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Learning Approximation of Feedforward Control
Dependence on the Task Parameters
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Abstract—This paper presents a new paradigm for model-free  dynamics model, where the control or the system is ‘learned’
design of a trajectory tracking controller and its experimental on the basis of the past operational data for the system.

implementation in control of a direct-drive manipulator. In ac- g4 \work in the learning control systems developed into the
cordance with the paradigm, a nonlinear approximation for the

feedforward control is used. The input to the approximation Modern adaptive control theory, e.g., see [43]. Recently, many
scheme are task parameters that define the trajectory to be adaptive control approaches employing iterative estimation of

tracked. The initial data for the approximation is obtained by the system dynamics in the neural network of fuzzy system
performing learning control iterations for a number of selected ~qntext have been called learning control.

tasks. The paper develops and implements practical approaches . . .
to both the approximation and learning control. As the initial In this paper, we particularly refer to the learning control

feedforward data needs to be obtained for many different tasks, @Pproach introduced in the works by Arimoto and others (e.g.,
itis important to have fast and robust convergence of the learning  see [3], [4]), mostly for robotics applications. The referenced
control iterations. To satisfy this requirement, we propose a and many other related papers consider one motion of a non-

new learning control algorithm based on the on-line Leven- |inoqr system (manipulator) that is repeatedly executed with
berg—Marquardt minimization of a regularized tracking error

index. The paper demonstrates an experimental application of the updated feedforward input until a desired tracking performance
paradigm to trajectory tracking control of fast (1.25 s) motions IS achieved. The main advantage of such approach is that it
of a direct-drive industrial robot AdeptOne. In our experiments, does not require an accurate model of the system dynamics.
the learning control converges in five to six iterations for a given The major practical drawback is that the feedforward control

set of the task parameters. Radial Basis Function approximation . : : . .
based on the learning results for 45 task parameter vectors brings is obtained only for asinglegiven task. Should the trajectory

an average improvement of four times in the tracking accuracy change, even slightly, the _|eamif19 process has to b.e. re-
for all motions in the robot workspace. The high performance of peated anew. We remove this barrier by designing an efficient

the designed approximation-based controller is achieved despite |earning-based feedforward controller that works foamgeof
nonlinearity of the system dynamics and large Coulomb friction. - e a5k parameters. Such task parameters comprise the initial
The results obtained open an avenue for industrial applications . . . .
of the proposed approach in robotics and elsewhere. and the final setpoints of the system and define the trajectory to
be tracked. Our approach is based on a paradigm of a nonlinear
approximation of the feedforward control dependence on these
) ) task parameters. The initial data for the approximation is
T HIS PAPER considers a learning control approach {gyained by performing learing control iterations for a set
output tracking in a nonlinear system. The tdearning ¢ selected task parameters within a given range.
controlappears in the title of many papers and denotes one of arpq paradigm and techniques for obtaining the approx-
few different approaches applicable in the absence of a systgfdtion of the feedforward control are the first and main
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motivation for the development of learning control approacimethods is that they are not applicable for output tracking
Elaborating on this idea, one can add that human motor skiif higher order plants. In this paper, we use an input-output
are usually acquired for a set of tasks, rather than for a singleproach and do not assume that the entire state vector is
task. Thus, this paper further extends the motivating ideaailable.
of learning control. More discussion on learning of the task Learning control approaches related to our paper are consid-
parameter approximation of feedforward control with regarered in [11], [24], and [25]. In these papers, continuous-time
to human motor control modeling can be found in [20]. feedforward is computed as an expansion with respect to a set
A number of papers develop approaches using neural net-certain shape functions. In [24] and [25], the weights of
works or other approximation techniques to learn (identifiguch expansions are updated by integrating the effort)(¢)
nonlinear dynamics model of a system from experimental dateith time-varying multipliers resulting in learning controllers
for example see the survey [26]. Although these papers mighhich are proved to be stable, but are not optimized for speed
use similar approximation techniques the approaches are vefyconvergence.
different from what we propose in this paper. A fundamental A consistent way to achieve a high performance of the
advantage of the proposed approach is that its complexi§arning control is to design a controlldt by posing an
depends on the dimension of the task parameter vector, whilgpropriate optimization problem. In this paper, similarly
complexity of the system dynamics approximation is definad [11], [16], and [24], we compute the feedforward as a
by the state vector dimension, which is usually much largedinite expansion with respect to certain time-functions, and
Since the approximation complexity grows exponentially witdesign the controller by optimizing a quadratic performance
the dimension, our approach is much more attractive for maimglex. Operation of such controller can be considered as an
practical applications. on-line iterative optimization process, which includes task
This paper emphasizesractical approaches to both theexecution experiments in the iteration loop. Such optimization-
approximation and initial feedforward data learning. The initiddased design of the learning controller was proposed in [17]
feedforward data for the approximation needs to be obtaingdd [18]. A similar technique is considered in the recent
for many different tasks, hence, there is a need for fast apdpers [10], [41] published after the completion of this work.
robust convergence of the learning process. To satisfy tiRglated concepts of the optimization-based learning have been
need, we develop an efficient learning algorithm which ha®nsidered in the task-level learning control framework [1].
several novel features. This algorithm is the second majubte that for a quadratic tracking error index, a step of the
contribution of the paper. Newton—Gauss optimization can be presented in the form (1)
Let us describe how the proposed learning algorithm relat@gith the learning gairl’ computed through an inverse of the
to the prior work in the area. Let*)(¢) be the feedforward system linearization.
input applied to the system at learning iteratioand ¢*) (¢) Our learning control update is based on the on-lirey-
be the tracking error at the same iteration; the timés enberg—Marquardtoptimization of a quadratic performance
reset to zero in the beginning of each iteration. A typicahdex. Compared to the Newton—Gauss method used in [10],
learning control algorithm updates the feedforward by usirfg1], [17], [18], and [41], the Levenberg—Marquardt attenuates
the tracking error information from thpreviousiteration as the feedback learning gain, which improves the performance

follows in uncertain conditions. In the experiments described below,
®) () = o*=D () 4+ Te®=1D ¢ 1y Such uncertainty is created by the Coulomb friction. Note that

v =v () + e ®) @) one of the learning algorithms of [27] proposed for the case of

wherel' is a linear operator. uncertainty in the system dynamics is mathematically close to

In the original work of Arimoto, as well as in manythe Levenberg—Marquardt algorithm, though it is not called so.
subsequent papeds,describes a standard PID controller, or its A key reason, why our learning control approach works well
special case (P, D, PI, etc.). Some related papers, e.g., [8], [@8]practice is that it usesr@gularizedperformance index with
[34], consider controllers™ with more sophisticated transfera penalty for the control effort. The experimental results and
functions. These papers use conventional design techniquethebretical analysis presented in the paper demonstrate that the
causalcontrollers. Yet, at the iteratiobof the learning control, regularization is critical for the convergence, robustness, and
the entire history of the previous iteration errdf—1)(¢) is acceptable static error sensitivity.
available, including the error forward in time. Another important feature of our approach is that the B-

In order to provide fast convergence of the learning contreplines are used as shape functions in the expansion of
process, many authors attempted to use various types of fizedforward control function. The system gain (gradient of the
system inverses as the learning gain. Some of them assume it@t-output mapping) defines the direction of the optimization
the state vector of the system and its derivative are accessilpielate step and is defined by the responses to variations
and use the inverse dynamics of the nonlinear system abthese shape function. For a linear time-invariant system,
compute the feedforward update. With this approach, somesponses to B-splines inputs differ only by shift in time
authors assume that the system dynamics are known exaethyl the gain matrix has a special, block Toeplitz-structure.
(e.g., [2], [B]), or with a bounded error (e.g., [29]). In otheiThis matrix is fully defined by a few column vectors. As
papers, an approximation of the dynamics used in the learniogr experiments show, despite significant nonlinearity of the
control update is recurrently estimated on-line using neumkperimental system, assuming a block-Toeplitz gain matrix
networks or other schemes [31], [37]. A drawback of thes#ructure actually improves the convergence. Pulse response
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description of the controlled system is also used as a basis of

Eysiem
the learning algorithms of [27], [41]. | -J<l~| IH
. . . . pPEarmaneteres TormeT
In a typical tra_cklng problem, learned feedforv_vard_lnpu'_[ is — >
used together with an inner-loop feedback, which linearizes F e |
the system. The importance of the linearizing feedback in a qu.,l a2 . 2
classical learning control is discussed in [7]. | sontraller | sy u__‘l'"’i :

The implemented algorithm uses adaptivetechnique by
updating the estimates of the pulse responses in the course of
the learning control iterations. Thus, the learning update gain
of our algorithm is tuned on line - thg alg_onthm asiapnve. Fig. 1. General scheme of the control system.
Despite the usage of the term “adaptive” in the text and titles,

most of the papers surveyed above usemstant gairearming in particular, vectorw(t) defines the control voltages of the

control update. That is, the operafiin (1) does not change drives, vectory(t) gives the position sensor outputs, and the

from iteration to iteration. . . feedback controller is a standard PID controller.
As a result of the described design features, the propose he desired plant outpul, is computed by ®lanner. The

learning algorithm achieves remarkably fast convergence. Iypanner computes the outpug, for the given task parameters.
the reported experiments, accurate tracking of fast manipule;%g

. . . - o . ically, the components of the task parameter vegtor
motions is achieved in five to six iterations, compared to 20— pically b P o

iteration v needed for the oriainal Arimoto’s meth e the initial and final setpoints for the system outputs. In
erations usually needed for the ongina Moto's MEthoG, otic applications, these setpoints define the drive positions
This fast convergence of the learning iterations enabled

to acquire an approximation of the feedforward on the ta the beginning and at the end of the motion. Thus, the task
qu! pproxi : E rameter vector can be expressed as

parameters in experiments of a reasonable duration. Of course,
the presented algorithms are applicable to many other real-life _ |:yd(0) } c p2n )
control problems as well. va(T)

The paper layout is as follows. Section Il formulates thghere we assume that the planned move commences: &
problems to be considered in the paper. In Section Ill, Wehd should be completed by = 7" The presented control
present the Levenberg—Marquardt algorithm for the learnirgstem configuration presumes the execution of a series of
control and theoretically analyze its convergence and rggsks. In this paper, we assume that the tinig reset to zero
bustness. Section IV considers estimation of the system gainthe beginning of each task.
matrix which is needed to compute the learning control gain.\we assume that the motion tindeis a fixed parameter and
Section V describes the experimental setup and discussesighghe same for all tasks. We further assume that the system
results obtained with the implemented learning controllefg initially in a steady state so that the system output has the
Finally, Section VI considers task-parameter approximation gésired valuey(0) = y4(0). In practice, the steady state of
the feedforward using Radial Basis Function approximatiafe system can be achieved by waiting till the transients die
method and presents the experimental results in testing $i&. In general, it is convenient to assume that the planned

approximation accuracy. trajectory is also from a steady state to a steady state, i.e.,
94(0) = ga(T) = 0.
Il. PROBLEM STATEMENT In Fig. 1, as well as in subsequent figures, there are two

This section presents a general problem of the task-le\f’&rts of arrows describing the information flow in the control

. system. Thin black arrows show continuous-time signals, such
feedforward controller design. A nonstandard feature of th : .

. . as control input to the syster,(¢). Fat grey arrows symbolize
problem is that we do not assume a dynamical model of .

) . vzimables that are defined once per control task, such as the
the system to be available. We formulate the learning contrg . S
task parameter vectop. Later on, we will be considering

approach further used to design the feedforward controller I orith king f f trol task d it
the absence of a dynamical model. algorithms working for asequenceof control tasks, and |
is important to note the mentioned distinction.

The plant control inputu(t) is a sum of the feedback control
A. Control System us(t) and the feedforward controb(t). The feedforward

Let us consider a control system shown in Fig. 1. Far(t) is computed by thd-eedforward Controller. Since the
example, such control systems can be typically encountemmamputed feedforward depends on the control task as defined
in robotic devices. The system includes a nonlinear timby the task parameter vectpr the vectorp is shown as an
invariant (NLTI) multiple-input multiple output (MIMO) con- input to theFeedforward Controller.
trolled Plant with the input (control) vector(t) € R™ and We further consider th@lant, the Feedback Controller,
the output (observation) vectgtt) € ™. The system further and thePlanner as given parts of the system. The topic of
includes aFeedback Controller, which is used to track the this paper is the design of tHeeedforward Controller. The
desired plant outpuf,(¢) € R™. The Feedback Controller problem that we are going to solve is to find the feedforward
uses the tracking erroe(t) = y(t) — ya(t),e(t) € R w(¢) defined on the time intervdd, T that allows to achieve
to compute the feedback control signa},(t). In robotic a small tracking erroe(t). A more formal problem statement
devices, typically, and in the experiments described beloig, given below.
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Control Problem: Let the plant, the feedback controller, the
path planner, and the motion tini€, be given and fixed.
The closed-loop dynamics of the system are assumed to
be unknown. By performing a number of the input-output
experiments with the plant, for any value of the task parameter
vectorp (2) in the given compact domaime P C R2*, find  Fig 2. shape of the feedforward control.
the feedforward inputs(¢) so that the output tracking error
e(t) = y(t) — yq(t) is small on the interval0, 7], and stays p
small after the motion tim&". ] -

The next subsection describes the approach we take for the ’ '
solution of the formulated problem.

bl

B. Approximation of Feedforward

In.th|s paper, we develop a non.Standard approach to tlble 3. Conceptual design of the feedforward controller.
nonlinear feedforward controller design. The approach is based
on the approximate computation of the optimal feedforward
input. If the approximation error is sufficiently small, arfunctionv(t) in the form (3) with a desired accuracy. Thus,
acceptably small tracking error can be achieved. As we willy constraining the discussion to the feedforward of the form
demonstrate, one advantage of this approach is that it @) no generality is lost.
be computationally effective. Another advantage is that usingNote that the control (3) can be considered as a convolution
this approach we are able to design a nonlinear feedforwatthe train of impulses with amplitudes’ applied at the
controller without relying on an analytical model of the systeriimes ¢; with the shape function (4). This presents a certain
dynamics. Instead, as the next subsection discusses, a learsinglarity with the input shapingmethod of [39].
control algorithm can be used to obtain the initial design dataThe feedforward (3) is defined by the weights which we
directly from the experiments with the system. will collect in the input shape vector

In order to simplify the approximation problem, let us N, ; 3 N,
describe the feedforward(t) € ®" as a time function by U=lup-up™ouj oy cug [T e RV (5)

using a finite number of parameters. The controller to be ¢ input shape vectaf’ should be chosen to minimize
designed should compute these parameters depending ong€ rajectory tracking error. The optimization problem for

task parameter vectgr. Let us divide the interval0, 7] into getermining the vectot/ is formulated in the next section.
(V. +1) subintervals by introducing a sequence of samplinghis optimization problem and its solution depend on the task
timest; = jru;j = 1,---, Ny, wherer, = T/(N, +1). We  parameter vectp. Let us denote this solution by = U.(p).
consider the feedforward input) that is a linear combination The feedforward controller we are designing should be able to
of the B-spline functions3; (¢ ;) centered at the point§  compute vectoi/, (p) for an arbitrary task parameter vector

and can be written in the form in the given domainp € P. Given that a dynamic model of
Nu the controlled system is unavailable, we assume the following

v(t) =Y W B (t—t;) (3) approach to computind/. (p). First, we take a set of task

j=1 parameter vectorg;, € P,(j = 1,---,N,), and determine

wherew! = [u] ---uj]T are the parameter vectors definin pt|mal shape vectoréf*(_pj) for these tasks. This is _done_
ith the help of a learning control procedure described in

the shape of the feedforward control input. . )
As discussed in the Introduction, it is very important that thtge. next section. Next, we use the set of the inputioutput

functions B, in the expansion (3) differ only by translationd? "> {pj, Us(p;)} to build an approximation O.f the mapping
with the baser,. This fact is used in Section IV. U.(p) for any value of the argumenpte P. Section VI briefly

It is possible to use B-splines of a different order in (3). IIglescrlbes a Radial Basis Function approximation method we

particular, zero-order B-splines will give a piecewise consta E:j Ir; ?ITjsgg?érsogirogs?%EéI design of the feedforward con-
feedforward (3), while cubic B-splines will result in a twice 9. P 9

continuously differentiable feedforward. In our experimentgonzrbwekacrengt?'ﬂgrto gg;?lﬁﬁ' Pe&;/siﬁrrrlcrj\ﬁlnu'ci(iasPllar_Fh
we used first order B-spline functios,, (¢) that has the eedback Lontrofer, a anneras outiine g. = the

support width2r,, and can be written in the form major _part of the fO”OW'.ng text Is d_evotv_ad to the_ p“’b'e”? of
obtaining, through learning control iterations, a single optimal
B,.(t) = 0, if |t > 7 4) shape vectot/, for a fixed task parameter vectpr We return
Tu 1= |t|/7u, If |t] £ Ty to the approximation problem in Section VI.

A component of the feedforward control vector (3) and (4)
is a piecewise-linear function of the form illustrated in Fig. 5.
by a thick line. This function has values at the sampling A computationally implementable learning algorithm needs
instantst; = jr,. If the order N, of the expansion (3) is to sample the tracking error signa(t). Let us sample the
sufficiently large, it is possible to represent any continuowsror e¢(¢) with an intervalr,. The input sampling intervat,

Input/Output Mapping and Learning Control Problem
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I1l. L EARNING CONTROL FOR A SINGLE TASK

This and the next section are devoted to the first stage of
the controller design—Ilearning a single optimal shape vector
U.. We assume that the task parametés fixed and not write
dependencies on the vectorexplicitly.

Fig. 4. Sampling of the output error. ) ) o
A. Learning Control as On-Line Optimization

; : For a sufficiently small output sampling interval,, a
- [Convolution] Sampling . (weighted) norm of the sampled tracking erfBr gives us

M/\ System a ™ an accurate indication of the tracking accuracy. In order to
— i iy achieve accurate tracking, we seek a feedforward shape vector
Control task ; U, that minimizes the following performance index
U
Y JU,Y) = pUtU +Y?Y — min (8)
Learning . . .
control] [ wherep is a scalar parametay,< p < 1. The first term in the
update performance index (8) is added in accordance withréigeilar-

ization technique [40]. The regularized optimization problem
(8) is better posed than one for= 0. The nonzero penalty on
the vectorU in (8) prevents obtaining oscillatory inputs with
(4) is assumed to be an integer multiple of the tracking errafgh amplitude. At the same time, for a sufficiently small
sampling interval;r,. The reason for this will be explainedminimization of (8) provides small tracking error. Importance
later on. of introducing the regularization term in the performance index

In order to monitor the error just after the desired tiffie (8) will be made clear from our experimental results presented
of the task completion, we consider an observation intervisklow in Section IV. A theoretical justification for the choice

[0,7y], whereTy = 7,N, > T. We assume that fof’ < of the regularization parametgr is given in the next two
t < T the system setpoints are kept constant, thagd§,) =  subsections. Some additional theoretical results on the tracking
ya(T'). A vector of the sampled output values has the form problem solution by means of the regularized performance

T index minimization can be found in [19].

Y= [‘31(?1) rea(Bn,) i) en(f1) - en(n, )] We are going to solve the following control problem.

e Ry (6)  Learning Control Problem:Let us assume that in (7) is
given and fixed. We assume that the mapping (7) is unknown,
but we can repeatedly perform experiments with the system by
applying an input vectot/ as shown in Fig. 5 and observing
the output vectok’. The problem is to design a learning control
algorithm that iteratively updates the input vectérin order

to minimize the performance index (8).

The formulated problem can be considered as a standard
onlinear least-square numerical optimization problem. The
nly conceptual difference with the usual numerical optimiza-
tion problems is that in our case each evaluation of the function

Y = S(U,p), S:[RNe ®RV] - RNy, (7) (7) includes arexperimentwith a real system.
We determine an optimal feedforward control veatgrby
As the controlled system is nonlinear, the mapping (7) &pplying the Levenberg—Marquardt algorithm to the numerical
also nonlinear. Further, since we do not assume any knowledgmimization of the performance index (8). This algorithm is
of the system dynamic model, the mapping (7) is unknowknown to work very well for nonlinear least-square problems.

However, we are able to obtain input/output values of thihe Levenberg—Marquardt algorithm can be derived using an
mapping by performing experiments with the system for araffine model for the system (7) of the forin = GU + Yo,
task parameter vectgr (5): applying the input shape vectorwhereG = 95/dU is the gain matrix of the system [gradient
U (4), and obtaining the sampled output vectorn(7). of the mapping (7)], and the vectdg gives the system output

For a given value of the vectar, the optimal feedforward for U’ = 0. The matrixG plays an important role in what
shapel, can be obtained without knowledge of the mappinfpllows. For the nonlinear system (7 actually depends on

(7) as aresult of an iterative learning process. At each learnitihge argument/ (we do not discuss dependence wtin this
iteration, a new feedforward input shape vedtois computed subsection).
in order to reduce the errok obtained in the previous LetU*) andY®) be input and output vectors at the learning
experiment with the system. A conceptual scheme for tliterationk; let G*) be the gradient matrix at the same iteration.
learning control update is shown in Fig. 5. Let us consider the affine model of the system at stepf

Fig. 5. Learning control concept.

where Ny, > N, and ¢;(6,) is the ¢-th component of the
tracking errore(t) = y(t) — yq(t) at time §; = jr,. The
sampling of the tracking errot(¢) is shown in Fig. 4. If the
sampling periodr, is sufficiently small, no information will
be lost if we use the vectdr instead of the continuous signal
e(t).

The feedforward shape vectdr (5), and the tracking error n
output vectorY” (6), are related by a nonlinear mapping, WhiC|'(])
depends on the task parameter vegt@nd has the form
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the form Remark 1: Contrary to intuitive expectation, the robustness
bound estimate (12) deteriorates for largei.e., for smaller
Y =Y® £ g®(U - U, (9) learning control gain in (10). The explanation is that a smaller
learning feedback gain results in poorer disturbance rejection
The Levenberg—Marquardt update can be obtained by syiteperties of the algorithm.
stituting the affine model (9) into the problem (8) and imposing Remark 2: From a practical point of view, choosing> 0
a constraint on the update step length*+1) —7(®)||2 < 62 still brings an improvement. The reason is that in the absence

(see [12] for more detail). This update has the form of the convergence for poorly observable/controllable modes,
smaller learning feedback gain will lead to slower instability
URHD —u® _[(p+ )1 + G(k)TG(k)]—l development. In that case, on-line estimation of the magfix
(pU® 4 Gy @) (10) Might still have a chance to bring down the ermG*) — G)

and eventually achieve convergence.

wherer > 0 is a Lagrange multiplier defined by the up- Eroqf. From (11), we hgveY(’“) - GU@ +Yo. By
date step bound. Effectively, the parameter reduces the substlt_utmg the last _equallty into (10) and doing some trans-
: . formations, we obtain

feedback gain of the learning control update (10). In the '
commercially available software implementations of the Lev- yk+1) :D(k)[ﬂ + G(k)T(G(k) - G)]U(’“)
enberg—Marquardt method, the step bounding parameier _pRawTy (13)
(10) is chosen at each step. This, however, requires several 0
evaluations of the minimized function. In the learning control D® =[(p+nI+G% gHT, (14)
problems, each evaluation includes an expe_rlment with theOne can observe from (13) that the iterations converge if
controlled system and, thus, has an especially large cost.
Therefore, we are using the update (10) with a constant E(D(k)[TIJrg(k)T(G(k) - <1. (15)
preselected parameter

Note that forr = 0 the update (10) becomes the New- The sufficient condition for (15) to hold is
ton—Gauss update. I¥,, = N, and the system (8) is invertible o AN T ‘
(and well conditioned), it isypossible to set= 0 in (10). For o(DWrD) +o[DWGH(GM — G <1 (16)
7 = p = 0, (10) becomes the learning control update with the By noting thatE(D(’%I) < r(p + )L, we obtain the
system inverse as the learning gain. Such update is considq@%wing condition of conver_gence
in a number of papers, for instance [10].

The update rule (10) presumes that an esting&fe of the FDHEOFE® - G) < L. 17)
gradient (system gain) matri% is known at each step. As this pr
matrix is, in fact, unknown, the standard practice in numerical Let us consider a singular value decomposition of the
optimization is to estimate it with a finite difference methodgradient matrixG(¥) = AI'B, wherel is a diagonal matrix
Such estimation is the subject of Section IV. of the form " = diag {~;} 1, . Since A and B are orthogonal

matrices, we obtain

[(p+7r)I+GW GR1GW" = BTAAT

A=diag {3, = — 1 18
1%8{ }z_l p+7,+,yi2 ( )

B. Robust Convergence of the Learning Control Algorithm

Let us consider conditions for the learning control algorithm
(10) to converge. We will following an established approach
to the convergence analysis of the nonlinear algorithms (e.g,, ) ] o
see [12]) and assume that the system (7) is affing iim the ~INCe I (1_8))\i are the singular value_s of the matrix in the
vicinity of the optimum. The affine model has the form  €ft-hand side, (17) can be presented in the form

FG® _ ‘ .
Y = GU 4. 1) (G G)(max \;) < p/(p+ 7).
By noting further that the inequality:/(p + r + z2?) <

The Levenberg—Marquardt algorithm (10) convergence cap(2./p+ ) is valid for any real z, we obtain that
be proven for any positive values of the parameterand (max\;)<1/(2v/p + ), and that (17) holds if

r, and it is robust with respect to the error of estimating the 1 P
matrix G. The sufficient condition for the convergence is given ﬁE(G(’“) -G)< - (29)
by the following theorem. Za Pty

Theorem 1:Let us consider the update (10) of the system The inequality (19) proves (12). g

(11) input. The algorithm asymptotically converges for any Theorem 1 shows that the convergence robustness improves
initial condition U1 if some ko > 1 exists such that for any for larger values of the regularization parameterand is
k > ko the maximal singular value of the gradient estimatioabsent if no regularization is performed. At the same time,

error satisfies the following inequality increasingp increases the steady-state tracking effbi| for
the convergence achieved. The next subsection studies how
E(G(k) —G)< 2 (12) the convergence point of (10) is influenced by the valug of

Vot and imprecise knowledge of the system gain maf¥ix
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C. Static Error Let us now assume that the estimation exgor G is small

In this subsection, we keep assuming that the mapping @jdGTG ~ G'—_PG. Then, the deviation (26) of the steady state
has the form (11). Input U, from its optimal value can be estimated as

First, let us assume that the matiix is known precisely U, = Us|| < p7 (G = C:)||y0||_ (27)
andG®) = @ in (10). By substituting (11) into the extremum

condition d.J/dU = 0 (8), we obtain that the optimal input The estimate (27) is reasonable, since usually the matrix
U, satisfies GTG has a number of small or zero eigenvalues. Due to the

. . large multiplier p—1, the steady-state control input error (27)
pUs + G- GU + G" Yo = 0. (20)  can be significant even for a small estimation etzer G. This

If we multiply (20) by G from the left and use (11), we obtain€Mor can be reduced by increasing the regularization parameter

the system outpu, at the converged stalé, of the learning P

algorithm As indicated in Section II-B, we are going to use the

learned optimal input&, for building an approximation to the
Y, = (I 4+ p7tGGT)71Y,. (21) dependencé/,(p). At the same time, the learning algorithm
will converge to the stationary solutidh,, instead ofU,.. The

For p>0, the outputY, (21) represents a static traCkingerror in determining values of/, can be very undesirable,

error of the Iear.nlng control aI_gonthm. S imilarly with thesince it causes deterioration of the approximation accuracy.
previous subsection, let us consider the singular value decom-

position G = AI'B,I' = diag {v;}.»*,. The static error (21)

. . IV. ESTIMATION OF THE SYSTEM GAIN MATRIX (¢
can be written in the form

N, As theoretically demonstrated in Section Ill, an accurate

Y, = APF; P:diag{#} , knowledge of the system gain matri€ (gradient of the
L+ /p) iy mapping (8)) is instrumental for the learning algorithm con-

F=A%Y, = col{fi}f\;ul. (22) vergence. This section considers how the matdixcan be

. . ) i estimated by a finite-difference method.
Since A is an orthogonal matrix, we obtain from (22)

that the tracking error after the convergence of the IearnirAg Preliminaries

algorithm can be presented in the form ] o
Let us assume that the nonlinear control system in Fig. 1

Y, = %‘: I2 (23) gives rise to a twice continuously differentiable mapping (7).
e pt (1+~2/p)2 We can write a first-order Taylor expansion for the mapping (7)
Note thatGGT = AI'? AT can be considered as a “control- Y (U + AU) = S(U,p) + % AU+ O(||AU|?). (28)
lability Grammian” of the system. Thug; in (23) are projec- v
tions of the tracking error in the absence of the feedforward By applying the two inputsl/ andU + AU, to the system,
Y, onto the controllability Grammian eigenvectors—columnghere AU is a small input variation, denotingY = Y (U +
of the matrix A. In the expression (23) fotY,||, terms with AU) — Y (U), and neglecting the second order terms in (28),
i > 1/p add little to the sum, since the respective weightg at we can write
are small. F(_)ryi <,/p, the V\_/elghts tepd_t(_) 1. For (_Jllmlnlshlng AY = G|y AU (29)
p, the tracking error||Y,|| in (23) diminishes, since fewer
eigenvaluesy? of the controllability Grammian contribute towhere the gradient matribxG = 9S/0U defines the in-
the error. put/output sensitivity of the tracking errdr to a variation
Now let us see how the stationary solution to iterativef the feedforward input shapé, in other words, the system
procedure (10) deviates frof, if the estimates7(¥) of the gain. The columns of the matri% in (29) can be estimated by
system gain matrix? are not exact. We assume t@#) = G makingl+nN, experiments with the manipulator, varying in
does not change with. The stationary solution to (10) satisfiegurn each input shape vector component—each shape param-
the equation eteruj» in (3) and (5). Estimations of such type are routinely
A done in the numerical minimization algorithms and are called
pUs +GTY, = 0. (24) secantor finite-differencegradient esti?nation methods. The
By substituting (11) into (24), subtracting (20) from thelirect secant estimation @¥ requiresl + n./V,, experiments;
result, and using (21), we obtain this might be an unacceptably large number. Fortunately, many
AT An—1 A L AATA—1 fewer experiments are required for a linear system, namely
Us=Ue = (pl + G Q)G =G) I+ p7GG") ™ Y. only 1 + n. Let us assume that the system in Fig. 1 is linear
(25) (both the plant and feedback controller are linear). By varying
the feedforward input byAv(t) for the same control task, we
©btain a variation of the tracking errake(¢), which can be
written in the form

If the first braces in (25) contain an invertible matrix, w
can use the following estimate

(G = Q)
a(pl + GTG +GT (G - Q)

|Us = UL < |[Yoll.  (26) Ac(t) = GA(t) = / t g(t — T)u(r) dr (30)
0
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where G: Lo,(R™; Ry ) — Lo(R7;Ry) is the linear operator Toeplitz form
of the closed-loop system. The operatbrcan be described

by the respective transfer function or the closed-loop pulse AY? :GJ’;iAUJ (33)
responsey(t): Ry — R 9 ?Z 0

Let us now consider a variation of the feedforward corre- i 92 v 0 (34)
sponding to the variation of one of the vectarsin (3). By I : )
substitutingAwv(t) = Au' B, (t — t;) into (30), we obtain the g g Y g n
variation of the tracking error at the sampling insténtwhich — z ~ -
gives components of the output vectir(6) in the form (Ny X Nu)

o We will denote the first column of the Toeplitz matri¥-!
</ g9(0; — 7)B;, (T — ti)dT> A’ by ¢%*. The pulse response vectgf completely defines
Ac(t;) = tim T (31) the matrix blockG? and is defined by the integral in (31).
The form of the matrix77-* will be somewhat different for a
different ratio of the input and output sampling periods.
In (31) components of vectakY? are related linearly to the
components of the vectg? ?, therefore we can rewrite (31) as

0, foré; >t — 1,
0, for 8; <t; — 7.

The matrix G relates variationsAu® of the respective
components of vectol/ and the variationAc(6;) of the
components of the vectdr in accordance with (29). It can AY? = X(AUY ) g7 (35)
be seen that the integral in (31) is defined by the difference
6; — t;. Thus, if the input sampling intervat, is an integer where X (AUY) turns out to be a Toeplitz matrix of the form
multiple of the output sampling intervaj,, then the matrixG

J
is a block-Toeplitz matrix. Each Toeplitz block of this matrix Au} Oj o 00
is completely defined by its first column. , Auy Auy e 00
As mentioned earlier, for a general nonlinear system, theX(AU?) = | LT : - (36)
finite-difference estimation of the matri& in the learning Ny xN, 0 0 Au{ 0
algorithm (10) might demand excessive resources. The analy- 0 0 e Auy o A

sis presented in Section 1lI-B shows that the iterative IearnirI%q ) i
algorithm has a certain degree of robustness to the error¥ putupghtogethf_r relations of the formb(3§) for all compo-
estimatingG. In many tracking problems system dynamicQents of the tracking error output, we obtain

are linearized with a high-gain feedback. In such cases, the AY = Z(AUM g, (37)
system nonlinearity can be neglected when estimatingnd rAYL
G can be assumed to have a block-Toeplitz form. In our AY = |
experiments described in Section IV, we found that r ~~ ol
estimated as a block-Toeplitz matrix, the learning algorithm nNyxt o [AY i
converges well, despite the approximation error caused by the ' X (AUY) 0
system nonlinearity. Z(AUY) = . ;
niNy;xnN, L 0 X(AUJ)
B. Fitting a Toeplitz Matrix as the Gain Matrig gL
In this subsection, we suppose that the dynamics of the ¢ =] : | (38)
system are linear. We also assume that the system input and ~~ in
output are sampled with the same rate, so that in (3) and (6) niNyxlo Lg
Ty = Ty @ndt; = 0, for j =1,---, N,. In order to describe Now, by counting influences of all the input components, we
the structure of the matrig, let us partition vectora\Y, AU, obtain
and matrixG in (29) into the blocks corresponding to different n
inputs and outputs of the system as follows: AY = Z Z(AUYG = W(AU)g. (39)
rTAYL qrl ... gl =1
AY = : 7 G = : : : Matrix W and vectorg in (39) have the form
- : n - - i,n . Gn,n
nNyx1 _AY nNyXnNy G W(AU) :[Z(AUl)---Z(AUn)]
'AUl \—\/:/
. niN, xn?N
AU =| (32) v Y
—~ : 17 nT T
aNux1 L U™ g =lg g ] (40)
n2 N, x1

whereG’+" is aN, x N,, matrix which describes the sensitivity
of the jth output, AY”, to theith input AU®. For a linear where the blocksZ(AU?) are described by (38), and the
system,G7+ is a Toeplitz matrix. Let us consider a structureectorg contains the responses of all outputs to a unit variation
of the block G¥* in more detail. By using (31) and notingof the first shape functions for all input components. We will
thatt; = 6;, we can write the blockG’* in the following further use representation (39) to derive update for the estimate
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of the vectorg, which defines the block-Toeplitz matri& MATLAB and
from the input/output data\/ and AY. We further callg the C-programs ‘ | PC 486 DX2/66 |

basis vectorof the block-Toeplitz matrixG. Learning program

Feedforward control

C. Recurrent Update of the Toeplitz Sensitivity Matrix

Instead ofnNV,, + 1 experiments needed to obtain the gain
matrix G for a nonlinear system, the basis vector(40)

o . ; . | ADLI
defining a bIock_-Toephtz gain matrix can be computed after — 10 cards | Counters
only n+ 1 experiments, which is a much smaller number. For ‘ .

H . . ! joint control encher
instance, these, + 1 experiments can be done by applying torques readings

in turn variations of the vectorg’’ in (32) and using (37)
to determine the vectorg’ in (39). Note that, according to |
(38) and (35), the matri¥(AU?) in (37) is always invertible
provided that the first component of the vectét is nonzero,
u] # 0.

We would like, however, to update an estimate of the Remark 3: To achieve the asymptotic convergence of the
block-Toeplitz matrixG recurrently, on-line, while performing estimateg;®) to 7, the matrices¥ ®)" should span the entire
the learning control iterations. One update algorithm to dipaceéR"ZNy (persistensy of the excitation condition should
this was proposed in [18], and it performs a secant upddteld). Following the standard practice of adaptive control, this
of the estimates of the basis vectgrof the block-Toeplitz can be achieved by adding a small self-excitation signal to the
model for the matrix@ by a projection method. An efficient input sequencé/().
recurrent update of the vectgr(40) would allow to achieve  Remark 4: The learning control algorithm (10) together
the best possible fit of the Toeplitz matrix to the experimentalith the update of the system gain estimate (42) give an
data. Such update algorithm, which is a modification of thedaptivealgorithm of learning control. Since this algorithm
algorithm of [18], is explained in more detail below. uses a linear model of a nonlinear system, in general, only

Let us note that (39) is a linear regression equation withcal convergence of the algorithm can be established. Such
the parameter vectar and the regressor matri& (AU). The convergence results are provided by Theorems 1 and 2 that
system (39) is under-determined, since the vegtdras the prove convergence for the linearization if the initial error of
size n? N,,, while the vectorAY is of the sizenN,. In the estimatingg is not too large.
course of the learning control iterations (10), the input vector Proof: The proof of Theorem 2 follows from the straight-
U and the output vectdr *) are changing at each step. Arforward application of the standard results of [15] and is as
estimateg(*) of the vector (40) should relate the variationgollows. By assumption, in (42y %) — y(*—1) — (k)5 By
of the input and output vectors at stépin accordance with subtractingg from both sides of (42), we obtain

(39), so that w®Tw®
4 — 4 e 41) _ g |po VW o g
Y® _y =l p® Z gy ® o (41) g g [ a [WOE ] (" =9). (43

We apply one of the most often used methods for update|; can pe checked that the singular values of the matrix in

of linear regression parameter estimates,ftegection update o square braces in (43) are less or equal to unity, which
[15]. The projection update gives a solution to (41) with a IeaBPoves the result. 0

norm step fromg*—1) to ¢(*), At each step of the learning
procedure, the variatiotv*) — U*~1) of feedforward input
(10) is used to build matrity *) = W (U®) — yk=1)) in _ _ _
accordance with (36), (38), and (40). An estimaf® of the The described approach was exper!mer_wtally applu_ad to the
basis vector (40) is updated as follows feedforward control of trajectory tracking in fast motions of

T e y y a direct-drive manipulator. Since the controlled motions were
gD g0 _ WET (W kg _y (k) 4y (k-1)) (42) fast, the influence of the dynamics nonlinearity was strong. A
a+ |[WHE|% detailed account of the experiments as well as the simulation

Fig. 6. Overview of the experimental setup.

V. EXPERIMENTS IN LEARNING CONTROL

where || - ||» denotes the Frobenius norm of the matriX€Sults can be found in the technical report [42].

and « is a parameter used to avoid division by zero and to i

make the update more robust for a small ngfii(®)|| = A Experimental Setup

||W (U® —u®=1)|| which corresponds to a small variation An overview of the experimental system is presented in

U® — y*=1 of the input. Fig. 6. The control system structure can be very well described
The algorithm (42) has the following property by Fig. 1. Let us start from the description of the controlled

Theorem 2: Let the mapping (7) be defined by a lineaPlant
system (30), that is, for somg = 7 (39) is valid for any  The experiments were performed on a direct-drive Adep-
variations of the input and the output. Then, for the recurrettdne robot. The robot has four degrees of freedom and a
estimator (42) the errdtg—g¢(*)|| is a monotone nonincreasingSCARA type arm configuration. In our experiments, we used
sequence. only Joints 1 and 2 that move the arm in the horizontal plane.
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These joints are powered by large Megatorque three-phase
variable reluctance motors. With the use of direct drives andg
proprietary motor control components, the AdeptOne robot S

. . . . . ]
combines a high speed with considerable working envelope (&=
cirle with the 0.8 m radius) and load carrying capacity (6 kg).

Both joints are equipped with incremental joint encoders =

that have resolutions of 460 800 and 115 200 counts per revolu- -4 : :
tion. The control system of the AdeptOne robot was retrofitted o 1 2
in the Robotics and Automation Laboratory, University of s
Toronto, as described in [14], to allow for an accurate torque ~ 8 : :
control of the robot motors. In our experiments, the AdeptOneé P IR 7 A SO

[

Input 2 / Output 1

nput

input 2 / Output 2

robot is controlled with a custom made AdeptOne Data Link € ,| . A(,, ,,,,,,,,,,,,,,

Interface (ADLI) card and a PC-486/DX2-66. A C routine is 5 | ' :’Q\“ __________ _

used to read the joint status and position information from £ A,.‘,[)‘ZZ!'.A’A\\;\\ §

a Dual-Port RAM on the ADLI card. This card reads from  ° \\k\"‘,"}.‘i ; ! :
all AdeptOne Joint Control Cards and updates the contents 2, 1 P o p 5

of the Dual-Port RAM every millisecond. Another C routine Time (sec) Time (sec)

writes joint control data to Dual-Port RAM on ADLI card, rig. 7. Experimentally determined pulse responses representing columns of
and the ADLI processor stores the new data in its internék system gain matrix:.

memory. This data is transferred to all Joint Control Cards

every millisecond. to be nonsmooth, which makes determining the gain marix

In our experiments, all low-level control functions needeg problem. Yet, in our experiments, manipulator joints move
for trajectory tracking were programmed in C. The learningy one direction till they reach the desired final position.
control algorithms and the RBF approximation computationsuring this motion, the friction torques do not change with
were programmed in MATLAB. To move the manipulator, themall variations of the feedforward input and have no negative
MATLAB program passes the planned motion trajectory arighpact on the estimation of the system gé&inUnlike that, the
the parameters of the feedforward input shape (velGfoto a  transient motion on the intervl’, 7;] creates some problems
C program, which controls robot motion in real-time. After theor the algorithm since the joint velocities reduce to zero or
completion of the motion, the C program passes the samplgithnge their sign on this interval.
tracking error data (vectdr’) back to the MATLAB program.  The representative experimental results have been obtained

As the Feedback Controller, we used a standard PIDfor the manipulator moving from the initial configuration with
controller with the proportional (position) gains, 1 = 45 the joint anglesp; ; = —1.65 rad ands, ; = —1.7 rad to the
N/m and Ky; = 17 Nms/rad; derivative (velocity) gains final configuration with angleg, ; = 0.05 rad andp, ; = 0.1
K, 2 = 60 Nm/rad andK > = 25 Nms/rad; and the integralrad. Zero joint angles correspond to the maximally extended
gainsK;, = 10 Nms/rad andK; » = 5 Nms¥/rad. manipulator. We tried different values of the regularization

In the experiments, the desired motion time WAS= parameterp in (8), (10). In all presented results, the step
1.25 s and the full observation time horizdfi; = 2.125 s. bounding parameter in (10) was empirically chosen to be
The Planner computes the desired trajectory as a third order = 3p.
polynomial in time, along a straight line in the joint angle First, the gain matrix3 has been directly estimated from
space. For defining the feedforward shape and output vectqe®) by varying in turn each of 30 components of the veétor
the input and output sampling intervals are beth= 7, = 78 Fig. 7 shows the pulse responses corresponding to the columns
ms. Thus,N, = 15 input sampling instants; are considered of . The responses show a strong influence of the Coulomb
in (3), and the vectol/ has dimension 30. The tracking error igriction. Thus, G can only very roughly be considered as a
sampled atV, = 27 instants in the observation intery@) 7],  block-Toeplitz matrix. Many of the pulse responses comprising
so the vectol” has dimension 54. The feedforward input shapgolumns of G are not quite smooth and regularly shaped.
vectorU (5) defines feedforward torque in Newton meters, arfthe iterative learning algorithm (10) was first tried using the
the output vectol” (6) gives a tracking error in radians. obtained matrixG.

The results for the regularization parameger 4-10~° are
shown in Fig. 8. The two top plots in Fig. 8 show the learned

A detailed account of our experiments with the describddedforward inputs after two (dashed line), four (dashed-
manipulator system can be found in the technical repatbtted), and six (solid line) steps. The two bottom plots show
[42]. In this paper, we necessarily briefly discuss the mathe respective tracking errors for Joint 1 (shoulder) and Joint
experimental results and the gained insights. 2 (elbow). The dotted lines show the tracking errors at step

The experiments show that the Coulomb friction has @& for zero feedforward. About a tenfold improvement of the
profound influence on the performance of the elbow joint. lmacking accuracy is achieved at the iteration 6. Note that the
fact, the friction reaches up to 30% of the maximal torque. Thearned feedforward inputs in Fig. 8 exhibit oscillations which
nonlinearity caused by the Coulomb friction can be especiabye related to the irregularity of the pulse responses comprising
bad for the proposed approach, since it causes the mapping@&7By increasing the parametgr it is possible to put a higher

B. Results for Learning a Single Motion
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Joint 1 Joint 2 Joint 1 Joint 2

Input (Nm)
Input (Nm)

A 1 2 0 1 2 0 1 2

Time (sec) Time (sec) Time (sec) Time (sec)
Joint 1 Joint 2 Joint 1 Joint 2
: 03 . .
B i g go2
5 5 £ o
5 5 s s .
2 g g g
= = =
8 g 8 g
= B 0 obeeeoenee b I = g T
) 1 2 0 1 2 0 B 2 0 1 2
Time (sec) Time (sec) Time (sec) Time (sec)

Fig. 8. Experimental results for learning control with the directly measurédd- 9. Experimental results for learning control with a block-Toeplitz ap-
gain matrix G. lterations 0, 2, 4, and 6 are marked by dotted, dasheflfoximation for the gain matrixz. Iterations 0, 2, 4, and 6 are marked by

dashed-dotted, and solid lines, respectively. dotted, dashed, dashed-dotted, and solid lines, respectively.
Joint 1 Joint 2

penalty on the oscillations and obtain a smoother input, but this 10 ; ; 30 ;
will also increase the tracking error. _ ,.?A'\\ 20 "'fi ______________

Next, a block Toeplitz model (32), (33), (34) far was E Opro AR £ f’, X ANy
estimated by applying two variations of the input vector 5 |\ * S 1ol N i
componentaAU! and AUZ, i.e., by varying feedforward first £-10 “\\,5' £ ' : 1\ :
for Joint 1, then for Joint 2. The componentsandg? of the R, s e &
basis vectory (40) of the matrixG were estimated by using -205 3 2 o 3 2
(37). Thus estimated pulse responses are much smoother than “fJ"o‘? n(tS;*C) TiTcﬁn(‘Sgc)
the directly measured ones, probably because their estimation :
includes certain averaging of the data. The results of thg oryze 3 o
learning control experiments using the obtained block-Toeplitz 2 5 005 i
estimate of are presented in Fig. 9; the format is the same a$ 094 g
in Fig. 8. No update of matrixy was performed in these ex- &-006 g o0 i
periments, and the regularization parameter was4-10=°.  £-0.08 : g :
A sixteenfold improvement of the tracking error is achieved in 015 1 2 005, : 2
Fig. 9 compared to the tenfold improvement in Fig. 8. Though Time (sec) Time (sec)

the block-Toeplitz z_ipproxmatlo_n of matrix has an inherent Fig. 10. Experimental results for learning control with adaptive update of the
error for the experimental nonlinear system, the performanggtrix G demonstrating compensation of the friction caused error. Iterations
improvement could be explained by the fact that some of tBe2, and 6 are marked by solid, dashed, and dashed-dotted lines.

friction-caused error in estimation &f was filtered out. Th . s sh that the feed d inout | d
Unlike Fig. 8, feedforward in Fig. 9 does not exhibit any € experiments show that the leediorward input learne

oscillations. Diminishing the regularization paramegeto 4 With. an adaptive update of the matrﬁ(is_ aple to cope V.Vith the
110~ for the same block-Toeplitz matri slightly deterio- static error cal_Jsed by the Coulomb friction. This is illustrated
rates tracking, whiley = 4 -10~7 results in the feedforward by Fig. 10, which shows the results for another trajectory than

oscillations similar to those in Fig. 8 and two to three timeg'gs' 8dand 2 InoFé%' l(()j’ thed'r}'.t'all Jomtl angles aﬁfi :1?__)

increase of the tracking error. Therefore, we uged 4 .10—> ¢ an ¢2,; = —0.65 rad, and final angles amg , = —1.

in the subsequent experiments. rad andg, = —0.2 rad. In the absence of the feedforward,
Further improvement in the algorithm convergence a

r;He error for the Joint 2 (solid line) exhibits a strong friction
the tracking accuracy can be achieved by adaptively updati'H uence. This error is successfully compensated in the course

the estimate of the system gain matri¥ as described ofthe learning.

in Section IV-C. The adaptive update allows us to obtain

a twentyfold improvement of the tracking error in six V1. DESIGN AND EXPERIMENTAL VERIFICATION
iterations. If one takes into account the measurement errors, OF THE FEEDFORWARD CONTROLLER

the adverse effect of the Coulomb friction, and the input ) ) ) ) )

torqued resolution of the system (0.5 Nm), the obtaindtt Radial Basis Function Approximation

tracking accuracy is close to the achievable limit. Visually, As described in the previous subsection, we can learn
the results look similar to Fig. 9. optimal feedforward input shape vectdris ;, = U,(Qy) for
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certain (discrete) value§, of the task parameter vectogs Joint 1 Joint 2
Given K pairs of vectors),, € P andU, , as{Q,U.r = :

f(Qr)}E_,, it is possible to find an approximation for the
smooth mappind/ = f(p) over the domair® of the task
parameter vectop.

In this paper, we follow the approach used in [23] and
[22] and approximate the nonlinear mappibg(p) with the . :
help of a RBF network. RBF approximation provides high 0 1 2 1
accuracy, fast training (identification), and is computationally Time (sec) Time (sec)
and algorithmically simple. In many applications, the RBF o0.06
nework approximation has superior accuracy and training timeg
compared to Mulilayered Perceptron Networks used in manys 4
ANN-based systems, e.g., see [6], [9], and [21]. Radial Basi
Function networks were recently acknowledged [35], [36],'?,0'02
[38] to possess a few advantageous theoretical properties, su
as low pass spatial filtering of the approximated function. For o 1 p
more information and references on the RBF approximation Time (sec) Time (sec)
see [13], [35], [36]. Fig. 11. Tracking errors for two test tasks. Without feedforward (dashed

Standard RBF approximation results (e.g., [13], [35], [36]he) and with feedforward computed by the RBF-network (solid line).
are formulated for scalar-valued functions. In this work, we
used_ an RBF-network approximation of thector-valued Therefore, the task parameter vectohas three components
function U, (p). For any value of the task parameter vector
p, RBF approximation of this vector-valued function can be p=[pr5—P1i P2 ¢27f]T (46)
written in the following form:

<} =)
=)
o &

e o
- &

Tracking error (rad)

Tracking error (rad)

-0.05

-0.1

Tracking error (rad)

where the subscripts and f denote the ‘initial’ and ‘final’

. K configurations, and the first subscript gives the number of the
Uip) =>_ Vib(llp— Q1)) (44) joint.
j=1 We consider the following task parameter domain, which

) covers most of the robot workspace
where V; are the vector weights of the RBF network-)

is a given function of the radiup — @;|| (hence, the name P={peP:=13<¢15—¢1, <13

radial functior), and@); are the RBF centers. Several forms of —1.5 < ¢4, 2,5 < —0.2}. (47)

the radial functions are commonly used. In the experiments, ) )

we used the Gaussian radial functibfv) = exp (—r2/D?). The task parameter vectorp (46) has d_|men5|on

A standard choice of the Gaussian widthis 1.6 times the three—much less than the dimension of the input vector
distance between the RBF centr@s. U, which is 30. Therefore, the use of RBF network for

We compute the vector weights; of the RBF network @pproximation of mapping +— U, is especially attractive,
(44) from the exact interpolation conditionswhich means Since its computational complexity is orlipear in dimension
that the approximation error is zero for each pg@;, U, ;} "Vu Of the vectorU [21]. _
in the training set. By substituting = @, into the right- ~ The domain (47) is a 3-D cube in the task parameter
hand side of (44) and writing the conditiods (Q;) = U,, SPace. We obtained training paiff/..., Qx} by applying

for i = 1.---.K in the matrix form, we obtain the exact!h€ learning procedure as described in Section V, for the
interpolatié)n éonditions in the form: trajectories corresponding to the parameter vectots Q.
The points@;, were placed on a uniform grid 5 3 x 3 in the

U=HV; H={h|Q:i-Q,l) stl cube (47). We made six Iegrr_ﬂng iterations for obtaining each
U=[Usr, Ui, V=[Vi, -, Vil. (45) vectorU, ;. Altogether, obtaining all 45 vectofs, ; took 315

tracking motions of the manipulator, which were completed in

The results obtained in [32] prove that the interpolatiof’ibOUt two hours of continuously running the system.

matrix H in (45) is invertible for the commonly used radial ngllearr:ed tkralnlng pa”f_U*,k,thl;]} v(\;ere uged to build
functions (e.g., for the Gaussian function) and distinct no<¥l b g? V}’ﬁr app_roxmat:on (t)' ih epen erﬁﬁgp? tas Ki
centres;. Therefore, the weightd’; of the network (44) escribed In the prévious subsection. The accuracy of tracking
_ vK was checked for a number of test tasks within the Bet
can be computed ag; = ¥\, w;xUs x, Wherew;;, are the ; . :
entries of the matrixi—_. (47) in order to validate the performance of the designed
RBF network based feedforward controller. For the validation,
we used the task parameter vectors maximally remote from
all neighboring RBF centreg),. These test values of the
parameter vector make a grid 2 2 x 4 which is shifted
The feedforward control of the manipulator depends only dralfway from the grid of RBF centres in the cube (47).
the change of the first joint angle, not on its absolute positioRig. 11 illustrates the experimental results obtained with the

B. Experimental Results in Approximating
Feedforward for Arbitrary Motions
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Fig. 12. Improvement of mean square tracking errors for the test tasks. Without feedforward—solid, with feedforward computed by the RBF nehedrk—das

approximated feedforward for two test valygsandp. of the For the AdeptOne robot used in experiments, the Coulomb
task parameter vector (46). These test vectors are as follovgction is up to 30% of the maximal drive torque. The
prid1 s — 1 =—0.975 rad fricti(t)/n has adverge ef][eﬁt on the RBI; ?pp_roxi.mation, as trr]]e
o ron _ = input/output mapping of the system with friction is not smooth.
$2i==0525r1ad ¢y ;= —1.1751ad With a smaller friction, the proposed approach would yield
p2id1 s —¢1,; =—0.325rad even more significant improvement of the tracking accuracy.
$2i =—0.525rad ¢ ;= —1.175rad  (48)
Fig. 12 summarizes the mean square tracking error results
for the chosen test motions without and with the feedforward VII. CONCLUSIONS
Computed by the Radial Basis Function network. The ta.Sk|n this paper, we have presented and experimenta”y demon-
vectors (48), for which detailed tracking results are reportegkrated feasibility of a novel model-free approach to the design
correspond to test vector numbers 3 and 6 on the argumgf nonlinear feedforward controller for a trajectory tracking
axis in Fig. 12. At least a fourfold average improvement igsk. The design is based on the nonlinear approximation of
achieved. The improvement is less significant for motionfe feedforward dependence on the control task parameters.
with small amplitude that have smaller initial error. For suclthese task parameters comprise initial and final setpoints of
motions, compensation of the Coulomb friction can accoufie system and define the trajectory to be tracked.
for up to 80% of the feedforward drive torque. The proposed design has serious advantages compared to
Unlike the iterative learning control used in Section V-Bihe approaches based on a model-free (e.g., neural network)
the RBF approximation-based controller tested in this secti@pproximation of the controlled system dynamics. The most
computes the feedforward for any task parameters withgeiportant advantage is that for our approach, the approxi-
a need of completing several repetition of the same motigmation complexity is defined by the dimension of the task
beforehand. The tracking accuracy achieved for each of thgrameter vector, which is usually much smaller than the
test motions using the RBF approximation of the feedforwadimension of the state-space covered by the system dynamics
control can be further improved by the factor of 4 to @pproximation. The pay for better performance is that the task
by making one or two learning control iterations for thiparameter approximation is somewhat less general, since it
particular motion. As discussed in Section V-B, by repeatingorks only for a certain family of tasks. This limitation is
learning control iterations for a given motion it is possiblguite tolerable for many practical applications, such as one we
obtain tracking error close to the achievable limit. At the sameve considered.
time, tracking for the approximated control is subject to the To make the task parameter approximation practical, we
approximation error, which should diminish for finer grid ohave presented an efficient learning control algorithm for
the approximation nodes. Yet, it might be undesirable to hagétaining initial data for the approximation. The learning
too many approximation nodes, because of the more trainiaigorithm uses the on-line Levenberg—Marquardt minimization
required. From this point of view, the presented results shaf the regularized quadratic performance index to provide
that even for a relatively coarse approximation grid, trackinfast and robust convergence of the optimal feedforward in-
accuracy improvement is significant. put shape. The algorithm convergence is enhanced by the
The RBF network was trained on the feedforward vectofgesented novel technique for the adaptive estimation of the
obtained with the regularization parameter= 4 - 107°. system gain through the estimation of the system pulse re-
The report [42] also presents results obtained goe= 4 - sponse. We have experimentally shown that the learning
10~C. Though the tracking accuracy achieved in the learnirajgorithm converges in few iterations, faster than many other
iterations for each of the RBF centr€s was almost the same algorithms.
in both cases, the error for the test motions is up to four timesWe have experimentally demonstrated the high performance
larger with p = 4 - 107%. The reason, as the estimate (27)f the developed algorithms in the difficult problem of track-
shows, is that a smaller generally leads to a larger learningng fast direct-drive manipulator motions. Both the learning
control error in obtainind/,.. These errors act like disturbanceslgorithm used for obtaining training examples and the RBF
in the training data{U, i, Qs } spoiling the accuracy of the network approximation worked very well in the experiment.
RBF approximation. Not only the algorithms cope well with the strongly nonlinear
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system dynamics, they also compenste for the large Coulomb)
friction plaguing the experimental manipulator.

Experimental implementation of the approach has beg
possible with moderate computational resources and training

(system identification) time. Therefore, the results of this pap K

demonstrate that the approach is very well suited and ready
for industrial applications in Robotics. The presented results

such as automotive, process control, etc.
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