter
vectors are randomly generated in the course of the learning.

Fig. 6 illustrates the feedforward control computed as a
result of the RBF network approximation after the algorithm
convergence for the motion with the initial joint angles

and the final angles . Fig. 7 shows
the joint deformations for the same motion. Thanks to the
computed feedforward, the deformation is small after the time

, which means the arm arrives to the final position
without visible oscillations. The acceptable motion accuracy
is achieved despite the high motion speed, low feedback
gains, moderate network size, and large covered domain of
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Fig. 6. Feedforward for a test motion after the algorithm convergence:
shoulder joint–solid, elbow joint–dashed.

Fig. 7. Joint deformations for the test motion with the approximated feed-
forward: shoulder joint–solid, elbow joint–dashed.

Fig. 8. Joint deformations for the test motion with zero feedforward: shoul-
der joint–solid, elbow joint–dashed.

the task parameters (95). For comparison, Fig. 8 shows the
deformations for the same motion in the absence of the
feedforward.

VII. CONCLUSIONS

This paper has formulated a problem of on-line parametric
NLS optimization, and proposed a technique for its solution.
The algorithm proposed and results obtained could be used
in nonlinear control, signal processing, and optimization. The
problem and the proposed solution are related to recent work in
control using on-line function approximation including neural
networks, fuzzy, and learning systems.

The proposed algorithm constitutes an extension of the well-
known Levenberg–Marquardt algorithm and includes on-line
approximation of the nonlinear mappings encountered in the
optimization process. We have proved local convergence of the
proposed algorithm. Though different types of the approxima-
tion techniques can be used with the algorithm, in examples
we have successfully used a RBF network expansion.

We have demonstrated an application of the proposed ap-
proach to learning control of a flexible-joint arm over the
entire workspace of the arm. The controlled motions are
very fast and take about 1.5 periods of the lowest eigenfre-
quency oscillations. The proposed approach solves the problem

very efficiently. Without any prior knowledge of the system
dynamics, it achieves satisfactory control of arbitrary arm
motions after only 500 iterations of learning (optimization).
The algorithm can be efficiently implemented for on-line use.

APPENDIX

Proof of Lemma 1:Let us denote by vec the vec-
tor built of all entries of the matrix , column by column.
In accordance with the Kronecker product properties [4, Sec.
5.6], (70) can be represented in the form

vec vec vec (96)

(97)

We will need an -step solution to (96). This solution has
the form

vec vec

vec

(98)

(99)

where is the transition matrix for the homogeneous
part of the system (96).

Since the matrix (71) is symmetrical positive definite,
and satisfies (69), the matrix (97) is also symmetrical
positive definite with

(100)

Let us show that , which is equivalent to
showing that vec vec for any vec

. Note that

vec

(101)

By using representation (70) of (96) (with ), (69),
(71), and (101), we obtain a chain of inequalities

vec

(102)

where . The fact that
together with (98) proves that the sum in the right-hand side
(RHS) of (98) can be majorated by the sum in the RHS of (75).
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Lemma 1 will be proved if we show that for some
the following inequality is valid:

(103)

The rest of the Lemma 1 proof will be devoted to demon-
strating (103). Note that proving (103) is equivalent to proving
that for a solution of (70) satisfies

vec vec (104)

where .
We will prove the counteropposite to (104). Let us assume

that for any we can find so that

(105)
Then for by using the facts that

is positive definite and , as well as (105), we get

vec vec

vec vec

vec vec

vec vec vec

(106)

By successively applying (106) for
we obtain

(107)

The chain of inequalities (102) gives

vec

(108)

By successively applying (108) for
we obtain

(109)

Now, by using (105) and (107), we obtain from (109)

(110)

Finally, by remembering that
and using (74), we obtain

(111)

Since in (111) is fixed and in (110) can be made
arbitrarily small, we came to a contradiction.
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