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Abstract—This paper presents a new paradigm for model-free
design of a trajectory tracking controller and its experimental
implementation in control of a direct-drive manipulator. In ac-
cordance with the paradigm, a nonlinear approximation for the
feedforward control is used. The input to the approximation
scheme are task parameters that define the trajectory to be
tracked. The initial data for the approximation is obtained by
performing learning control iterations for a number of selected
tasks. The paper develops and implements practical approaches
to both the approximation and learning control. As the initial
feedforward data needs to be obtained for many different tasks,
it is important to have fast and robust convergence of the learning
control iterations. To satisfy this requirement, we propose a
new learning control algorithm based on the on-line Leven-
berg–Marquardt minimization of a regularized tracking error
index. The paper demonstrates an experimental application of the
paradigm to trajectory tracking control of fast (1.25 s) motions
of a direct-drive industrial robot AdeptOne. In our experiments,
the learning control converges in five to six iterations for a given
set of the task parameters. Radial Basis Function approximation
based on the learning results for 45 task parameter vectors brings
an average improvement of four times in the tracking accuracy
for all motions in the robot workspace. The high performance of
the designed approximation-based controller is achieved despite
nonlinearity of the system dynamics and large Coulomb friction.
The results obtained open an avenue for industrial applications
of the proposed approach in robotics and elsewhere.

I. INTRODUCTION

T HIS PAPER considers a learning control approach to
output tracking in a nonlinear system. The termlearning

controlappears in the title of many papers and denotes one of a
few different approaches applicable in the absence of a system
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dynamics model, where the control or the system is ‘learned’
on the basis of the past operational data for the system.
Early work in the learning control systems developed into the
modern adaptive control theory, e.g., see [43]. Recently, many
adaptive control approaches employing iterative estimation of
the system dynamics in the neural network of fuzzy system
context have been called learning control.

In this paper, we particularly refer to the learning control
approach introduced in the works by Arimoto and others (e.g.,
see [3], [4]), mostly for robotics applications. The referenced
and many other related papers consider one motion of a non-
linear system (manipulator) that is repeatedly executed with
updated feedforward input until a desired tracking performance
is achieved. The main advantage of such approach is that it
does not require an accurate model of the system dynamics.
The major practical drawback is that the feedforward control
is obtained only for asinglegiven task. Should the trajectory
change, even slightly, the learning process has to be re-
peated anew. We remove this barrier by designing an efficient
learning-based feedforward controller that works for arangeof
the task parameters. Such task parameters comprise the initial
and the final setpoints of the system and define the trajectory to
be tracked. Our approach is based on a paradigm of a nonlinear
approximation of the feedforward control dependence on these
task parameters. The initial data for the approximation is
obtained by performing learning control iterations for a set
of selected task parameters within a given range.

The paradigm and techniques for obtaining the approx-
imation of the feedforward control are the first and main
contribution of this paper. Motivation and application ex-
amples for the concept of approximating the dependency of
the feedforward control on the task parameters can be found
in [16], [18], [20], and [23]. In this paper, we use a radial
basis function (RBF) network approximation [35], [36]. RBF
approximation has a number of very attractive properties such
as excellent accuracy, algorithmic simplicity, and efficient
handling of vector-valued functions. It has recently become
a much used tool in control engineering applications, where it
is often used in the neural network or fuzzy system context.

We would like to note that Arimoto’s work, as well as many
subsequent papers present human motor skill learning as a
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motivation for the development of learning control approach.
Elaborating on this idea, one can add that human motor skills
are usually acquired for a set of tasks, rather than for a single
task. Thus, this paper further extends the motivating idea
of learning control. More discussion on learning of the task
parameter approximation of feedforward control with regard
to human motor control modeling can be found in [20].

A number of papers develop approaches using neural net-
works or other approximation techniques to learn (identify)
nonlinear dynamics model of a system from experimental data,
for example see the survey [26]. Although these papers might
use similar approximation techniques the approaches are very
different from what we propose in this paper. A fundamental
advantage of the proposed approach is that its complexity
depends on the dimension of the task parameter vector, while
complexity of the system dynamics approximation is defined
by the state vector dimension, which is usually much larger.
Since the approximation complexity grows exponentially with
the dimension, our approach is much more attractive for many
practical applications.

This paper emphasizespractical approaches to both the
approximation and initial feedforward data learning. The initial
feedforward data for the approximation needs to be obtained
for many different tasks, hence, there is a need for fast and
robust convergence of the learning process. To satisfy this
need, we develop an efficient learning algorithm which has
several novel features. This algorithm is the second major
contribution of the paper.

Let us describe how the proposed learning algorithm relates
to the prior work in the area. Let be the feedforward
input applied to the system at learning iterationand
be the tracking error at the same iteration; the timeis
reset to zero in the beginning of each iteration. A typical
learning control algorithm updates the feedforward by using
the tracking error information from theprevious iteration as
follows

(1)

where is a linear operator.
In the original work of Arimoto, as well as in many

subsequent papers,describes a standard PID controller, or its
special case (P, D, PI, etc.). Some related papers, e.g., [8], [28],
[34], consider controllers with more sophisticated transfer
functions. These papers use conventional design techniques of
causalcontrollers. Yet, at the iterationof the learning control,
the entire history of the previous iteration error is
available, including the error forward in time.

In order to provide fast convergence of the learning control
process, many authors attempted to use various types of the
system inverses as the learning gain. Some of them assume that
the state vector of the system and its derivative are accessible
and use the inverse dynamics of the nonlinear system to
compute the feedforward update. With this approach, some
authors assume that the system dynamics are known exactly
(e.g., [2], [5]), or with a bounded error (e.g., [29]). In other
papers, an approximation of the dynamics used in the learning
control update is recurrently estimated on-line using neural
networks or other schemes [31], [37]. A drawback of these

methods is that they are not applicable for output tracking
of higher order plants. In this paper, we use an input-output
approach and do not assume that the entire state vector is
available.

Learning control approaches related to our paper are consid-
ered in [11], [24], and [25]. In these papers, continuous-time
feedforward is computed as an expansion with respect to a set
of certain shape functions. In [24] and [25], the weights of
such expansions are updated by integrating the error
with time-varying multipliers resulting in learning controllers
which are proved to be stable, but are not optimized for speed
of convergence.

A consistent way to achieve a high performance of the
learning control is to design a controller by posing an
appropriateoptimization problem. In this paper, similarly
to [11], [16], and [24], we compute the feedforward as a
finite expansion with respect to certain time-functions, and
design the controller by optimizing a quadratic performance
index. Operation of such controller can be considered as an
on-line iterative optimization process, which includes task
execution experiments in the iteration loop. Such optimization-
based design of the learning controller was proposed in [17]
and [18]. A similar technique is considered in the recent
papers [10], [41] published after the completion of this work.
Related concepts of the optimization-based learning have been
considered in the task-level learning control framework [1].
Note that for a quadratic tracking error index, a step of the
Newton–Gauss optimization can be presented in the form (1)
with the learning gain computed through an inverse of the
system linearization.

Our learning control update is based on the on-lineLev-
enberg–Marquardtoptimization of a quadratic performance
index. Compared to the Newton–Gauss method used in [10],
[11], [17], [18], and [41], the Levenberg–Marquardt attenuates
the feedback learning gain, which improves the performance
in uncertain conditions. In the experiments described below,
such uncertainty is created by the Coulomb friction. Note that
one of the learning algorithms of [27] proposed for the case of
uncertainty in the system dynamics is mathematically close to
the Levenberg–Marquardt algorithm, though it is not called so.

A key reason, why our learning control approach works well
in practice is that it uses aregularizedperformance index with
a penalty for the control effort. The experimental results and
theoretical analysis presented in the paper demonstrate that the
regularization is critical for the convergence, robustness, and
acceptable static error sensitivity.

Another important feature of our approach is that the B-
splines are used as shape functions in the expansion of
feedforward control function. The system gain (gradient of the
input-output mapping) defines the direction of the optimization
update step and is defined by the responses to variations
of these shape function. For a linear time-invariant system,
responses to B-splines inputs differ only by shift in time
and the gain matrix has a special, block Toeplitz-structure.
This matrix is fully defined by a few column vectors. As
our experiments show, despite significant nonlinearity of the
experimental system, assuming a block-Toeplitz gain matrix
structure actually improves the convergence. Pulse response
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description of the controlled system is also used as a basis of
the learning algorithms of [27], [41].

In a typical tracking problem, learned feedforward input is
used together with an inner-loop feedback, which linearizes
the system. The importance of the linearizing feedback in a
classical learning control is discussed in [7].

The implemented algorithm uses anadaptivetechnique by
updating the estimates of the pulse responses in the course of
the learning control iterations. Thus, the learning update gain
of our algorithm is tuned on line - the algorithm isadaptive.
Despite the usage of the term “adaptive” in the text and titles,
most of the papers surveyed above use aconstant gainlearning
control update. That is, the operatorin (1) does not change
from iteration to iteration.

As a result of the described design features, the proposed
learning algorithm achieves remarkably fast convergence. In
the reported experiments, accurate tracking of fast manipulator
motions is achieved in five to six iterations, compared to 20–50
iterations usually needed for the original Arimoto’s method.
This fast convergence of the learning iterations enabled us
to acquire an approximation of the feedforward on the task
parameters in experiments of a reasonable duration. Of course,
the presented algorithms are applicable to many other real-life
control problems as well.

The paper layout is as follows. Section II formulates the
problems to be considered in the paper. In Section III, we
present the Levenberg–Marquardt algorithm for the learning
control and theoretically analyze its convergence and ro-
bustness. Section IV considers estimation of the system gain
matrix which is needed to compute the learning control gain.
Section V describes the experimental setup and discusses the
results obtained with the implemented learning controller.
Finally, Section VI considers task-parameter approximation of
the feedforward using Radial Basis Function approximation
method and presents the experimental results in testing the
approximation accuracy.

II. PROBLEM STATEMENT

This section presents a general problem of the task-level
feedforward controller design. A nonstandard feature of the
problem is that we do not assume a dynamical model of
the system to be available. We formulate the learning control
approach further used to design the feedforward controller in
the absence of a dynamical model.

A. Control System

Let us consider a control system shown in Fig. 1. For
example, such control systems can be typically encountered
in robotic devices. The system includes a nonlinear time-
invariant (NLTI) multiple-input multiple output (MIMO) con-
trolled Plant with the input (control) vector and
the output (observation) vector The system further
includes aFeedback Controller, which is used to track the
desired plant output The Feedback Controller
uses the tracking error
to compute the feedback control signal In robotic
devices, typically, and in the experiments described below,

Fig. 1. General scheme of the control system.

in particular, vector defines the control voltages of the
drives, vector gives the position sensor outputs, and the
feedback controller is a standard PID controller.

The desired plant output is computed by aPlanner. The
Planner computes the output for the given task parameters.
Typically, the components of the task parameter vector
are the initial and final setpoints for the system outputs. In
robotic applications, these setpoints define the drive positions
at the beginning and at the end of the motion. Thus, the task
parameter vector can be expressed as

(2)

where we assume that the planned move commences at
and should be completed by The presented control
system configuration presumes the execution of a series of
tasks. In this paper, we assume that the timeis reset to zero
at the beginning of each task.

We assume that the motion timeis a fixed parameter and
is the same for all tasks. We further assume that the system
is initially in a steady state so that the system output has the
desired value, In practice, the steady state of
the system can be achieved by waiting till the transients die
out. In general, it is convenient to assume that the planned
trajectory is also from a steady state to a steady state, i.e.,

In Fig. 1, as well as in subsequent figures, there are two
sorts of arrows describing the information flow in the control
system. Thin black arrows show continuous-time signals, such
as control input to the system, Fat grey arrows symbolize
variables that are defined once per control task, such as the
task parameter vector Later on, we will be considering
algorithms working for asequenceof control tasks, and it
is important to note the mentioned distinction.

The plant control input is a sum of the feedback control
and the feedforward control The feedforward

is computed by theFeedforward Controller . Since the
computed feedforward depends on the control task as defined
by the task parameter vector the vector is shown as an
input to theFeedforward Controller .

We further consider thePlant, the Feedback Controller,
and thePlanner as given parts of the system. The topic of
this paper is the design of theFeedforward Controller . The
problem that we are going to solve is to find the feedforward

defined on the time interval that allows to achieve
a small tracking error A more formal problem statement
is given below.
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Control Problem: Let the plant, the feedback controller, the
path planner, and the motion time be given and fixed.
The closed-loop dynamics of the system are assumed to
be unknown. By performing a number of the input-output
experiments with the plant, for any value of the task parameter
vector (2) in the given compact domain find
the feedforward input so that the output tracking error

is small on the interval and stays
small after the motion time

The next subsection describes the approach we take for the
solution of the formulated problem.

B. Approximation of Feedforward

In this paper, we develop a nonstandard approach to the
nonlinear feedforward controller design. The approach is based
on the approximate computation of the optimal feedforward
input. If the approximation error is sufficiently small, an
acceptably small tracking error can be achieved. As we will
demonstrate, one advantage of this approach is that it can
be computationally effective. Another advantage is that using
this approach we are able to design a nonlinear feedforward
controller without relying on an analytical model of the system
dynamics. Instead, as the next subsection discusses, a learning
control algorithm can be used to obtain the initial design data
directly from the experiments with the system.

In order to simplify the approximation problem, let us
describe the feedforward as a time function by
using a finite number of parameters. The controller to be
designed should compute these parameters depending on the
task parameter vector. Let us divide the interval into

subintervals by introducing a sequence of sampling
times where We
consider the feedforward input that is a linear combination
of the B-spline functions centered at the points
and can be written in the form

(3)

where are the parameter vectors defining
the shape of the feedforward control input.

As discussed in the Introduction, it is very important that the
functions in the expansion (3) differ only by translations
with the base This fact is used in Section IV.

It is possible to use B-splines of a different order in (3). In
particular, zero-order B-splines will give a piecewise constant
feedforward (3), while cubic B-splines will result in a twice
continuously differentiable feedforward. In our experiments
we used first order B-spline function that has the
support width and can be written in the form

if
if

(4)

A component of the feedforward control vector (3) and (4)
is a piecewise-linear function of the form illustrated in Fig. 2
by a thick line. This function has values at the sampling
instants If the order of the expansion (3) is
sufficiently large, it is possible to represent any continuous

Fig. 2. Shape of the feedforward control.

Fig. 3. Conceptual design of the feedforward controller.

function in the form (3) with a desired accuracy. Thus,
by constraining the discussion to the feedforward of the form
(3), no generality is lost.

Note that the control (3) can be considered as a convolution
of the train of impulses with amplitudes applied at the
times with the shape function (4). This presents a certain
similarity with the input shapingmethod of [39].

The feedforward (3) is defined by the weights which we
will collect in the input shape vector

(5)

The input shape vector should be chosen to minimize
the trajectory tracking error. The optimization problem for
determining the vector is formulated in the next section.
This optimization problem and its solution depend on the task
parameter vector Let us denote this solution by
The feedforward controller we are designing should be able to
compute vector for an arbitrary task parameter vector
in the given domain, Given that a dynamic model of
the controlled system is unavailable, we assume the following
approach to computing First, we take a set of task
parameter vectors and determine
optimal shape vectors for these tasks. This is done
with the help of a learning control procedure described in
the next section. Next, we use the set of the input/output
pairs to build an approximation of the mapping

for any value of the argument Section VI briefly
describes a Radial Basis Function approximation method we
used in the controller design.

Fig. 3 illustrates a conceptual design of the feedforward con-
troller we are going to develop. HereSystemincludesPlant,
Feedback Controller, andPlanner as outlined in Fig. 1. The
major part of the following text is devoted to the problem of
obtaining, through learning control iterations, a single optimal
shape vector for a fixed task parameter vectorWe return
to the approximation problem in Section VI.

C. Input/Output Mapping and Learning Control Problem

A computationally implementable learning algorithm needs
to sample the tracking error signal Let us sample the
error with an interval The input sampling interval
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Fig. 4. Sampling of the output error.

Fig. 5. Learning control concept.

(4) is assumed to be an integer multiple of the tracking error
sampling interval, The reason for this will be explained
later on.

In order to monitor the error just after the desired time
of the task completion, we consider an observation interval

where We assume that for
the system setpoints are kept constant, that is,
A vector of the sampled output values has the form

(6)

where and is the -th component of the
tracking error at time The
sampling of the tracking error is shown in Fig. 4. If the
sampling period is sufficiently small, no information will
be lost if we use the vector instead of the continuous signal

The feedforward shape vector (5), and the tracking error
output vector (6), are related by a nonlinear mapping, which
depends on the task parameter vectorand has the form

(7)

As the controlled system is nonlinear, the mapping (7) is
also nonlinear. Further, since we do not assume any knowledge
of the system dynamic model, the mapping (7) is unknown.
However, we are able to obtain input/output values of this
mapping by performing experiments with the system for any
task parameter vector (5): applying the input shape vector

(4), and obtaining the sampled output vector(7).
For a given value of the vector the optimal feedforward

shape can be obtained without knowledge of the mapping
(7) as a result of an iterative learning process. At each learning
iteration, a new feedforward input shape vectoris computed
in order to reduce the error obtained in the previous
experiment with the system. A conceptual scheme for the
learning control update is shown in Fig. 5.

III. L EARNING CONTROL FOR A SINGLE TASK

This and the next section are devoted to the first stage of
the controller design—learning a single optimal shape vector

We assume that the task parameteris fixed and not write
dependencies on the vectorexplicitly.

A. Learning Control as On-Line Optimization

For a sufficiently small output sampling interval a
(weighted) norm of the sampled tracking error gives us
an accurate indication of the tracking accuracy. In order to
achieve accurate tracking, we seek a feedforward shape vector

that minimizes the following performance index

(8)

where is a scalar parameter, The first term in the
performance index (8) is added in accordance with theregular-
ization technique [40]. The regularized optimization problem
(8) is better posed than one for 0. The nonzero penalty on
the vector in (8) prevents obtaining oscillatory inputs with
high amplitude. At the same time, for a sufficiently small
minimization of (8) provides small tracking error. Importance
of introducing the regularization term in the performance index
(8) will be made clear from our experimental results presented
below in Section IV. A theoretical justification for the choice
of the regularization parameter is given in the next two
subsections. Some additional theoretical results on the tracking
problem solution by means of the regularized performance
index minimization can be found in [19].

We are going to solve the following control problem.
Learning Control Problem:Let us assume that in (7) is

given and fixed. We assume that the mapping (7) is unknown,
but we can repeatedly perform experiments with the system by
applying an input vector as shown in Fig. 5 and observing
the output vector The problem is to design a learning control
algorithm that iteratively updates the input vectorin order
to minimize the performance index (8).

The formulated problem can be considered as a standard
nonlinear least-square numerical optimization problem. The
only conceptual difference with the usual numerical optimiza-
tion problems is that in our case each evaluation of the function
(7) includes anexperimentwith a real system.

We determine an optimal feedforward control vectorby
applying the Levenberg–Marquardt algorithm to the numerical
minimization of the performance index (8). This algorithm is
known to work very well for nonlinear least-square problems.
The Levenberg–Marquardt algorithm can be derived using an
affine model for the system (7) of the form
where is the gain matrix of the system [gradient
of the mapping (7)], and the vector gives the system output
for 0. The matrix plays an important role in what
follows. For the nonlinear system (7), actually depends on
the argument (we do not discuss dependence onin this
subsection).

Let and be input and output vectors at the learning
iteration let be the gradient matrix at the same iteration.
Let us consider the affine model of the system at stepof
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the form

(9)

The Levenberg–Marquardt update can be obtained by sub-
stituting the affine model (9) into the problem (8) and imposing
a constraint on the update step length:
(see [12] for more detail). This update has the form

(10)

where is a Lagrange multiplier defined by the up-
date step bound Effectively, the parameter reduces the
feedback gain of the learning control update (10). In the
commercially available software implementations of the Lev-
enberg–Marquardt method, the step bounding parameterin
(10) is chosen at each step. This, however, requires several
evaluations of the minimized function. In the learning control
problems, each evaluation includes an experiment with the
controlled system and, thus, has an especially large cost.
Therefore, we are using the update (10) with a constant
preselected parameter

Note that for 0 the update (10) becomes the New-
ton–Gauss update. If and the system (8) is invertible
(and well conditioned), it is possible to set 0 in (10). For

0, (10) becomes the learning control update with the
system inverse as the learning gain. Such update is considered
in a number of papers, for instance [10].

The update rule (10) presumes that an estimate of the
gradient (system gain) matrix is known at each step. As this
matrix is, in fact, unknown, the standard practice in numerical
optimization is to estimate it with a finite difference method.
Such estimation is the subject of Section IV.

B. Robust Convergence of the Learning Control Algorithm

Let us consider conditions for the learning control algorithm
(10) to converge. We will following an established approach
to the convergence analysis of the nonlinear algorithms (e.g.,
see [12]) and assume that the system (7) is affine inin the
vicinity of the optimum. The affine model has the form

(11)

The Levenberg–Marquardt algorithm (10) convergence can
be proven for any positive values of the parametersand

and it is robust with respect to the error of estimating the
matrix The sufficient condition for the convergence is given
by the following theorem.

Theorem 1: Let us consider the update (10) of the system
(11) input. The algorithm asymptotically converges for any
initial condition if some exists such that for any

the maximal singular value of the gradient estimation
error satisfies the following inequality

(12)

Remark 1: Contrary to intuitive expectation, the robustness
bound estimate (12) deteriorates for largeri.e., for smaller
learning control gain in (10). The explanation is that a smaller
learning feedback gain results in poorer disturbance rejection
properties of the algorithm.

Remark 2: From a practical point of view, choosing
still brings an improvement. The reason is that in the absence
of the convergence for poorly observable/controllable modes,
smaller learning feedback gain will lead to slower instability
development. In that case, on-line estimation of the matrix
might still have a chance to bring down the error
and eventually achieve convergence.

Proof: From (11), we have By
substituting the last equality into (10) and doing some trans-
formations, we obtain

(13)

(14)

One can observe from (13) that the iterations converge if

(15)

The sufficient condition for (15) to hold is

(16)

By noting that we obtain the
following condition of convergence

(17)

Let us consider a singular value decomposition of the
gradient matrix where is a diagonal matrix
of the form Since and are orthogonal
matrices, we obtain

(18)

Since in (18) are the singular values of the matrix in the
left-hand side, (17) can be presented in the form

By noting further that the inequality
is valid for any real we obtain that

and that (17) holds if

(19)

The inequality (19) proves (12).
Theorem 1 shows that the convergence robustness improves

for larger values of the regularization parameterand is
absent if no regularization is performed. At the same time,
increasing increases the steady-state tracking error for
the convergence achieved. The next subsection studies how
the convergence point of (10) is influenced by the value of
and imprecise knowledge of the system gain matrix
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C. Static Error

In this subsection, we keep assuming that the mapping (7)
has the form (11).

First, let us assume that the matrix is known precisely
and in (10). By substituting (11) into the extremum
condition (8), we obtain that the optimal input

satisfies

(20)

If we multiply (20) by from the left and use (11), we obtain
the system output at the converged state of the learning
algorithm

(21)

For the output (21) represents a static tracking
error of the learning control algorithm. Similarly with the
previous subsection, let us consider the singular value decom-
position The static error (21)
can be written in the form

col (22)

Since is an orthogonal matrix, we obtain from (22)
that the tracking error after the convergence of the learning
algorithm can be presented in the form

(23)

Note that can be considered as a “control-
lability Grammian” of the system. Thus, in (23) are projec-
tions of the tracking error in the absence of the feedforward

onto the controllability Grammian eigenvectors—columns
of the matrix In the expression (23) for terms with

add little to the sum, since the respective weights at
are small. For the weights tend to 1. For diminishing

the tracking error in (23) diminishes, since fewer
eigenvalues of the controllability Grammian contribute to
the error.

Now let us see how the stationary solution to iterative
procedure (10) deviates from if the estimates of the
system gain matrix are not exact. We assume that
does not change with The stationary solution to (10) satisfies
the equation

(24)

By substituting (11) into (24), subtracting (20) from the
result, and using (21), we obtain

(25)

If the first braces in (25) contain an invertible matrix, we
can use the following estimate

(26)

Let us now assume that the estimation error is small
and Then, the deviation (26) of the steady state
input from its optimal value can be estimated as

(27)

The estimate (27) is reasonable, since usually the matrix
has a number of small or zero eigenvalues. Due to the

large multiplier the steady-state control input error (27)
can be significant even for a small estimation error This
error can be reduced by increasing the regularization parameter

As indicated in Section II-B, we are going to use the
learned optimal inputs for building an approximation to the
dependence At the same time, the learning algorithm
will converge to the stationary solution instead of The
error in determining values of can be very undesirable,
since it causes deterioration of the approximation accuracy.

IV. ESTIMATION OF THE SYSTEM GAIN MATRIX

As theoretically demonstrated in Section III, an accurate
knowledge of the system gain matrix (gradient of the
mapping (8)) is instrumental for the learning algorithm con-
vergence. This section considers how the matrixcan be
estimated by a finite-difference method.

A. Preliminaries

Let us assume that the nonlinear control system in Fig. 1
gives rise to a twice continuously differentiable mapping (7).
We can write a first-order Taylor expansion for the mapping (7)

(28)

By applying the two inputs, and to the system,
where is a small input variation, denoting

and neglecting the second order terms in (28),
we can write

(29)

where the gradient matrix defines the in-
put/output sensitivity of the tracking error to a variation
of the feedforward input shape in other words, the system
gain. The columns of the matrix in (29) can be estimated by
making experiments with the manipulator, varying in
turn each input shape vector component—each shape param-
eter in (3) and (5). Estimations of such type are routinely
done in the numerical minimization algorithms and are called
secantor finite-differencegradient estimation methods. The
direct secant estimation of requires experiments;
this might be an unacceptably large number. Fortunately, many
fewer experiments are required for a linear system, namely
only Let us assume that the system in Fig. 1 is linear
(both the plant and feedback controller are linear). By varying
the feedforward input by for the same control task, we
obtain a variation of the tracking error which can be
written in the form

(30)
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where is the linear operator
of the closed-loop system. The operatorcan be described
by the respective transfer function or the closed-loop pulse
response

Let us now consider a variation of the feedforward corre-
sponding to the variation of one of the vectorsin (3). By
substituting into (30), we obtain the
variation of the tracking error at the sampling instantwhich
gives components of the output vector(6) in the form

for
for

(31)

The matrix relates variations of the respective
components of vector and the variation of the
components of the vector in accordance with (29). It can
be seen that the integral in (31) is defined by the difference

Thus, if the input sampling interval is an integer
multiple of the output sampling interval then the matrix
is a block-Toeplitz matrix. Each Toeplitz block of this matrix
is completely defined by its first column.

As mentioned earlier, for a general nonlinear system, the
finite-difference estimation of the matrix in the learning
algorithm (10) might demand excessive resources. The analy-
sis presented in Section III-B shows that the iterative learning
algorithm has a certain degree of robustness to the error in
estimating . In many tracking problems system dynamics
are linearized with a high-gain feedback. In such cases, the
system nonlinearity can be neglected when estimatingand

can be assumed to have a block-Toeplitz form. In our
experiments described in Section IV, we found that for
estimated as a block-Toeplitz matrix, the learning algorithm
converges well, despite the approximation error caused by the
system nonlinearity.

B. Fitting a Toeplitz Matrix as the Gain Matrix

In this subsection, we suppose that the dynamics of the
system are linear. We also assume that the system input and
output are sampled with the same rate, so that in (3) and (6)

and for In order to describe
the structure of the matrix let us partition vectors
and matrix in (29) into the blocks corresponding to different
inputs and outputs of the system as follows:

...
...

...
...

... (32)

where is a matrix which describes the sensitivity
of the th output, to the th input For a linear
system, is a Toeplitz matrix. Let us consider a structure
of the block in more detail. By using (31) and noting
that we can write the block in the following

Toeplitz form

(33)

...
...

...
(34)

We will denote the first column of the Toeplitz matrix
by The pulse response vector completely defines
the matrix block and is defined by the integral in (31).
The form of the matrix will be somewhat different for a
different ratio of the input and output sampling periods.

In (31) components of vector are related linearly to the
components of the vector therefore we can rewrite (31) as

(35)

where turns out to be a Toeplitz matrix of the form

...
...

...
...

... (36)

By putting together relations of the form (35) for all compo-
nents of the tracking error output, we obtain

(37)

...

...

... (38)

Now, by counting influences of all the input components, we
obtain

(39)

Matrix and vector in (39) have the form

(40)

where the blocks are described by (38), and the
vector contains the responses of all outputs to a unit variation
of the first shape functions for all input components. We will
further use representation (39) to derive update for the estimate
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of the vector which defines the block-Toeplitz matrix
from the input/output data and We further call the
basis vectorof the block-Toeplitz matrix

C. Recurrent Update of the Toeplitz Sensitivity Matrix

Instead of experiments needed to obtain the gain
matrix for a nonlinear system, the basis vector(40)
defining a block-Toeplitz gain matrix can be computed after
only experiments, which is a much smaller number. For
instance, these experiments can be done by applying
in turn variations of the vectors in (32) and using (37)
to determine the vectors in (39). Note that, according to
(38) and (35), the matrix in (37) is always invertible
provided that the first component of the vector is nonzero,

0.
We would like, however, to update an estimate of the

block-Toeplitz matrix recurrently, on-line, while performing
the learning control iterations. One update algorithm to do
this was proposed in [18], and it performs a secant update
of the estimates of the basis vectorof the block-Toeplitz
model for the matrix by a projection method. An efficient
recurrent update of the vector(40) would allow to achieve
the best possible fit of the Toeplitz matrix to the experimental
data. Such update algorithm, which is a modification of the
algorithm of [18], is explained in more detail below.

Let us note that (39) is a linear regression equation with
the parameter vector and the regressor matrix The
system (39) is under-determined, since the vectorhas the
size while the vector is of the size In the
course of the learning control iterations (10), the input vector

and the output vector are changing at each step. An
estimate of the vector (40) should relate the variations
of the input and output vectors at stepin accordance with
(39), so that

(41)

We apply one of the most often used methods for update
of linear regression parameter estimates, theprojection update
[15]. The projection update gives a solution to (41) with a least
norm step from to At each step of the learning
procedure, the variation of feedforward input
(10) is used to build matrix in
accordance with (36), (38), and (40). An estimate of the
basis vector (40) is updated as follows

(42)

where denotes the Frobenius norm of the matrix,
and is a parameter used to avoid division by zero and to
make the update more robust for a small norm

which corresponds to a small variation
of the input.

The algorithm (42) has the following property
Theorem 2: Let the mapping (7) be defined by a linear

system (30), that is, for some (39) is valid for any
variations of the input and the output. Then, for the recurrent
estimator (42) the error is a monotone nonincreasing
sequence.

Fig. 6. Overview of the experimental setup.

Remark 3: To achieve the asymptotic convergence of the
estimates to the matrices should span the entire
space (persistensy of the excitation condition should
hold). Following the standard practice of adaptive control, this
can be achieved by adding a small self-excitation signal to the
input sequence

Remark 4: The learning control algorithm (10) together
with the update of the system gain estimate (42) give an
adaptivealgorithm of learning control. Since this algorithm
uses a linear model of a nonlinear system, in general, only
local convergence of the algorithm can be established. Such
convergence results are provided by Theorems 1 and 2 that
prove convergence for the linearization if the initial error of
estimating is not too large.

Proof: The proof of Theorem 2 follows from the straight-
forward application of the standard results of [15] and is as
follows. By assumption, in (42) By
subtracting from both sides of (42), we obtain

(43)

It can be checked that the singular values of the matrix in
the square braces in (43) are less or equal to unity, which
proves the result.

V. EXPERIMENTS IN LEARNING CONTROL

The described approach was experimentally applied to the
feedforward control of trajectory tracking in fast motions of
a direct-drive manipulator. Since the controlled motions were
fast, the influence of the dynamics nonlinearity was strong. A
detailed account of the experiments as well as the simulation
results can be found in the technical report [42].

A. Experimental Setup

An overview of the experimental system is presented in
Fig. 6. The control system structure can be very well described
by Fig. 1. Let us start from the description of the controlled
Plant.

The experiments were performed on a direct-drive Adep-
tOne robot. The robot has four degrees of freedom and a
SCARA type arm configuration. In our experiments, we used
only Joints 1 and 2 that move the arm in the horizontal plane.



576 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 4, AUGUST 1997

These joints are powered by large Megatorque three-phase
variable reluctance motors. With the use of direct drives and
proprietary motor control components, the AdeptOne robot
combines a high speed with considerable working envelope (a
cirle with the 0.8 m radius) and load carrying capacity (6 kg).

Both joints are equipped with incremental joint encoders
that have resolutions of 460 800 and 115 200 counts per revolu-
tion. The control system of the AdeptOne robot was retrofitted
in the Robotics and Automation Laboratory, University of
Toronto, as described in [14], to allow for an accurate torque
control of the robot motors. In our experiments, the AdeptOne
robot is controlled with a custom made AdeptOne Data Link
Interface (ADLI) card and a PC-486/DX2-66. A C routine is
used to read the joint status and position information from
a Dual-Port RAM on the ADLI card. This card reads from
all AdeptOne Joint Control Cards and updates the contents
of the Dual-Port RAM every millisecond. Another C routine
writes joint control data to Dual-Port RAM on ADLI card,
and the ADLI processor stores the new data in its internal
memory. This data is transferred to all Joint Control Cards
every millisecond.

In our experiments, all low-level control functions needed
for trajectory tracking were programmed in C. The learning
control algorithms and the RBF approximation computations
were programmed in MATLAB. To move the manipulator, the
MATLAB program passes the planned motion trajectory and
the parameters of the feedforward input shape (vector) to a
C program, which controls robot motion in real-time. After the
completion of the motion, the C program passes the sampled
tracking error data (vector ) back to the MATLAB program.

As the Feedback Controller, we used a standard PID
controller with the proportional (position) gains
N/m and Nms/rad; derivative (velocity) gains

60 Nm/rad and 25 Nms/rad; and the integral
gains 10 Nms2/rad and 5 Nms2/rad.

In the experiments, the desired motion time was
1.25 s and the full observation time horizon, 2.125 s.
The Planner computes the desired trajectory as a third order
polynomial in time, along a straight line in the joint angle
space. For defining the feedforward shape and output vectors,
the input and output sampling intervals are both 78
ms. Thus, 15 input sampling instants are considered
in (3), and the vector has dimension 30. The tracking error is
sampled at 27 instants in the observation interval
so the vector has dimension 54. The feedforward input shape
vector (5) defines feedforward torque in Newton meters, and
the output vector (6) gives a tracking error in radians.

B. Results for Learning a Single Motion

A detailed account of our experiments with the described
manipulator system can be found in the technical report
[42]. In this paper, we necessarily briefly discuss the main
experimental results and the gained insights.

The experiments show that the Coulomb friction has a
profound influence on the performance of the elbow joint. In
fact, the friction reaches up to 30% of the maximal torque. The
nonlinearity caused by the Coulomb friction can be especially
bad for the proposed approach, since it causes the mapping (7)

Fig. 7. Experimentally determined pulse responses representing columns of
the system gain matrixG:

to be nonsmooth, which makes determining the gain matrix
a problem. Yet, in our experiments, manipulator joints move
in one direction till they reach the desired final position.
During this motion, the friction torques do not change with
small variations of the feedforward input and have no negative
impact on the estimation of the system gainUnlike that, the
transient motion on the interval creates some problems
for the algorithm since the joint velocities reduce to zero or
change their sign on this interval.

The representative experimental results have been obtained
for the manipulator moving from the initial configuration with
the joint angles 1.65 rad and 1.7 rad to the
final configuration with angles 0.05 rad and 0.1
rad. Zero joint angles correspond to the maximally extended
manipulator. We tried different values of the regularization
parameter in (8), (10). In all presented results, the step
bounding parameter in (10) was empirically chosen to be

First, the gain matrix has been directly estimated from
(29) by varying in turn each of 30 components of the vector
Fig. 7 shows the pulse responses corresponding to the columns
of The responses show a strong influence of the Coulomb
friction. Thus, can only very roughly be considered as a
block-Toeplitz matrix. Many of the pulse responses comprising
columns of are not quite smooth and regularly shaped.
The iterative learning algorithm (10) was first tried using the
obtained matrix

The results for the regularization parameter are
shown in Fig. 8. The two top plots in Fig. 8 show the learned
feedforward inputs after two (dashed line), four (dashed-
dotted), and six (solid line) steps. The two bottom plots show
the respective tracking errors for Joint 1 (shoulder) and Joint
2 (elbow). The dotted lines show the tracking errors at step
0, for zero feedforward. About a tenfold improvement of the
tracking accuracy is achieved at the iteration 6. Note that the
learned feedforward inputs in Fig. 8 exhibit oscillations which
are related to the irregularity of the pulse responses comprising

By increasing the parameter it is possible to put a higher
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Fig. 8. Experimental results for learning control with the directly measured
gain matrix G: Iterations 0, 2, 4, and 6 are marked by dotted, dashed,
dashed-dotted, and solid lines, respectively.

penalty on the oscillations and obtain a smoother input, but this
will also increase the tracking error.

Next, a block Toeplitz model (32), (33), (34) for was
estimated by applying two variations of the input vector
components and i.e., by varying feedforward first
for Joint 1, then for Joint 2. The componentsand of the
basis vector (40) of the matrix were estimated by using
(37). Thus estimated pulse responses are much smoother than
the directly measured ones, probably because their estimation
includes certain averaging of the data. The results of the
learning control experiments using the obtained block-Toeplitz
estimate of are presented in Fig. 9; the format is the same as
in Fig. 8. No update of matrix was performed in these ex-
periments, and the regularization parameter was
A sixteenfold improvement of the tracking error is achieved in
Fig. 9 compared to the tenfold improvement in Fig. 8. Though
the block-Toeplitz approximation of matrix has an inherent
error for the experimental nonlinear system, the performance
improvement could be explained by the fact that some of the
friction-caused error in estimation of was filtered out.

Unlike Fig. 8, feedforward in Fig. 9 does not exhibit any
oscillations. Diminishing the regularization parameterto 4

for the same block-Toeplitz matrix slightly deterio-
rates tracking, while 4 results in the feedforward
oscillations similar to those in Fig. 8 and two to three times
increase of the tracking error. Therefore, we used 4
in the subsequent experiments.

Further improvement in the algorithm convergence and
the tracking accuracy can be achieved by adaptively updating
the estimate of the system gain matrix as described
in Section IV-C. The adaptive update allows us to obtain
a twentyfold improvement of the tracking error in six
iterations. If one takes into account the measurement errors,
the adverse effect of the Coulomb friction, and the input
torqued resolution of the system (0.5 Nm), the obtained
tracking accuracy is close to the achievable limit. Visually,
the results look similar to Fig. 9.

Fig. 9. Experimental results for learning control with a block-Toeplitz ap-
proximation for the gain matrixG: Iterations 0, 2, 4, and 6 are marked by
dotted, dashed, dashed-dotted, and solid lines, respectively.

Fig. 10. Experimental results for learning control with adaptive update of the
matrix G demonstrating compensation of the friction caused error. Iterations
0, 2, and 6 are marked by solid, dashed, and dashed-dotted lines.

The experiments show that the feedforward input learned
with an adaptive update of the matrixis able to cope with the
static error caused by the Coulomb friction. This is illustrated
by Fig. 10, which shows the results for another trajectory than
Figs. 8 and 9. In Fig. 10, the initial joint angles are 0
rad and 0.65 rad, and final angles are 1.5
rad and 0.2 rad. In the absence of the feedforward,
the error for the Joint 2 (solid line) exhibits a strong friction
influence. This error is successfully compensated in the course
of the learning.

VI. DESIGN AND EXPERIMENTAL VERIFICATION

OF THE FEEDFORWARD CONTROLLER

A. Radial Basis Function Approximation

As described in the previous subsection, we can learn
optimal feedforward input shape vectors for
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certain (discrete) values of the task parameter vectors
Given pairs of vectors and as

it is possible to find an approximation for the
smooth mapping over the domain of the task
parameter vector

In this paper, we follow the approach used in [23] and
[22] and approximate the nonlinear mapping with the
help of a RBF network. RBF approximation provides high
accuracy, fast training (identification), and is computationally
and algorithmically simple. In many applications, the RBF
nework approximation has superior accuracy and training time
compared to Mulilayered Perceptron Networks used in many
ANN-based systems, e.g., see [6], [9], and [21]. Radial Basis
Function networks were recently acknowledged [35], [36],
[38] to possess a few advantageous theoretical properties, such
as low pass spatial filtering of the approximated function. For
more information and references on the RBF approximation
see [13], [35], [36].

Standard RBF approximation results (e.g., [13], [35], [36])
are formulated for scalar-valued functions. In this work, we
used an RBF-network approximation of thevector-valued
function For any value of the task parameter vector

RBF approximation of this vector-valued function can be
written in the following form:

(44)

where are the vector weights of the RBF network,
is a given function of the radius (hence, the name
radial function), and are the RBF centers. Several forms of
the radial functions are commonly used. In the experiments,
we used the Gaussian radial function
A standard choice of the Gaussian width is 1.6 times the
distance between the RBF centres

We compute the vector weights of the RBF network
(44) from the exact interpolation conditions, which means
that the approximation error is zero for each pair
in the training set. By substituting into the right-
hand side of (44) and writing the conditions
for in the matrix form, we obtain the exact
interpolation conditions in the form:

(45)

The results obtained in [32] prove that the interpolation
matrix in (45) is invertible for the commonly used radial
functions (e.g., for the Gaussian function) and distinct node
centres Therefore, the weights of the network (44)
can be computed as where are the
entries of the matrix

B. Experimental Results in Approximating
Feedforward for Arbitrary Motions

The feedforward control of the manipulator depends only on
the change of the first joint angle, not on its absolute position.

Fig. 11. Tracking errors for two test tasks. Without feedforward (dashed
line) and with feedforward computed by the RBF-network (solid line).

Therefore, the task parameter vectorhas three components

(46)

where the subscripts and denote the ‘initial’ and ‘final’
configurations, and the first subscript gives the number of the
joint.

We consider the following task parameter domain, which
covers most of the robot workspace

(47)

The task parameter vector (46) has dimension
three—much less than the dimension of the input vector

which is 30. Therefore, the use of RBF network for
approximation of mapping is especially attractive,
since its computational complexity is onlylinear in dimension

of the vector [21].
The domain (47) is a 3-D cube in the task parameter

space. We obtained training pairs by applying
the learning procedure as described in Section V, for the
trajectories corresponding to the parameter vectors
The points were placed on a uniform grid 5 3 3 in the
cube (47). We made six learning iterations for obtaining each
vector Altogether, obtaining all 45 vectors took 315
tracking motions of the manipulator, which were completed in
about two hours of continuously running the system.

The learned training pairs were used to build
an RBF network approximation of the dependence as
described in the previous subsection. The accuracy of tracking
was checked for a number of test tasks within the set
(47) in order to validate the performance of the designed
RBF network based feedforward controller. For the validation,
we used the task parameter vectors maximally remote from
all neighboring RBF centres These test values of the
parameter vector make a grid 2 2 4 which is shifted
halfway from the grid of RBF centres in the cube (47).
Fig. 11 illustrates the experimental results obtained with the
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Fig. 12. Improvement of mean square tracking errors for the test tasks. Without feedforward—solid, with feedforward computed by the RBF network—dashed.

approximated feedforward for two test valuesand of the
task parameter vector (46). These test vectors are as follows:

rad

rad rad

rad

rad rad (48)

Fig. 12 summarizes the mean square tracking error results
for the chosen test motions without and with the feedforward
computed by the Radial Basis Function network. The task
vectors (48), for which detailed tracking results are reported,
correspond to test vector numbers 3 and 6 on the argument
axis in Fig. 12. At least a fourfold average improvement is
achieved. The improvement is less significant for motions
with small amplitude that have smaller initial error. For such
motions, compensation of the Coulomb friction can account
for up to 80% of the feedforward drive torque.

Unlike the iterative learning control used in Section V-B,
the RBF approximation-based controller tested in this section
computes the feedforward for any task parameters without
a need of completing several repetition of the same motion
beforehand. The tracking accuracy achieved for each of the
test motions using the RBF approximation of the feedforward
control can be further improved by the factor of 4 to 6
by making one or two learning control iterations for this
particular motion. As discussed in Section V-B, by repeating
learning control iterations for a given motion it is possible
obtain tracking error close to the achievable limit. At the same
time, tracking for the approximated control is subject to the
approximation error, which should diminish for finer grid of
the approximation nodes. Yet, it might be undesirable to have
too many approximation nodes, because of the more training
required. From this point of view, the presented results show
that even for a relatively coarse approximation grid, tracking
accuracy improvement is significant.

The RBF network was trained on the feedforward vectors
obtained with the regularization parameter
The report [42] also presents results obtained for

Though the tracking accuracy achieved in the learning
iterations for each of the RBF centres was almost the same
in both cases, the error for the test motions is up to four times
larger with The reason, as the estimate (27)
shows, is that a smaller generally leads to a larger learning
control error in obtaining These errors act like disturbances
in the training data spoiling the accuracy of the
RBF approximation.

For the AdeptOne robot used in experiments, the Coulomb
friction is up to 30% of the maximal drive torque. The
friction has adverse effect on the RBF approximation, as the
input/output mapping of the system with friction is not smooth.
With a smaller friction, the proposed approach would yield
even more significant improvement of the tracking accuracy.

VII. CONCLUSIONS

In this paper, we have presented and experimentally demon-
strated feasibility of a novel model-free approach to the design
of a nonlinear feedforward controller for a trajectory tracking
task. The design is based on the nonlinear approximation of
the feedforward dependence on the control task parameters.
These task parameters comprise initial and final setpoints of
the system and define the trajectory to be tracked.

The proposed design has serious advantages compared to
the approaches based on a model-free (e.g., neural network)
approximation of the controlled system dynamics. The most
important advantage is that for our approach, the approxi-
mation complexity is defined by the dimension of the task
parameter vector, which is usually much smaller than the
dimension of the state-space covered by the system dynamics
approximation. The pay for better performance is that the task
parameter approximation is somewhat less general, since it
works only for a certain family of tasks. This limitation is
quite tolerable for many practical applications, such as one we
have considered.

To make the task parameter approximation practical, we
have presented an efficient learning control algorithm for
obtaining initial data for the approximation. The learning
algorithm uses the on-line Levenberg–Marquardt minimization
of the regularized quadratic performance index to provide
fast and robust convergence of the optimal feedforward in-
put shape. The algorithm convergence is enhanced by the
presented novel technique for the adaptive estimation of the
system gain through the estimation of the system pulse re-
sponse. We have experimentally shown that the learning
algorithm converges in few iterations, faster than many other
algorithms.

We have experimentally demonstrated the high performance
of the developed algorithms in the difficult problem of track-
ing fast direct-drive manipulator motions. Both the learning
algorithm used for obtaining training examples and the RBF
network approximation worked very well in the experiment.
Not only the algorithms cope well with the strongly nonlinear
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system dynamics, they also compenste for the large Coulomb
friction plaguing the experimental manipulator.

Experimental implementation of the approach has been
possible with moderate computational resources and training
(system identification) time. Therefore, the results of this paper
demonstrate that the approach is very well suited and ready
for industrial applications in Robotics. The presented results
also open an avenue for other applications of the approach,
such as automotive, process control, etc.
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