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An Approach to Parametric Nonlinear Least
Square Optimization and Application
to Task-Level Learning Control

D. Gorinevsky,Member, IEEE

Abstract—This paper considers a parametric nonlinear least work, let us start from the following standard optimization
square (NLS) optimization problem. Unlike a classical NLS prob- problem: we consider a continuously differentiable multivari-
lem statement, we assume that.a nonlinear optimized system ate vector-valued nonlinear mapping
depends on two arguments: an input vector and a parameter
vector. The input vector can be modified to optimize the system, Y = f(U)
while the parameter vector changes from one optimization iter- - ’
ation to another and is not controlled. The optimization process s
goal is to find a dependence of the optimal input vector on the ~ 1he problem of finding an argument vectdr = U, that
parameter vector, where the optimal input vector minimizes a provides||Y ||*> — min is called anonlinear least squaréNLS)
quadratic performance index. The paper proposes an extension minimization problem. In many applications, the NLS problem
g; ttkt::ft%erllgtirg];'r\gzllrgﬁwar'?; :'g%rgg‘;“ec‘;ogl go?'?k:nnsg%?)lrgo'lrliltggs is either ill-conditioned, orVy < Ny and the solution is not

u . i Xi : : :
the nonlinear system in a vicinity of the optimum by expanding unquely deflned._ In those cases, a common approach is 1o
it into a series of parameter vector functions, affine in the input consider aregularizedproblem [41]
vector. In particular, a radial basis function network expansion is 5 5 .
considered. The convergence proof for the algorithm is presented. J(Y, U) = [[Y]]" + pl|U]|" — min )

The proposed approach is applied to task-level learning control

of a two-link flexible arm. Each evaluation of the system in the wherep is a small positive weight. In this paper, we consider

optimization process means completing a controlled motion of the (2) and assume that> 0 can be zero, if not otherwise stated.

arm. In the simulation example, the controlled motions take only ot ;
about 1.5 periods of the lowest eigenfrequency oscillations. The For many applications related to control, the goal of making

algorithm controls this strongly nonlinear oscillatory system very HY” small d_OGS not define the argum_ent (Contr(_)l inplit)
efficiently. Without any prior knowledge of the system dynamics, Uniquely. This redundancy can be exploited to achieve a better
it achieves a satisfactory control of arbitrary arm motions after use of the control resources, as defined by (2).

only 500 learning (optimization) iterations. The NLS problem (1), (2) is classical. This paper is devoted

Index Terms—Approximation, convergence, flexible manipula- t0 @ parametric NLS optimization problem, which is an
tor, learning control, Levenberg—Marquardt optimization, para-  extension of (1), (2). To formulate this problem, let us consider
metric nonlinear least squares, parametric programming, radial g two-argument nonlinear mapping
basis function network.

Y e Ry, UeRhv, (1)

Y=fUp), YeRM™ UeRW, pePc®M
I. INTRODUCTION (3

N ONLINEAR optimization problems arise in numerous nich, is twice continuously differentiable in both arguments
appl_lcat|ons, many of them related_to control, and a hu%e and p, and whereP is a bounded domain. Throughout
body. of literature is devoted to numerical methods for,thefﬁis paper, we will use the control terminology to address the
solut|.on; e.g., see [9] and references thereof. In pa”'cw?ﬁapping (3). We will callp a parameter vectqrl/, aninput
learning (adaptive) systems can be considered as performingy, andy”, anoutput vectorWe assume that the parameter
on-line optimization of the contro!led process [43]. SUCOectorp can take different values at different steps of the
systems optimize the performance index on-line by means gfiimization process. In other words, the parameter veetor
input—output experiments with the controlled plant, which I8an be regarded as an external (disturbance) input to (3). We

not known precisely. assume thap is exactly known but cannot be controlled. The

This paper presents a novel optimization problem statemept,em considered in this paper can be formulated as follows.
and an algorithm for its solution. The algorithm is then applied On-Line Parametric NLS Optimization Probletet U, (p)

to a learning control problem. To explain the scope of thig, 5y gptimal solution of the least square problem (2), (3) for
Manuscript received June 10, 1994; revised November 16, 1995 afAdgiven parameter vectg The form of (3) is assumed to be
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The stated optimization problem can be interpreted assame parts of approaches studied there are related to this paper
control problem, where the goal is to find conttdlthat keeps topic.
the outputy” (3) close to zero despite the changing disturbanceA very successful numerical method for the classical NLS
p. The designed controller should be adaptive, as (3) psoblem of the form (1), (2) is théevenbergMarquardt
initially unknown. In what follows, we make some additionablgorithm, which is derived using a local affine model for
assumptions about the mapping (3) and the parameter vett@r mapping (1). This paper proposes an extension of the
sequencep®). We further design and study a proceduréevenberg—Marquardt algorithm for the parametric NLS op-
for computing an approximation for the optimizing mappingimization problem (2), (3). The proposed extension is also

U.(p). based on a local affine model and is derived using tools of
The general problem of minimizing a nonlinear functionljnear control and estimation theory.
which depends on additional parameters, is cadedonlin- The most important envisioned applications of the proposed

ear parametric programming problenSBome aspects of this algorithm are for on-line optimization in control and signal
problem were studied in applied mathematics and operatigerecessing. In these applications, the parameter vector can
research since the 1950's. A comprehensive survey of the eafgscribe the process parameters, such as setpoints or state
work in the field can be found in [28] and that of more recemariables, which change in accordance with some factors exter-
research in [24]. Most of the parametric programming studiesl to the optimization procedure. This paper demonstrates an
consider local properties of the optimizing mappibg(p), application of the parametric NLS optimization to a problem
its bifurcations, and qualitative partitioning properties for af feedforward control learning. The problem studied differs
general type of optimized function and input constraints. A fegignificantly from the standard learning control formulation
papers more relevant to our study reghrchl approximations introduced in [2], [3], [22], and [29] and is related to the
for the optimizing mapping in the vicinity of the giventask-level learning paradigm as considered in [1], [5], [14],
parameter vectop. However, to the best of the author'sand [16]. A few more applied control problems related to
knowledge, no computational algorithm has been developpdrametric NLS optimization of the feedforward control are
for determining an approximation for the mappifg(p) in  considered in [19] and [21].
anon-lineregime, i.e., when the change of the parametir The outline of the paper is as follows.
not controlled by the computational algorithm. The reason is Section Il considers a standard (parameter-independent)
a high-computational complexity of the problem which hablLS optimization problem and formulates results on the
made its treatment unfeasible until recently. In this papetonvergence of a version of the Levenberg—Marquardt method
we approximate the mapping.(p) in the entire domairf?, in the presence of noise. These results are a departure point for
rather than considering a local approximation. We proposduither derivation and convergence analysis of the proposed
numerical algorithm for finding such an approximation anglgorithm. Section Ill presents an informal derivation of
demonstrate its feasibility and effectiveness in an examgfee parametric NLS optimization algorithm we propose. In
problem. The algorithm works very well for an important clas§ection IV, we formally study convergence of the proposed
of problems, where dimensions bfandY can be high while algorithm. Sections Il and IV assume that certain nonlinear
dimension ofp is moderate. This is the case for many contromappings appearing in the optimization process can be
related problems wher andY” contain the history of system approximated by a functional series expansion. Section V
input and output, respectively. introduces a specific type of such an expansion—a radial
Some related work in parametric optimization with a scal@asis function (RBF) network approximation—and considers
parameterp (time) is surveyed in [34]. This work is moti- @ numerical example of the parametric NLS optimization.
vated by control applications but differs significantly from thé&inally, Section VI demonstrates an application of the
approach of this paper since the time (parameter Variab@rametric NLS optimization to learning control, dependent on
is always monotonically growing. Thus, approximation ofask parameters. We present simulation results for the learning
the optimal solution is only needed forward in time. Unlike&ontrol of fast point-to-point motions of a planar flexible arm.
that, this paper considerswector of parameters, which can
arbitrarily change on-line. To the best of the author’s knowl-
edge, the results of this paper present the first attempt to |- NLS MINIMIZATION IN THE PRESENCE OFNOISE
formulate a computational algorithm and provide a theoretical This section considers a standard NLS minimization prob-
background for on-line numerical multivariate parametric NL&m (1), (2) and an iterative algorithm for finding its so-
optimization. lution numerically. We introduce a version of the standard
The general scope of the algorithms proposed is relatedvenberg—Marquardt minimization scheme using a one-step
to on-line approximation control approaches that have beprojection update of the gradient matrix estimate. We ana-
recently studied in intelligent control literature in context ofyze convergence of the algorithm in the presence of the
learning systems, neural networks, and fuzzy systems; emeasurement noise. The main goal of this section is to
see [10], [23], [30], [32], [35], and [39]. Some recentlyprepare a background for derivation and subsequent study
published papers consider applications of on-line nonlineaf the parametric NLS algorithm in the next sections. The
optimization to generalized predictive control [26] and teersion of the Levenberg—Marquardt minimization algorithm
nonlinear observer design [27]. These papers do not consided the convergence proof presented in this section can be
parametric optimization problems; however, the spirit antbnveniently generalized for the algorithm we propose later.
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At the first reading, only Sections II-A and II-B are needethe output at the previous minimization step. For a small step
to understand the algorithm proposed further in Section Ilength ||s()||, the gradient should satisfy
Section II-C contains technical results on the convergence
which are used later in the convergence proofs of Section IV
and can be omitted at the first reading. w™ =y —yb, (7

Gs™ — ™ s ) _ =)

The Broyden update rule can be considered as an application
to (7) of the projection estimation algorithm [13], which is very
Let us first assume that the gradient matfix= df/8U popular in adaptive control and signal processing applications.
of the mapping (1) can be obtained for a given arguniént The Broyden update is used in conjunction with the input
Let U and Y™ = f(U™) be input and output vectorsupdate (4) and has the form
obtained at iteration. According to the Levenberg—Marquardt

A. Levenberg—Marquardt Algorithm

~(n ~(n n A(n) (n T n
algorithm, the minimizing input is updated as GO = G0 4 (w™) = GUIs) 7 /(P ||s™)P)
(8)
UCTD U™ — (I (p+ pin) + GO G L
« (pU™ + G(n)Ty(n)) @) \évehrirec > 0 is a scalar parameter used to avoid division by
wherey,, > 0 is a step length parametely,, is a Ny x Ny Local convergence of the Levenberg—Marquardt algorithm
unity matrix, andG® — GU™). with the Broyden secant update can be proved using the
The motivation for (4) is as follows. Let us consider aRounded deterioratiorechnique as considered in [9]. The idea
affine model of the mapping (1) of the form of such a proof is that in the vicinity of the optimum and for a
R sufficiently small initial error of approximating the gradie®it
V=y™4 G(n)(U - U(n))- (5) the algorithm will converge before the gradient approximation

Let us also demand that the minimization step length does r?cr)ﬁ?r will have time t-o grow due to the system nqnlme_anty.
et us now consider another method for estimating the
exceed a valuel,, > 0 . S . )
gradient, which is more appropriate if the measurements are
Uetd = gt 450150 < d,. (6) corrupted with a noise. In the parametric NLS optimization
) ] (nt1) . problems of the next section, the approximation error can be
By solving (2) and (5) with respect o/ » and using considered as such a noise. Let us write the affine model for

the Lagrange multiplier method to satisfy the constraint ()¢ mapping (1) in the form of a linear regression
we arrive at (4). The Lagrange multipligs,, is honnegative

and can be computed once the gradiéhland the allowed y- _ Gi7 4+ 7 = oW, 6=1[2/c G W = {C}
step lengthd,, are given. With the increase ¢f, in (4), all U
eigenvalues of the inverted matrix in (4) increase, hence the 9)

length||s(™) r . Therefore, th nden . . . Nl
step lengt s decreases. Therefore, the dependence v%erec is a positive scaling constart, ¢ RYv:Nu+l is a
in ONd, is decreasing. In practice, instead of computing

. . . regression parameter matrix, afl is a regressor vector.
from d,,, usually..,, itself is made a parameter of choice. Morel_he Broyden gradient update (8) is a two-step estimation
details on the method can be found in [9].

i i i - (n—1) _

A proof for local convergence of the method in the vicinit}?fl?,?_r;t)h Tnfo(rQ;hear:zg:EZﬂOEp(g;ttgsta;erSteSs?r;tC; Uf@r with
of the optimal solution can be obtainedTby ref;’r;"“'ati”%e projection method. A more natural, one-step projection
[9, Th. 10.2.6] for the map_pm@f w [f([.]) . VRUT]™ In estimation algorithm for the model (9) has the form
what follows, we will consider a modification of the Lev-
enberg—Marquardt method and prove its convergence undej(n+1) — g(n) aM (Y — é(n)W(n))W(n)T/HW(n)H?
more stringent conditions than in [9]. The advantage of the (10)
proposed modifications of the method and of our proof is that
they can be conveniently generalized for the parametric Nighere4(™) = [7(m /¢ G(W], W) = [c U(k)T]T, anda(®) ¢

optimization problem considered in Section IV. {0, 1} is a scalar deadzone parameter which we will define
o . . exactly later on. Unlike the secant update (7), (8), which uses
B. Finite Difference Update of the Gradient function values obtained dmvo consecutive steps, the update

Let us proceed with a much more common situation, whéh0) uses onlyone function value. This makes it possible to
the gradient@ is not available and we can only estimat@eneralize the update (10) for the parametric optimization case,
the function (1) itself. In that case, a natural approach is & shown in the next section.
consider an affine model (5) of the mappmg (1) and upda’[el_et us write a Step of the Levenberg—Marquardt algorithm
estimates of parameters of this model from the availabier the affine model in the form (9). By solving (2) and (9) with
input-output measurements. respect to/"*t1) and using the Lagrange multiplier method

The most common practically used method for estimatirig satisfy constraint (6), we obtain
the gradient is theBroyden secant updatdet G™ be an N N Y S
estimate of the gradient at the step Denote bys™ the gD =U = (Lp+ ) + GO G0)
variation of input and byw(™ the corresponding variation of x (pU™ + G ) (11)
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whereY (") = GIU) 4+ Z(M) We haveY (W = Y forthe whered™ = [Z( /¢ GV, G0 = G — G, andZ(W) =
projection update (10), as long a8 = 1. Therefore, (11) Z(™ — Z,.

coincides with the Levenberg—Marquardt step (4). For the assumptions made, it is difficult to obtain a clean
result on the algorithm convergence. First, for a general
C. Convergence in the Presence of Noise nonlinear optimization algorithm, onlpcal convergence re-

We will concentrate on the convergence of the algorith§H!tS cdanf beb obtglréed andb are ave:(llahble in the I|teraturi.
(10), (11), since this algorithm is the basis for the parametr%:econ » for bounded perturbations o t e measurements, the
NLS algorithm of the next section. convergence can only be guaranteed intdeadzoneof the

Let us review the standing assumptions about the functigﬁtimator' Therefore, it is only possible to show that the local

(1) to be used in the convergence proof. First, we assume thgpvergence domain is much larger than th? deadzone domain.
the mapping (1) isy-Lipschitz in U, that is By assuming that the input and output disturbance bounds

of & and gy are small enough, we can formulate the following
GU) — QU <AL = Uy, G=2= (12) result.
le) (W2l <Al 2l ou (12 Theorem 1: Consider algorithm (10), (11) in the conditions
where~ defines the degree of the mapping nonlinearity. Falefined by (12) and (14)—(16). Assume that the regressor
v = 0, the mapping is affine ifi/. Property (12) infers the vector sequencéV®) = [c UMTIT is strongly persistently
following useful inequality which can be found in [9, Lemmaexciting as defined in [13, Sec. 3.4, p. 73]. If the deadzone in

4.2.1]: (16) is chosen ag&\ = 7y + &, whered, > 0 is a parameter,
FUL) = F(Uz) = GUUL = Us) < A|[UL — Un|?/2. (13) Lheeﬁr;lg:je kitrors (18) of the algorithm converge into the domain
Second, we assume that the function val¥&g) used in .
' (n)
(10) are obtained with an error as ||U~( )” < (Bo(no + o) +&o) (1 +p/n) (19)
0\ < + 6 20
YO = JUO) 4, < (14) 1070 = o +-00) 20)
. , grovided that the initial errors are in the domain
wherery is a bound on the output perturbation. In the para- B
metric NLS problem of the next section, such a perturbation 1TD| < v/260/~ (21)
typically results from imperfect approximation of parametric Hg(l)H < (\/m_ €0)B7H(L + p/p) " (22)

mappings in the algorithm.
Further, we assume that, = p for (10), (11). We also wheref; > 0 is a constant estimated in the Theorem proof.
assume that a bounded excitation signal Remark 1: As one can observe from (19)—(22), if the
" - " perturbation amplitude&, andr, are small and the deadzone
ey, 1€ < & (15) parametew, is of the same order of magnitude, then the size
is added to the right-hand side of (11). The sigg&t of the local convergence domain (19) and (20) exceeds the
can include measurement and numerical errors, such asSk Of the deadzone domain (19)—(22) by a large factor of
approximation error considered in the next sections, and a self2/(760)85 ' (1+p/1)™*. As can be expected, the initial con-
excitation signal used to enhance convergence of the affiiion domain for which Theorem 1 guarantees convergence
model estimates. is large for small nonlinearity parameter
In order to provide for the convergence of the estimation Remark 2: Theorem 1 accommodates 6% G singular or
algorithm (10) in the presence of the noise and mode“ﬁ@,—conditioned, which is the case for many control problems.
error (nonlinearity), we will follow the standard approach of his is provided thanks to the use of the regularized perfor-
adaptive control and parameter estimation theory [13, Sec. 3@nce index (2) withp > 0. For the regularized problem,
pp. 88_91] and introduce a deadzone: the modified Hessian matrix of the Optimization prOblem is
) R pl + G¥@G, and has minimal singular value not less than
o — { 0, if Y™ —gw<A (16)  Remark 3: Signal (15) can be used to ensure the persistency
1, otherwise. of excitation needed for the convergence of the estimator. Note
Let us recall thatl, is the optimum input to (1) mini- that as a particular case of such an exciting sighate can
mizing (2), and denot&, = f(U,) and G, = G(U,). Let make small increments of the input vectdralong each of the
6. = [Z./c G.] define an affine model (5) correspondingoordinate axes in turn, which would correspond to obtaining
to the linearization of (1) at the optimury = U,. The a new finite-difference estimate of the gradignteach Ny
following relations hold at the optimum (zero gradient of théerations—a common practice in numerical optimization.
performance index and fit of the affine model): In the absence of the measurement noise, a natural way
T of achieving convergence to the exact optimum is to set
pU+ G Y, =0, Z, =Y, - G, U.. 17 ||| < €1 /n. Note that, in general, the convergence rate of
We will use the following notation for variations of thethe Levenberg-Marquardt method for ill-conditioned problems

variables from their values at the optimum: is not better tharl/n [34]. _ _
() ) > (n) ) Proof of Theorem 1:We give a constructive proof of this
U =t = U, YW =YY, result, which includes concrete estimates of the convergence

6 = — g, (18) parameters.
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By substituting (18) into (11), using (17), and adding noisstandard projection algorithm properties [13], provided the

(15), we obtain after some transformations control input is persistently exciting. The persistent excitation
(1) ()T A(n)y—1 can be provided by including a self-excitation in the signal
Ut =(Iny (p+p) + G GY) ¢, O

(uU™ -t T (Z0) £ GUN+ G Y, ) +£0,
(23) 1ll. BASIC ALGORITHM FOR PARAMETRIC NLS MINIMIZATION

An estimate for the right-hand side (23) can be obtained ThiS section, as well as the next one, contains the main
with help of the following useful fact. Consider any rectanguldontribution of this paper. This section proposes an algo-
matrix G, scalarr > 0, and a unity matrix/ of appropriate rithm for _on-lln_e parametric NLS ‘minimization. It_ presents
size. Denote by(-) a maximal singular value of a matrix ang@ motivating dl_scussmn anq an informal derivation of the
let g; be the singular values af. Then proposed algorithm. In Section IV, we analyze convergence

. of the proposed algorithm in a more formal way.

9

g; +r =~ min(g; +7/9;) A Smoothness of the Parametric Optimum

1 = 1 . (24) Let us consider a parametric family of minimization prob-

T mingso(z +r/z)  20/r lems of the form (2), (3) defined for the argument set

By using (24) and recalling th&™ = [Z(W /c G()], the U D ®N 7 e Dy N1 (31
following estimates can be obtained: U p)eDpePc UeDulp)c PG

F((Ir+ GO ™'GY) < max

whereP is a bounded open set afii;(p) is a bounded open

. T -1 Zm) | am .
[y (p + ) + G G) G (2 + VUL || set for eactp € P. We assume that for any € P, a unique

< 10/ UL2 + ¢ solution U, (p) € Dy (p) to (2), (3) exists and that for some
- 2o+ 6 > 0 and anyp, aé-neighborhood ot/.(p) belongs tdDy (p).
— /31||9~(n)|| (25) In what foIIowg, we ap.proximate Fhe functiotr, (p) by
T N means of a functional series expansion. In order for such an
[Iny (p + 1) + G G TLGY, | approximation to have a small error, the functién(p) should
< 16N IYall /o + 1) = Bo]|6T)). (26) have bounded derivatives. By abuse of the previous section

) _ _ notation, we will denote by7 = df(p, U)/0U the gradient
By using (15), (25), and (26), we can obtain the following the mapping (3) with respect to the inplit We assume
inequality from (23): that the second derivatives of (3) are uniformly bounded on

e e LAl e Al R e B
|G(p, Ur) = G(p, U2)I| < 4|UL = U2|l,  for (U, p) €D

wheregy = 1 + 32. According to [34, Lemma 1, ch. 2], (27) (32)

means that|U(™|| converges into the region

||[~](n)|| < Bo(sup ||§(n)|| &)L+ p/p). (28) where, similarly to (12);y describes a degree of the system
nonlinearity.
Let us now return to the estimation algorithm (10), which In the available literature on parametric optimization (para-
is based on the affine model (9). By using (17), we can writeetric programming), much attention was paid to optimizing
function properties. One can find a survey and some general
Y-0W=Y-GU-Z =Y =Y. -G (U=U.). (29 regyits in [24] and [36]. Below, we present a simple smooth-
From (13) and (29), we obtaijft" —8, W || < 4||[U=U.||?/2. ness con_dition which can be practically convenient for the
By using (14), we get - parametric NLS problem we study.
The optimality condition (2), (3) can be obtained by differ-
Y — W < no +~(|UM™2/2. (30) entiation and has the form

In accordance with the standard results [13, Lemma 3.3.2, G(U.(p), p)Y f(Us(p), p) + pUs.(p) = 0. (33)
Sec. 3.3], the errof|§|| of the projection estimation al-
gorithm (10) is monotone nonincreasing, provided that the By computing the full derivative of (33) with respect to
nonlinearity influence in (30) is contained within the deadzore obtain

8o. By using (28), we obtain that the erroff7("]|| and oU. oG (U,

|6 || never leave the initial condition domain (21) and (22). A— w) _ ~ 5, Y~ e y

Provided that the control input is persistently exciting, the es- P P 8Gp

timate||#|| will converge to the deadzone, hence, we obtain A=pln, +GIG, + o0 Ve (34)

(21) from (27) similarly to (28). SincefU™|| < ||UW]| <
\/280/~ always, the nonlinearity influence in (30) continuesvhere G, = G(U.(p), p), andY, = f(U.(p), p). By the
to be bounded inside the estimation algorithm deadzfyne Implicit Function Theoremi/,(p) will have a bounded deriva-
Thus, the estimation algorithm converges in accordance witte, provided that the lowest singular value fofs uniformly
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bounded from zero. This, for instance, can be ensured, pfé:(-) are bounded. Hencé; andé; can be made small for
vided the last term in the expression fbis small. By using high-order N, of the expansions (38), (39).

(32), we obtain an estimate The algorithm that we are going to derive neglects the
oG approximation erroréy, 6z, andég. Foréy = 0, (37) can be
H% Y.l < 4lIYall. (35) represented in the linear regression form
L . . Ui(p) = K.2(p)
Thus, the derivative o/, (p) is bounded, provided the non- N N
. L . . K,=[K,q - K.y ]eR"W: e (40)
linearity is not too severey(is sufficiently small). . ~
(p) =[hulp) -+ hn,(P)]" € R (41)

B. Approximation by Functional Series The Levenberg-Marquardt algorithm derivation in

Let us introduce a set a¥,-shape functiong’;(p): P — Section Il is based on an affine model (9) of the mapping (1).
R} and approximate the mappirtd.(p) with an expansion of Similarly to this, the proposed algorithm assumes an affine in

the form U model of the mapping (3) for eagh The dependence of
N, the affine model orp is assumed to have the form defined
Udp) = Usjhj(p) + 6U(p) by the expansions (38) and (39)
= Y =G@U + Z(p) (42)
U@ <6y, peP (36)

N,
whereU,; € Rv are the expansion weights awd/(p) € 2p) = Jz_:l Zihi(p)

RNv is the approximation error. In the formulation of the N

proposed parametric optimization algorithm in this section and Ay NS v

its analysis in the next section, we assume that the shape Glp) = z_:l Gh;(p). (43)

functionsh;(p) are given piecewise continuous functions and =

the approximation erroby is small. The affine parametric model (42), (43) is the central part
If the mappingU.(-) has a uniformly bounded derivativeof the approach. This model can be compactly written in the

on P, as discussed in the previous section, the approximatitatm of a regression

error boundé;; can be made arbitrarily small, provided the

expansion orden, is sufficiently large and appropriate shape Y= @(If(p’ ,U), . o (44)
functions are chosen. For a polynomial expansion, this is © € RNV No(NuHl), o(p, U) € RN-(NvHD)
ensured by a multidimensional version of the Weierstrass B(p, U) =d(p) @ W, W =l[c UT]T (45)

theorem. In Section V, we consider another type of expansion
for which this is valid—an RBF expansion. Other typewhere © denotes the Kronecker (direct) product of
of universal approximators linear in parameters can be algw@trices and the parameter matrix has the form
used, e.g., B-splines. Further discussion of the approximatioh = [Z1/c G1 - Zn,/c Gn,]. The affine model
approaches and their theoretical analysis is outside of t#&2)—(44) gives the linearization (37)—(39) of the mapping (3)
scope of this paper, and we refer the interested readerafothe parametric optimum f&p = ©,, where

standard applied mathematics and neural network literature.

Let us introduce functions related to the parametric optimum O.=[Za/c Ga - Zv/c Guv,]  (46)
af C. Basic Algorithm
G.(p) =5 (Us(p). p) Jorh .
p Our goal is to find an approximation of the form (40) to the
Z(p) = [(U«(p), P) — G+(P)Ux(p). @37) optimal input mappind/,(p). We assume that a sequence of

. . . ___the parameter vectorgp®)}22 | is given. Let K*) be the
Similarly to (36), we can write the expansions for approxima- . k=1 L
tion of the functionsZ. (p), and G, (p) value of the input parameter matrix in (40) at the step

Then, in accordance with (40), the input vector at stejs

N UF) = KR o(p)), Let us denote by
j=1
16Z(p)ll <6z, peP (38) the input U, which would be obtained at step+ 1 if the
N matrix K(¥) is not updated.
Gi(p) = G.jhi(p) + 6G(p) Let us derive an iterative algorithm that updates approxima-
i=1 tion (40) to the parametric optimum by using the affine model
I6G(p)| <béc:  pEP (39) (42), similarly to the Levenberg—Marquardt algorithm. Let us
demand that, similar to (6), the minimization step should be

where Z,; € R and G,; € RYv:v are the expansion
weights. Derivatives of the function&,(-) and G.(-) are
uniformly bounded onP, provided that the derivatives of Ut+D = g+l L) - 1s0))| < dy. (48)

bounded as
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By substituting (45) and (48) into (44), we obtain the affinto the projection update (10) and differs from the secant
model output at the step + 1 as Broyden update (8) which uses two last data points. The affine
PO _ @§(p(’“+1), U(’““)) ?oz?rzirpf:g(r:]trr\l/(;(ljue;S(404:c)tﬁgn be updated using the data obtained
- A parameter vecioat each step.
=y (iR G(p(k+1))s(k) The proposed algorithm includes a single inversion of the
y(k+1]k) :@@p(kﬂ)’ U(k+1|k)) (49) Ny x Ny matrix in (52). As an alternative to the proposed
. algorithm, the matrix{, in the approximation (40) of the para-
whereG(p) is the gradient estimate defined by the affine modeietric optimum could be directly optimized by using a stan-
(42), (44). By substituting”*+1) (49) asy” andU*+1) (47)  dard optimization algorithm, such as the Levenberg—Marquardt
asU into (2), and finding a constraint optimum for the affin@lgorithm. In that case, however, the optimization algorithm
model (49) with respect to the minimization steff), we will work with Ny N, optimized parameters (entries of the

obtain an analog of (11) matrix K,). A Hessian matrix inverted by such a standard
N N~ T AL ik _ algorithm will have sizeNy N, x Ny N,, which shows that
s :—(IJ\A’U(PJFMA) +GE*) GEtI)T such a standard algorithm would be much more difficult to
x (GprADYy (kLR oy (RtLiR)y, (50) implement compared to the proposed one.

It will be further demonstrated that the proposed parametric
optimization algorithm works fairly well in applications. A
s*) = (K(k-l—l) _ K(k))q)(p(kﬂ))_ (51) Fheoretical justifipation of the algorithm convergence is given

in the next section.

Now let us note that according to (40) and (48)

By finding a least square solution to (51) for thg~+1) —
K®) and substituting (50) fos*), we obtain a step of the

. . o IV. CONVERGENCE OF THEPARAMETRIC NLS ALGORITHM
proposed basic parametric NLS optimization method

‘ ‘ o o In proving convergence of the proposed algorithm (41),
K& = KO — (In, (p+ i) + GEFTTGETI) L (45), (52), (54), (55) for parametric NLS optimization, we will

x (GprA Yy (k) o pr(htLlk)y closely follow the scheme used in Section II-C.
T
x o(p*)” /)@ (p* )2 (52)
U+ = gD (p+DYT | ¢(h) (53) A. Convergence Result

In order to present a formal result on the convergence, let us
where the gradient estimat&(p) is defined by (43){/(*+1Ik)  briefly review the assumptions we make. These assumptions
is the optimal stepk + 1 control input computed before are both technical and on the algorithm specifics.

the update in accordance with (41), (47); arid+') = A1) We assume that (3) is-Lipschitz and (32) holds.
O (p*+1), U*+1IM) is the output of the affine model (44) A2) We assume that the approximation erréis 6, and
for the input Uk+1I®). The sequenc&® e RV is a 6z in the expansions (36), (38), and (39) can be
self-excitation signal added to the computed control, and considered small.
it will be discussed in the next section. The parametric A3) We assume that the step constraint in (52) is constant,
optimization update (52) has the form reminiscent of the P = [
Levenberg—Marquardt update (11). A4) Similarly to (14), we assume that in (3) the output
The update (52), (53) is based on the affine model (42) vector Y(*) at stepk is related to the input vector
of the mapping (3). This model needs to be estimated from U® as
the information about the mapping (3), obtained in the course
of the minimization. At each step of our parametric NLS Y® = fu® p®)y 4 ), 1K™ < ¢ (56)
algorithm, we can apply a projection update similar to (9) to
the estimation of the parameter matéxn (42). The algorithm where(o is a bound on the output perturbation. In the
is similar to (10) and has the form convergence analysis we will consider signgl® in
(53) and((™ in (56) to be small.
BUHL — @k 4 (W (Y ®) _ GRIGIHTET /52 A5) We assume that the sequenced) and U*) are
TW T, Uy (54) such that the regressor vector sequengs®)) (41)
and &(pt®), UR)) (45), are persistently exciting (as
where, as in (10)*) € {0, 1} is a scalar deadzone parameter discussed in Lemma 1 below).
: B AR Tk By using (38), (39), and inequality (13) [which follows from
a® = {(1): gtuzr\(/vi)s;.@( W < A (55) (32)], we obtain the following estimate for the affine model
accuracy:

We will discuss the choice of the deadzafidn the next sec- -
tion, in conjunction with a proof of the algorithm convergencélY(k) - 0.9(p
Equations (41), (45), (52), (54), and (55) constitute the < ANU® = U (N2 /2 4 86||[UM || 4 Co. (B7)

proposed basic algorithm for on-line parametric NLS opti-
mization. The affine model update (54), (55) in this algorithm We will denote the error of evaluating the affine model
uses only one, last data point for the update. This is similereight matrix at steg: by ©® = @®) — @, and the error

®, y®)|
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of evaluating the parametric optimum approximation weights Note that (33) and (37) give combined
K. (40) by

B® = KO Z |, (p®)) € )N Ne, (58) (Ge(p)' Gulp) + pIn)UL(p) + GL Ze = On,,. (66)

The convergence result can be formulated in the form similarLet us now consider the expression in the square braces in

to Theorem 1. (63). By substitutingt” (*+11%) = @®G(pk) y*+1k)y and
Theorem 2—Convergence of the Proposed Paramettising (64), (66), we obtain after some transformations

Optimization Method:Let us consider algorithm (41), (45),

(52)—(55) under Assumptions A1)-A5). The convergencey Ty (k+1lk) o pr(k+1lk)

condition can be formulated in terms of the following positive  _ (é(k+1)Té(k+l) + pINY)(z/}(k—l—l) + f((k)q)(k+1))
parameters, depending on the system (3): p AT Ay v 0 o
+ nonlinearity parametery; = 2ysup,cp |8 (p)||%; + GO+ (G(k+l)U* (p(k+l)) + Z(k+1)) + Gy,
« parameter of the input—output mapping approximation (67)
error:n, = (o + 6z + 6 sup,, UM +~6%; : X :
« optimal control approximation error parametei; = Wwhere G* D) = G(p*+Y) — G, (p*+D), and Z¢++D =
& + bu; Z(p*H)y — Z,(p*+D) are related to the parameter matrix

- persistency of excitation parameteksand! (0 < ¢ < error ©¢*+D) = §(*+l) _ @, in accordance with (42) and

1, 1 > 1). These parameters are defined by the properti@3). By substituting (67) into (63), we come to
of the sequenceg™ andU®), as discussed in Lemma ) )
1 below. K*D = KO p®E L (DW 4 Iy VLK% (I, — FO)

s If thg Qeadzone in (55) fis hchosen m:dm + 61F1 wherr]e - (D(k) + uINU)_lD(’“)z/)(’“’l)(INa _ F(k))

1 > 0 is a parameter of the same order @as then the o) L AGHDT DT (k+1)

algorithm errors converge into the domain defined by (D +~“ Iy U)T @ © e (p )

p(k-i-l)) + G(k-l—l) Y:k(p(k-l-l))]

I < Bln + 60)1 /e + 161 /e BN po9 = 1y, + G GO (68)
1O < (1 + 61) (60) v
provided that the initial errors are in the domain where F®) = (Iy. — o*k+Dp*+DT) /1 o(k+1)|12 is an idem-
N potent (projection) matrix. The matrik*) has the following
IO < Vér/m (61)  properties:
10 < V61 /me/(18) = &1/ (62)
- . . (P02 = p®
where/ > 0 is a parameter estimated in the Theorem proof T
along with ¢ and /. =F®
If the approximation errorg, and¢; are small and, = 7y, F(k)(INa _ F(k)) =0y, . (69)

the initial condition domain (61), (62) is bigger than the
convergence domain (59), (60) by a large faett(l/3+/6171)- Equation (68) can be represented in the form

B. Proof of Theorem 2 KO®+D) = RO ) 4 AW KE (1 — Ry 4 k) (70)

Let us first consider evolution of the parametric optimum 4 ) = (D™ + iIng )7, |AM|| < /(e + p) (71)
error weightsk(*) (58). We can present (52) in the form

~ . ~ . ~ . T A . _ . (k) . . g . .
FKR+D) — k) _ (Iny (p+ 1) + Gk+1) G(k-l—l)) 1 where mat.rlxé) is s%mrpetrlcal anq positive definite. The
AR 1) (bt 11k i error matrix ¢\*) ¢ RYv-%Ne in (70) includes the last two
x [GUADY (k) o (ki) ; : =) ,
. terms in (68) that are not proportional 16'*. The following
x @EFLT /)| pRF1)|12 4 (k) (63) estimates can be used:

where®*+1) = (p*+D) and GE+D) = G(pk+D),

®) < B16® (k) 72
By using (36), (40), (47), and (58), we can write ™1l < A1 g L (72)

URHIR) — 7, (p*+Dy ) KR ek+D) (64)  where similarly to (27) we can obtain an estimate
P = U (ptHDY 4 ¢®)

1
@) <du+& =6 (65) P =5 Sl + V@RI lew))
p
Whgrgw(k) is a bounded si_gnal_similar to (15). The sequence + sup [|Ya(p)|1%. (73)
+®) includes the approximation error (36) and the self- P+ 1 pep

excitation signal (53). The self-excitation sign&l® can
be chosen to provide persistent excitation required for theThe remaining part of the proof will require the following
estimator convergence. auxiliary result.
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Lemma 1—Estimation with Persistent Excitatiobet us A. Background

consider system (70), (71), where the regressor vector sej st us consider a nonlinear mappifig"> — RN
guence is persistently exciting so that for sofne 0, some

§ > 0, and anyk Y=f(p), YeRY™, pePcr™ (79)
Unlia g NOFNOS wherep is an argument (input) vectdf, is a bounded domain,
fos ECIE 6 (74) andY is an output vector. We assume that the mapping (79)
j=k+1 has the necessary number of continuous derivatives.
Then, for certain: > 0 the following inequality holds: Let us consider an approximation of (79) with the expansion
- of the form
K& < (1 — oIIE® €) 75 LA .
IEEOllr < 1= IEPllr + 3 [Dllr (75) =3 Z9hp— QW) (80)
Jj=k —)
Jj=

where|| - ||r is the Frobenius norm of a matrix. _ ) ,

The proof of Lemma 1 is given in the Appendix. Lemmavhere functioni(r) depends on the radiug-|| and Q¥ €
1 together with the estimate (68) describes the evolution 8f * are given vectors. Such expansions are known under the
the parametric optimum error weight matrix(*) (58). By hame of RBF approximation. RBF approximation has been

applying Lemma 1 and using (65) and (72), we obtain extensively used in computer graphics and experimental data
processing applications (e.g., geophysical data) for more than

[K*H0)lp < (1 - KDl +150 +1&.  (76) 4 decade and has been demonstrated to provide a high-quality

To complete the proof, let us now consider evolution of th@pproximation. One can find further details and references in

affine model error in the projection estimation algorithm (54;}1]’ [33], [37], and [38]. Some of the most commonly used

(55). This error||[©™)]|| diminishes monotonically as long as'@dial functions are

the perturbation [modeling error plus measurement ngisg h(p) = exp (=||p||2/d?)

is within the deadzoné\ [13]. hp) = (1+| ||2/d2)1/2
The projection algorithm perturbation is evaluated in (57). P)= P

In accordance with (36) and (58), we obtain h(p) = (1 + [|pl|*/d*)~*/? (81)
NU® — U, (p*)]]? where the first radial function is Gaussian, and the last two
< [Hf((k)H sup O(p) + ||6U(p(k))||]2 are call_ed Hardy Mult|quadr!cs and. Revc_arse Mult|qu§1dr|cs,

pEP respectively. Usually, the radial function width parametén

< 2||f((k)||2(sup B(p))>2 +2||5U(p(k))”2_ 77) (81_) is chosen to be about an average distance between the
pEP neighboring node centers.
RBF approximation has a number of advantageous proper-
. ties which make it very attractive to use in parametric NLS
[Y® —0,2p", UM)|| < 4| KW +m (78) problems. For the first and last functions (81), the expansion
(80) is semilocal, i.e., the radial function decays away from
its center. This is very advantageous for many applications.
Further, RBF approximation has an excellent accuracy com-

(30) and (27), respectively, used in the proof of Theorem &ed to other approximation methods, as it is shown in many

Theref btain the Th 5 It i lJpplications [11], [18]. This high accuracy has a theoretical
erelore, we obtain the Jheorem = convergence resu S"T stification. It has recently been acknowledged that RBF
larly to how the Theorem 1 result is proved in Section II-C

. ‘approximation minimizes a certain regularization performance

index that describes the interpolated surface roughness [33],

L . i
th Con\;grgentge Ofl bot.:\h the 5<;st|mat|9n alt%onthm (54) argj]. Different forms of radial functions (81) correspond to
€ optimization algorithm (52) requires the sequences minimization of different regularization indexes. The RBF

i k) — (k) k) — L . . .
the nonlinear regressor vectots®) = &(p*)) and &®) = approximation can be considered as a kind of low-pass spatial

Sk k i it
S(p'), UMW) to be persistently exciting (PE). The PE prOperﬁltering of the approximated mapping [38], [39]. Theoretically,

ties depend on the set of the nonlinear functibp) in (36), the RBF approximation can achieve an arbitrary small error

(38), and (39). In .the next section, we consider one particulI%rr a smooth mapping [31].
set of such functions.

The accuracy of RBF approximation enjoys a high order of
convergence with growing density of available data. The most
remarkable fact is that the convergence order actugibys

In this section, we briefly survey an auxiliary problem ofvith the dimension/V, of the argument space [38, Ths. 7.2
approximating a smooth mapping using an expansion widémd 8.2].
respect to certain shape functions. This problem is importantRecently, some authors have treated the RBF approximation
for justifying the use of the approximations (36), (38), (39) iin the connectionist (neural) network context [6], [7], [31],
the proposed algorithm. We further apply the algorithm to [83]. They consider the radial function centeps’)—which
simple illustrative problem. are called the network node centers—that do not coincide with

Therefore, (57) gives

where y; = 2y(sup,ep O(p)? and n = (o + 6z +
8¢ sup,, UM + 8.
The estimates (78) and (76) are analogous to the estim

V. RADIAL BASIS FUNCTION APPROXIMATION
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TEST FUNCTION: Y=0.5"exp{p_1)+cos(pi*p_1}"sin(pi“p.2)-(1-0.5"cos(pi*p_2))*U 1.5

T T

AN g
A7 \\\\\‘\\“I““
““\‘\\\\\\\5\\\“‘“

0.5

OUTPUT

Fig. 2. OutputY for the illustrative example system féf = 0 (the upper
ITERATION surface) and for the approximated parametric optinidre: U (p) (the lower
surface).
Fig. 1. Evolution of the output errof{Y’|| for the illustrative example.
Parameter vector sequengd’) is randomly generated inside the unit square. ) ] ]
has the form (82), wherg(p) is the Gaussian RBF—the first

] ] ] function in (81). In the numerical results below, we used a
the arguments for which function values are available. Thigiiform 6 x 6 grid of the RBF network node®®: thus

coincides with the way we apply RBF expansion (79) in thﬁfu — 36. The Gaussian RBF width is chosen to de- 0.3,

algorithms of Section IIl. which is 1.5 times the gridsize.

In our implementation of t_he RBF network approxim(?)tion, The parametric NLS algorithm (52), (54), (55) described in
we assume that the expansion ordéy and the centers) Section Il was coded in MATLAB. We used the following

(=1, B Na) in (80) are given and fixeq. We use th RI_B’Fparameters:
expansions in the algorithm for parametric NLS optimization
described in Section 1l so that in (36), (38), and (39)p) = p = 0.0004, p=5p, A =0.002

—OW imati
hp—Q'??). For the RBF network approximation, the regressefng the self-excitatiom)®) in (52) was a pseudo-random
vector (41) has the form

sequence with an absolute value boundeti/as The sequence
®(p) = [hlp—QD) ... h(p—QPNN]. (82) of the parameter vectogg®) was generated randomly inside
the unit squaréP. Fig. 1 illustrates the evolution of the system
The persistence of excitation conditions for the RBF neputput ||Y*)|| in the parametric optimization process. The
work approximation are analyzed by the author elsewhere [13]gorithm converges in 100-200 steps.
It can be proved that the sequen®ép'?)) (82) is PE if the  Fig. 2 shows the system outphit= S(0y,,, p) for the zero
inputsp?) belong to certain neighborhoods of the RBF centefput U (the upper surface) and the outfdt= S(U.(p), p)
QU). Similar PE conditions are proved in [17] for the affingor the found approximation of the parametric optimum (the
RBF approximation when the regressor vector has the folgwer surface). Despite some remaining error, the approx-
(45). imated input U,(p) brings the output close to zero. The
maximal remaining errof{Y’|| is about 40 times smaller than
B. lllustrative Example of the Parametric NLS Optimization that for zero input.
Let us illustrate the work of the developed on-line paramet- F19- 3 displays the approximation (40) for the parametric
fic NLS algorithm with a simple example. We consider th@PtimumU.(p), as computed by the algorithm. Note that the
parametric NLS problem (2) with the nonlinear function (392N (gradient)G = 1 — 0.5 cos (mp;) of (83) varies from

of the form .5-1.5 in different parts of the unit squafe Despite this,
the algorithm copes with the system reasonably well.
Y =S5, p) = 0.5¢P* + cos (mpy) sin (7wp2) The results demonstrate the feasibility and satisfactory per-
—(1-0.5 cos (mp2))U, Y € R, UeR formance of the proposed algorithm. Its application to a more
peP=[0,1PCR2, Ny=1, Ny=1, N, =2. comprehenswe control problem is considered in the next
section.
(83)
The optimization goal defined by (2) is to find the input V1. APPLICATION TO LEARNING CONTROL
U(p) in (83) minimizing the system outpuif for eachp. This section considers an application of the proposed para-

Let us consider an RBF network approximation of thenetric NLS optimization algorithm to a learning control prob-
parametric dependencies (36), (38), and (39) with regard lean. Though we believe that the proposed algorithm can
the mapping (83). The regressor vecp) in (41) and (45) be useful in many different applications, including feedback
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Parametric Learning Control ProblemWe assume that the
mappings (84) and (85) are unknown, but we can repeatedly
apply the computed feedforward contre{-) to the system
(84), (85), observe its output(-) on the time interval0, 77,
and use the obtained observations to update the control. For
each run with the feedforward contral-), we suppose that
the system time is reset to zero, and the initial condition is
defined by the vectoA. The control goal is defined by the
vectory. The vectors\ andr may take different values from
run to run. The problem is to minimize the performance index
(86) for each value of the parameter vecgtiq87) in the given
domainp € P C R,

Let us represent the time-histories of the feedforward input
u(-) to the system (84) and the system output) (85)
by finite-dimensional vectors. We apply the assumed mode
expansion approach and introduce a set of shape functions
Fig. 3. Parametric optimuny = U.(p) computed for the illustrative {¢J() [O, T] — R, (J =1, N)} and consider a
example. .

feedforward input of the form

.

control of nonlinear systems, it was this problem that provided () = Z u(j)¢(_)
us with the initial inspiration for the algorithm development. B =
A. Learning Control Probl utt
. Learning Control Problem . ;
J . . L U=| ' | enrM (88)
Let us consider a nonlinear time-invariant system of the u™

form
. whereU is a weight vector of the dimensiaN,, = n,/N. We
& =g(z, u) (84)  further assume that the shape function set is given and vector
y =h(z) (85) U defines the feedforward control on the interj@l 7). We

o o . will call U aninput vector

wherez € 7 is a state vectory € R is an observation Similarly, we describe the system output with a finite-

N | 1
;zghor;ei%i? tﬁegi\onlliiezrcfnr;girgzm )VZ;:]BO;L' ( \)Ngr;u:fgfrdimensional output vectoy”. We introduce a sampling time
- ) . _sequencdt; ., wheret;, = T7; > T and anoutput vector
known exactly, but are known to be smooth, and the nonlmearq &tz L f= P
y(t1) — ya(ts; A, v)

system (84), (85) is known to be observable and controllable.
We consider a controlled motion of the system (84), (85) in Y .
the given time interval0, 7] and assume that the initial state )
vector z(0) is defined by the vectoh € R, ny < n, as y(tL) = ya(te; A, v)
z(0) = 1p(A), wherer)(-) is a smooth mapping”™* — R"=.  wherey € "+ is the system measurement vector (85)t)
The control problem is to find a control input-) defined s the desired (planned) output, aid, = n,L. In most
in the time interval[0, 7’| that allows us to achieve practically important cases, under reasonable observability
. o . conditions imposed on the sampling time sequence and on the
AWC) yals A v)i u()) = min. (86) controlled system, we can evaluate the desired output of the
Here v € R is a vector that defines the desired systelsystem (84), (85) by monitoring only the sampled output (89).
state at time7’, and yu(#; A, v) € R™ is a preplanned Due to signal sampling in a digital computer, the measured
desired output of the controlled plant. The preplanned outputtput is of the form (89) in most practical cases.
14 depends on the initial condition vectorand the control ~ The input vectorl/ defines the output vectoy” in ac-
goal vectorv. Section VI-B considers the learning control oftordance with (84), (85), and (87)-(89). We can write this
a rest-to-rest motion for a flexible manipulator arm. In thigependence in the form (3)
example, vectors and A correspond to rigid-body initial and
final coordinates of the arm, while the state vectdncludes Y =f(U p) (90)
both rigid-body and flexible coordinates and velocities.
Let us introduce a task parameter vegtocomprising the
initial condition vectorA and the vector of the control goal

] e RNy (89)

where f is a smooth mapping, which we assume to be
unknown. The task parameter vectorin (3) has the form
(87) and comprises the vectoksand v that define the initial

N condition and the control goal.
p= L,} e R, Np =nx+ny. (87)  We will further consider a performance index (86) that has

) , the form (2)
We further consider the learning control problem as stated

below. J(Y,U) = IY|* + p||U]]* = min. (91)



GORINEVSKY: LEAST SQUARE OPTIMIZATION AND APPLICATION 923

Assume temporarily that the initial and final condition

vectors\ andy are exactly reproducible from run to rup i

(90) is fixed). Then, a solution to (91) can be found using an
iterative NLS optimization algorithm (e.g., such as discussed
in Section Il). Each optimization step of such an algorithm
corresponds to a completed motion of the system with the
input vectorUU (88) applied and the output (89) collected.
Thus, we have dearning control algorithm. Some learning

N T
control approaches also known as repetitive or “betterment” ik A NG

i Iq S~ al

control were recently studied by a number of authors, mostly J]

with regard to robotics applications, in [2], [3], [22], [25], and_
[29], and many other papers. A well-known practical limitatioR'%: +
of these approaches is that after learning the control to follow

a given trajectory, we still do not know control for following i o )
other, even close, trajectories. In particular, we assume that the damping in the elastic

The above stated parametric learning control problem ové&léments is negligible and that angular motion of the drive
comes this limitation. For this problem, the parameger "otors is decoupled from the arm structure motion. The latter
changes from motion to motion in accordance with the changsSumption holds for drives with high trans.m.lssmn ratios.
ing motion goals, which are generated externally to the learn-L€t ¢ € %? be the vector of the arm joint angles and
ing (optimization) procedure. The parametric learning contrgl € % the vector of the rotation angles for the output shaft of
problem (90), (91) is a parametric NLS optimization problerH‘e c_jnve. We fu_rther_ assume tha_t the control torque vector
considered in Sections Ill and IV. The parametric optima@PPplied to the drives is computed in the usual way, as a sum of
input U, (p) for this problem can be found using the a|gorithnproport|onal and denvat_lve (PD) drive position feedback and
presented in Section Ill. At each step of the algorithm, tHgedforward compensation(t)
output vectorY is obtained by actually completing the system
motion with the computed input/. 7(t) = Ki(qa(t) — (1)) + Bilqa(t) — %)) +u(t) (92)

A few published papers consider learning of input command

dependencen task parameters [1], [14], [16], [21]. Unlike thewhereqd(t) is the reference drive positiok, € %22 is the

cited work, the algorithm of Section IIl works for an arbitrarymatrix of the proportional drive position feedback gains, and
sequence of the task parameter vecioand thus can be usedB* € %22 is the matrix of the velocity feedback gains.

for improving the system performance without restricting the We consider the feedback gaifi& and B, as fixed param-

sequence of the control tasks to be executed. This ability of tQFers and the vector of the feedforward joint torqués) € R2
algorithm to cope with an arbitrary task parameter sequence

. o : 25 an external (control) input to the system. We assume
very important for practical implementation of the parametrig .. /o can measure both the drive rotation angleand
learning control.

. o . tFe elastic element deformatioms— ~. For the considered
Note that the discretization of the input (88) and OUtp"f exible manipulator system, the state vector has the form

(89) does not restrict the practical scope .of the stated Iea_rnlar;g: [¥ 4T 4T 4T]T € R and the observation vector,
control problem compared to other published works. Thisis _ >3~ " \pmp ol
because a practical implementation of a learning algorithgfn_ 7" (g =771 € W
using a digital computer would work with sampled control
and system output data. More discussion on how the for- -
mulated parametric learning approach relates to the learning z(0)=[" 0 0 A 0 0] (93)
control literature can be found in [21]. Similarly to many on-
line optimization and approximation algorithms considered ighere A € %2 defines the initial joint angles of the arm
the neural network literature, the considered learning contighd the drive angles. The initial condition (93) means that
application is biologically inspired by some models of humag(()) = ~(0) = X and §(0) = %(0) = [0 0]T.
motor control [15]. Let us consider the control goal parameter vectaz R2
that is equal to the desired joint angle vecigT) after
o _ the motion of the arm. The preplanned outpy( -; A, v)
B. Application Example: Control of Flexible Arm describes the desired path of the arm motion, which is used
In this section, we apply the formulated parametric NL&s a reference in the PD controller (92) and the planned joint
algorithm optimization to the fast motion control of a flexibledeformations. The joint motion is initially planned as a straight
joint arm with noa priori knowledge of the system dynamicsline in the joint angle space and a third-order polynomial
Let us consider a two-link articulated arm shown in Fig. 4n time. We assume that the planned values of the joint
We assume that inertial drives placed in the arm joints adeformationsg,(t) — v4(¢) and their derivatives are always
connected to the links through lumped elastic elements, areto. The control problem is to compute feedforwafd) so
all motion is in a horizontal plane. We employ commonly madghat the arm comes to the final positign(7) = v at time
assumptions about the elastic-joint manipulator dynamics [40Q]. = 1.5 without oscillations.

Two-link planar arm with flexible joints.

Let us assume that the initial state vector has the form
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We divide the motion interval0, 7] into seven equal FLEXIBLE ARM
subintervalg[r;, 7;41], ( =0, .-+, 7), 70 = 0, and7; = T, SEUUUUUUUNE SOUUNE AU 0000 3 SR O SO A 0 048 SRR SO SO O
and consider the feedforward input (88), € R!2, that is e
piecewise linear on these subintervals and zero at times zero
andT. In other words, the shape functiops(-) in (88) are the
first-order (triangular) B-splines. We monitor the arm motion
on the interval[T’, Ty, Ty = T4 0.5 at L = 14 uniformly
spaced output sampling instants = 7, ---, t14 = 1}.
The measurement vectgr comprises drive angles and joint
deformationsy = [¢* (¢ — v)*]¥ € R*. By sampling the
vectory at instantst;, we obtain the output vectdr € R°°.

The mapping (3) depends on the task parameter vector
(87) that includes the initial and desired final configurations
of the arm. Since the system is cyclic, the control depends ,
only on thevariation of the first joint angle. Thus, we can -
write the task parameter vectprin the form e

a
o‘

OUTPUT ERROR

10° 10' 10°

p=[02a(0) @a(T) (qa(T)— qa(0)]".  (94) ITERATION

. . . . Fig. 5. The progress of the terminal errit”|| with the optimization
We consider the parametric NLS problem with the followingeration number. The arm moves through a randomly generated goal positions

task parameter vector domain: sequence.
s 3
P =3P €P: ;< ¢2(0), q2a(T) < in the joints asK = diag {200, 200}. We further assume
that the angular position gain of the PD feedback controller
w w . . . .
-5 < q1a(T) — q14(0) £ 5}. (95) (92) is K, = diag {100, 100}, and the angular velocity gain

is B, = diag {40, 40}. Note that for the above parameters

To implement the parametric NLS algorithm of Section 1110f the system, the period of oscillations with the lowest
we use approximation with the Gaussian RBF network wittigenfrequency is about one if the elbow angl&iy4. The
the fixed node center®) placed on a uniform mesh & Mmotion time7” = 1.5 is close to this period, which makes the
3 x 3 in the task parameter space. Whemplementingthe control problem very difficult. We have found that adding a
control algorithm, we assume the dynamical model of tH#nall measurement noise to the simulated system output does
system to be completely unknown and set the initial estimatét change the algorithm performance in any visible way.
of the parameter matri® in (54) to be zero. The reason is that for a random parameter vector sequence
The parametric NLS optimization algorithm was implep®), the deviation of the system mappings from the RBF
mented as a Matlab program on a 486/66 computer, and &gproximations used by the algorithm acts in the same way
arm motion simulation was coded in C. The control (opti@s an output noise.
mization) algorithm does not exploit any initial knowledge of In the numerical experiment, the values of the task parame-
the controlled system dynamics and uses just the input—outf@it vectorp are generated so that the initial arm configuration
data. Given the input and output dimensioiise R®'? and coincides with the final arm configuration at the end of the
Y € ®55 and the number of the RBF network nod¥s = 45, ~previous task. Fig. 5 shows the progress of the €[Tor Y|
the sizes of the matrices in (45) am(p, U) € #°%5 and with the optimization iteration number. One can see that the
O € R%%:385 These sizes cause no computational problems,eantrol error converges to a small acceptable value over the
the updates (52) and (54) only include matrix multiplicationghole parameter vector domain. The error, which is achieved
and the matrix inverted in (52) has the size 212. at the end of the optimization process, is about 20 times less
For our Matlab implementation of the algorithm, the contrghan the initial error, which is obtained without feedforward.
update (52) took 0.33 s and the affine model update (54)ye oscillations of the motion error in Fig. 5 are related to the
0.55 s. These computational delays are acceptable for taiation in the arm motion amplitude as new task parameter
feedforward control since the updates need to be done omBctorsp are randomly generated in the course of the learning.
once for each motion. The computation of control in accor- Fig. 6 illustrates the feedforward control computed as a
dance with (53) takes less than 50 ms, which suggests thesult of the RBF network approximation after the algorithm
the proposed algorithm could also be feasible for feedbacknvergence for the motion with the initial joint anglés=
control, especially if the updates (52) and (54) are schedul@d 60°]7 and the final angles = [70° 105°]. Fig. 7 shows
outside the time-critical feedback loop. the joint deformations for the same motion. Thanks to the
When simulating the planar arm motion, we assume thatomputed feedforward, the deformation is small after the time
the arm links are uniform rods of unit mass and lengthl’ = 1.5, which means the arm arrives to the final position
We take the moments of inertia of the drive rotors.As= without visible oscillations. The acceptable motion accuracy
diag {2, 2}, the damping in drives a3 = diag{0, 0}, is achieved despite the high motion speed, low feedback
and the angular stiffnesses of the lumped elastic elemegtins, moderate network size, and large covered domain of
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T very efficiently. Without any prior knowledge of the system

_ : dynamics, it achieves satisfactory control of arbitrary arm

A e A S motions after only 500 iterations of learning (optimization).
‘ : The algorithm can be efficiently implemented for on-line use.

Feedforward

APPENDIX

Tme 2 2s Proof of Lemma 1:Let us denote by ve¢k ) the vec-

, _ , tor built of all entries of the matri¥<*, column by column.
Fig. 6. Feedforward for a test motion after the algorithm convergenc

shoulder joint—solid, elbow joint—dashed. fi accordance with the Kronecker product properties [4, Sec.
5.6], (70) can be represented in the form

s : ' vec (K*+D) =, vec (K™) + vec () (96)
LE U =F®M @I n, + Iy, - FF)yo AP, (97)
§o
£, We will need ani-step solution to (96). This solution has
g the form

-4 :

% 05 1 155 é 25 vec (f((k'i'l)) =W(k+1, k) vec (f((k))

Time
-1
Fig. 7. Joint deformations for the test motion with the approximated feed- + Z W(k+1, k+1-j) vec (e(k+l_j))
forward: shoulder joint—solid, elbow joint—-dashed. s
(98)
Y A A S AR j-1
%2 | | | Wk g) =[] v (99)
:é' o i=k
§-2 where W(k, j) is the transition matrix for the homogeneous
3.4 , : : 5 part of the system (96).
. i : ; R Since the matrixd®) (71) is symmetrical positive definite,
0 08 Yome P 2 2% andF(® satisfies (69), the matri;, (97) is also symmetrical

Fig. 8. Joint deformations for the test motion with zero feedforward: shOLROSItlve definite with
der joint—solid, elbow joint—dashed. . . .
. : U2 F® @1y, + FY @AWY
. . F® =1y —F%), 100
the task parameters (95). For comparison, Fig. 8 shows the ¢ Na (100)
deformations for the same motion in the absence of theLet us show that||;| < 1, which is equivalent to

feedforward. showing that| ¥, vec (K)|| < || vec (K)|| for any vec(K)
RNv:Ne  Note that
VII. CONCLUSIONS S -

This paper has formulated a problem of on-line parametric Ivec (K)|I* =1K11% o
NLS optimization, and proposed a technique for its solution. =trace(KT K)
The algorithm proposed and results obtained could be used =trace(KK7). (101)
in nonlinear control, signal processing, and optimization. The
problem and the proposed solution are related to recent work irBy using representation (70) of (96) (with*) = 0), (69),
control using on-line function approximation including neurdi71), and (101), we obtain a chain of inequalities
networks, fuzzy, and learning systems. <o

The proposed algorithm constitutes an extension of the welll Z+ Ve¢ ()] )
known Levenberg—Marquardt algorithm and includes on-line = ||[KF® + A® KF®)2,
approximation of the nonlinear mappings encountered in the — trace(f(F(k)f(T) —i—trace(A(k)f(Fc(k)f(TA(k))
optimization process. We have proved local convergence of the o = N N2~
proposed algorithm. Though different types of the approxima- — trace(KFWK™) + trace(F(M KT AR KFV)
tion techniques can be used with the algorithm, in' examples < trace(f(F(k)f(T) + 1 trace(F(k)f(Tf(F(k))
we have successfully used a RBF network expansion. (14 p)? c c

We have demonstrated an application of the proposed ap- — ||f(||% — d)trace(f(Fc(k)f(T) < ||f(||% (102)
proach to learning control of a flexible-joint arm over the
entire workspace of the arm. The controlled motions awehere = 1 — 12/(iu + p)? > 0. The fact that|| V|| < 1
very fast and take about 1.5 periods of the lowest eigenfr@gether with (98) proves that the sum in the right-hand side
guency oscillations. The proposed approach solves the probl@RiHS) of (98) can be majorated by the sum in the RHS of (75).
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Lemma 1 will be proved if we show that for some> 0 Finally, by remembering thach(j) = Iy, — Fc(j)

the following inequality is valid: @U+DPUHD” /||4U+1)||2 and using (74), we obtain
Vk+1LE)| <l-e 103 !

The rest of the Lemma 1 proof will be devoted to demon- j=1
strating (103). Note that proving (103) is equivalent to proving .
that for ¢(*) = 0 a solution of (70) satisfies = trace | K® Z Fk+i) | g0

~ ~ j=1
Ivec (K*FD)|12 < (1 - e)|lvec (K™)|1? (104) N !
> |[KM||2.N,6. (111)

wheree = 1 — (1 — €)1/ _ _ o .
We will prove the counteropposite to (104). Let us assumeSince 6 in (111) is fixed ande in (110) can be made

that for anye > 0 we can findK*) so that arbitrarily small, we came to a contradiction.
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