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Abstract

The control system of the hexapod walking vehicle, designed
at the Institute for Mechanics at Moscow State University
and at the Institute for Problems of Information Transmis-
sion at the USSR Academy of Sciences, is extended to effect
the control of foot-contact forces and locomotion in soft soil.
The previously developed positional control system enables
the computation of commanded mation of the vehicle legs
and positional feedback to track this commanded motion.
Force feedback is added to the control system, in addition to
computation of commanded forces and leg position correc-
tions for leg sinkage during soft soil locomotion.

Such an elaborate control system has made it possible to
solve the problems of controlling the distribution of vertical
Joot force components in locomotion over a rigid surface and
of foot-force vectors in locomotion between planes forming a
dihedral angle. A number of algorithms are proposed to
control vertical force components (loads on legs) and leg sink-
age in locomotion in elastic and consolidating soils. In the
latter case, which corresponds to most natural soils, the bear-
ing properties of the surface are considered a priori unknown.

The results of the experimental implementation of the
algorithms are presented.

Introduction

A multi-leg walking vehicle is a mechanical system
statically indeterminate with respect to forces acting
on its legs (foot forces). The control of these forces
makes it possible to reduce the antagonism among the
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legs, loads on the vehicle structure, and energy con-
sumption. Force control is needed to raise the adapt-
ability of the vehicle to irregular terrain and different
types of soil. For instance, in locomotion over complex
terrain, the necessity may arise to control the horizon-
tal force components so that contact forces are within
friction cones. In locomotion in soft soil, it is neces-
sary to control loads on the legs because of their sink-
age into soil.

The possibility of force distribution control in a
walking vehicle has been discussed for a few years.
There are a number of approaches to the distribution
problem based on different criteria. At present it is
clear that the realization of force distribution calcu-
lated by any method requires that the vehicle legs
should be equipped with force sensors and that force
feedback should be introduced into the control circuit.
Such an approach is widely used in manipulator sys-
tems (Whitney 1977). In at least two existing walking
vehicles, the legs are equipped with force sensors (Gur-
finkel et al 1981; Klein and Briggs 1980). However,
the authors do not know any work on experimental
realization of force distribution control in legged loco-
motion. This seems to be a result of the complexity of
the legged locomotion problem and the necessity to
compute force distribution in real time and to process
simultaneously a large amount of sensory informa-
tion. The questions concerning the control of vehicle
motion in soft soil are closely connected with the force
control problem, yet these questions have been inves-
tigated poorly.

The aim of our work was 1o develop and experi-
mentally check the algorithms of force control during
locomotion in different situations, including walking
in soft soil.

The development of algorithms and their experi-
mental investigation require a walking vehicle with an
advanced control system. The control system must
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allow extension (i.e., the addition of the control of
forces and leg sinkage in soft soil locomotion). Experi-
ments were carried out on a hexapod vehicle and con-
trol system designed by the Institute for Mechanics at
Moscow State University (IM MSU) and the Institute
for Problems of Information Transmission at the
USSR Academy of Sciences (IPIT, USSR Acad. Sci.)
{Devjanin et al. 1983, 1987; Gurfinkel et al. 1981,
1982). This control system fully meets the above re-
quirements.

The upper level of the control system prescribes the
global motion parameters. The lower level ensures a
regular walking pattern in accordance with these pa-
rameters. The previously developed positional control
system provides the computation of the commanded
position of the legs and position feedback to track the
commanded positions. In our work, force feedback
and two computational processes (computation of
commanded forces in the legs and correction of the leg
positions for the amount of sinkage into soft soil) are
added to the control system. The special feature of the
algorithms of force distribution is the use of a smooth
redistribution of forces when the set of supporting legs
is changed.

1. A Walking Vehicle and Its Control System

The description of the hexapod vehicle used in the
research is given in greater detail elsewhere (Devjanin
et al. 1982, 1983, 1987; Gurfinkel et al. 1981, 1982).

1.1. Vehicle Design

The vehicle has six identical legs, with three powered
degrees of freedom each. Three-component force sen-
sors using strain-gauges are mounted in the shanks
(Devjanin et al. 1982). Each ankle rotates passively

Fig. 1. Coordinate system,
leg numbering, and vehicle
dimensions.

with three degrees of freedom, and each foot is
equipped with a ground contact sensor. The legs are
powered by electric drives with gear reducers and are
equipped with joint angle potentiometer sensors.

The vehicle body carries a gyroscopic attitude sensor
to measure the pitch and roll angles of the body. The
distance from the body to the supporting surface (i.e.,
the clearance) was measured in our experiments by
means of an infrared proximity sensor mounted on the
body. During soft soil locomotion, a narrow flat board
with known albedo was placed on the soil beneath the
sensor path to ensure clearance recording,

Fig. 1 shows the numbering of the legs and a body-
fixed coordinate system with origin at the body center.
The OX axis is in the direction of progression, the OZ
axis is perpendicular to the plane passing through the
leg suspension points, and the QY axis completes a
right-handed set.

The main geometric and mass parameters of the
vehicle are as follows: the body length a = 700 mm,; its
width (distance between the leg suspension points)

b = 210 mm; lengths of the leg links [, = 75 mm, /, =
100 mm, /, = 170 mm; total mass of the vehicle is
22 kg; leg mass is 2.7 kg.
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1.2. Control System

First we consider the operation of the positional con-
trol system used in our experiments.

The upper level of the control system is supervisory.
It prescribes such motion parameters as a gait pattern,
track width, clearance, and the locomotion cycle pa-
rameters. A human operator also controls, with the
aid of the control handle, the components v,, v, of the
linear velocity and the component @, of the angular
velocity of the vehicle body.

The operation of the control system is based on the
assumption that the motion is slow enough to be de-
scribed at the kinematic level. For this reason the con-
trol system consists mainly of the units that compute
the commanded motion of the vehicle legs. The tip of
each leg moves relative to the body along a closed
trajectory called the locomotion cycle. For each leg,
the transfer and support phases alternate.

" Within the part of the locomotion cycle called the
adaptation zone, the leg lowering ceases when the
ground contact sensor touches the support, and the leg
goes to the support phase. The adaptation zone di-
mension is set to be about 20% of the shank length.

By coordinating the locomotion cycle phases in
different legs, it is possible to obtain different gait pat-
terns. The control system provides regular gaits (i.e.,
the gaits in which the transfer from one leg set to an-
other 1s separated by the joint support phase; all the
legs provide support). The existence of the joint sup-
port phase is very important in this work. This phase
enables the redistribution of the foot forces during
locomotion when all the legs are on the supporting
surface.

The motion of each leg during the support phase is
specified to provide a desired body motion. The leg tip
coordinates and the linear » and angular w velocities
of the body uniquely determine the leg tip velocity.

Note that the commanded motion of a leg tip is
calculated in the body-fixed Cartesian coordinates.
The commanded joint angles are calculated by a hard-
ware resolver that converts the leg tip coordinates to
the joint angles. In the analog servosystem, the differ-
ence between the commanded joint angle and the
angle determined by the potentiometer is used to gen-
erate the control voltage.

2. Force Control

This section is concerned with improvements made in
the control system to make it possible to control foot
forces during locomotion.

2.1. Active Compliance

First consider the method of controlling the foot
forces. The method consists of equipping each leg with
a force sensor and feeding the signals of these sensors
to the control loop.

In order to understand the behavior of a system
with force feedback, suppose that the servosystems
track the commanded coordinates of the leg tips to a

high degree of accuracy. Write the radius vector

r(x®, y&), z0) of the ith leg in the body-fixed coor-
dinate system as r'? = r® + dr(i), where 1{) is the
commanded position calculated by the leg motion
control algorithms. Because of force feedback, the po-
sitional servosystem receives the leg position, which
differs from r{ by

ort) = A(i)(N(i) — NS{)), (1)

where A is the symmetric positive definite feedback
gain matrix, N is a command force vector. If the
measured force N@ coincides with the commanded
force N§, the leg tip position r” is equal to the com-
manded value r$). If the force acting on the leg differs
from the commanded value, it causes an additional leg
displacement proportional to the difference. Such a
behavior of the system similar to that of an elastic
spring with a compliance A% is called active compli-
ance (Devjanin et al. 1982; Klein and Briggs 1980).
Active compliance can be controlled by varying the el-
ements of the matrix A®,

In the absence of active compliance, force distribu-
tion in a statically indeterminate multileg system de-
pends on unknown elastic properties of the leg struc-
ture and is greatly influenced by small errors of
tracking and computing the commanded leg positions.
In the presence of active compliance, this distribution
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is determined by the matrices A¥) and commanded
forces N{. If compliance is sufficiently high, small po-
sitioning errors have no noticeable effect on the force
distribution. In this case the forces N are equal to
the commanded forces N{ if the latter satisfy the static
equilibrium equations.

For force distribution control on the basis of active
compliance, some new units are installed into the
lower level of the control system. The functions of
these units are similar to those of the positional part of
the control system. These are computation of the
commanded forces N’ and implementation of force
feedback to track the commanded forces. The posi-
tional and “force™ parts of the control system interact
because they control the same object. This interaction
results in the correction of the commanded leg posi-
tion as a result of force feedback (1).

The force feedback loop is closed with the aid of a
hardware unit implemented primarily with analog
facilities. This unit compensates for the zero drift of
the force sensors, stores their force readings into the
analog memory at the transfer phase of a given leg,
and converts force data from sensor coordinates to
body coordinates. This unit also includes the circuits
generating the corrections r in eq. (1) to the com-
manded trajectories of the legs. Because of the hard-
ware implementation, the delay in the feedback loop
was reduced to 1 ms.

The algorithms used to compute the commanded
forces are rather complicated and may vary depending
on the situation. The algorithms allow for a longer
computational delay. For this reason it is better to
compute the commanded forces using digital facilities
(for example, a separate microprocessor). In our ex-
periments a Nova 2/10 minicomputer was used for the
purpose.

In the case of soft soil locomotion, it is necessary to
correct the position of each leg for its sinkage. In our
experiments computation of the sinkage correction for
the commanded leg position s{) is a separate process
carried out along with the computation of the com-
manded position r{’ and commanded force N{). The
computation of the leg sinkage is closely related to the
computation of forces. The interaction of the above
control processes is described by the equation

r® = rQ) + AONO — N@) + s )

Fig. 2. Interaction of the
positional and force parts of

the control system.
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which replaces eq. (1). In our experiments the sinkage
s$ and the commanded forces N§’ were calculated by
the same computer.

The three interacting processes described are sche-
matically shown in Figure 2. The forces and leg sink-
ages are controlled at the lower level. Accordingly, the
algorithms used should be based on the lower-level
information about the current configuration of the ve-
hicle and global parameters of its motion. These algo-
rithms must not use the information about the subse-
quent motion prescribed by the upper level. Such a
structure of the control system enables the upper level
(i.e., a human operator) to guide the vehicle without
paying attention to force distribution and leg sinkage,
which are automatically controlled at the lower level.

We now consider in greater detail both the force
feedback and force command computation. The next
subsection is concerned with the transient process
dynamics in the presence of force feedback. The re-
mainder of the paper is devoted to the software-imple-
mented algorithms for computation of the com-
manded forces and leg sinkage.

2.2. Transient Process Dynamics

The concept of active compliance is based on the as-
sumptions that the commanded positions are served to
a high degree of accuracy and transient processes in
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Fig. 3. Simple mechanical
model for the dynamics of
legged vehicle with force
Jeedback.
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the system decay quickly. Such a quasi-static consider-
ation helps to understand the behavior of a system
with force feedback. However, it may happen that the
steady state is unstable, and undamped vibrations
occur in the system. Such vibrations are observed in
experiments at certain feedback gains. Let us proceed
with an analysis of the transient process dynamics in
the walking vehicle under force feedback control.

Mathematical Model

We restrict ourselves to a simplified mathematic model
that reflects the main features of the system dynamics.
A more advanced model is treated elsewhere (Gorinev-
sky and Shneider 1987).

A schematic of the model is shown in Figure 3. The
system consists of a vertically moving vehicle body of
mass M with two legs, each of mass m, that can move
downward. The lumped mass 71, is a result of the
dynamics of the rotors in the electric drive or of the
fluid in the hydraulic drive. Each leg is equipped with

a force sensor that is modeled by a massless force-
measuring spring element and a dashpot. The system
is provided with position and force feedback.

Now proceed with the governing equations. Let us
consider transient processes in the vicinity of the sys-
tem steady state. Let g be the vertical displacement of
the body from the steady state, x,(i = 1,2) be the
drive-controlled displacement of the legs relative to
the body, y,(i = 1,2) be the displacement of the legs in
the earth-fixed coordinate system caused by the spring
deformation. These displacements are evidently related:

X =q= Vi (3)

To construct the Lagrange equations we need the

kinetic energy of the system

= > M+ s+ 5+ 3 mGE+ 5. (@

The first term in eq. (4) is the kinetic energy of the
vehicle body, the second term represents the energy of
the drive rotors, and the third term is the leg kinetic
energy.

The deviation of the potential energy from its sta-
tionary value is caused by the spring element deforma-
tion

H=%dﬁ+yﬂ 5)

Energy dissipation in the structure is described by
the dissipative function
| .
R=§b(y%+y%) (6)
Variations of the gravity forces are zero. Now let us
consider the control forces—more precisely, devia-
tions of these forces from their stationary values pro-
portional to the control voltage. The voltage is gener-
ated by the positional servosystem; therefore
Q,~=—G(x,-—5x,-)—box,~ (l=

1,2), €))]

where G is the positional feedback gain, b,X; is the
force caused by the back e.m.f. (the term taking ac-
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count of the tachometer feedback is of the same form),
0x; is the deviation from the commanded value of the
leg position. This deviation is caused by force feed-
back, in accordance with eq. (1). Thus,

dx; = AN, (i=1,2), (8)
where A is the active compliance value, N; = ¢y, is the
deviation of the force from the stationary value. Sub-
ject to eq. (8), eq. (7) may be written as

Q;=—Gx;— byx;— kN;, N;=cy;, 9
where k = AG is the force feedback dimensionless gain.
Using egs. (3)-(6) and (9), construct Lagrange’s
equations with respect to the coordinates q and
x,(i = 1,2). Substituting y; for x; in these equations we
obtain in accordance with eq. (3):

MG+ m(p, + )+ Ky + i)+ e(y, +3,)=0

_(”70‘7+b0q+ GQ)+(mo+m)j}i+(bo+b)J>i (10)
+fe(1+ k) + Gly;=0 (i=12)

2.2.2. Fast and Slow Motions

Consider the new variables ¥ = (), + 3,)/2 and X =
V1 — ¥;- Then the equations in eq. (10) separate into
two groups. The first group of equations describes the
interrelated motions of the vehicle body and legs

Mg+ 2m¥ +2bY +2¢Y=0

+ (b + b)Y+ [c(1 + k) + G)Y =0

The separated equation describes the motion of the
legs, within the framework of static indeterminacy,
which produces no resultant force acting on the body

m+m)X+GB+b)X+[c(1+k)+GIX=0 (12)

It can be shown that the characteristic equation of
system (11) satisfies the Gurvitz conditions, and con-
sequently, the system is stable. Equation (12) is an
equation of damped vibrations and is also stable.

Suppose that the elastic element of the force sensor
is “rigid.” This may be considered to hold in practice.

Let

c=X¢, b=Aib, e=1/A<x1, (13)
where A is a large parameter, € is a small parameter,
and ¢, and b, are of the order of magnitude of unity.
Such an introduction of the large parameter corre-
sponds to an approximately constant decrement of vi-
brations in the structure as its stiffness increases.

Subject to eq. (13), the system of equations (11),
(12) is singularly perturbed. In this system X, X, ¥, Y
are fast variables and g and ¢ are slow variables. To
separate motions with respect to these variables, egs.
(11) and (12) should be expressed in accordance with
Tikhonov (1952) in the state form by introducing the
variables V. = €X, V, = €Y, and V, = ¢. As a result,
we obtain the boundary layer system describing “‘fast”
motions.

[%4 (m+my) + mmo]l'?+ Ab,(‘%{+ mO)Y
+ lzcll:%l(l +h)+ mo]Y= 0

(m+m)X+ b, X+ 2c(1 +X=0 (14)
and the reduced system, which describes “slow”™ mo-
tions

[%"’(1 +k)+m0]cj+b0q+Gq=0 (15)

Equations (14) and (15) describe damped oscilla-
tions. Increasing the force feedback gain k the fre-
quency of fast motions (14) rises as k2, and the
damping decrement decreases as &~ '/2, The frequency
of slow motions (15) and the damping decrement
decrease as k=172, Accordingly with increasing k, the
oscillations in the system damp slower. An analysis of
a more detailed model of the system given elsewhere
(Gorinevsky and Shneider 1987) shows that with in-
creasing k, both fast and slow motions become unstable.

Comparison with Experiment

Now let us compare the model with experimental
results obtained on the IM-IPIT hexapod vehicle. Each
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Table 1. Model Parameters Corresponding to the
Experimental Vehicle

M m my by ¢ b G

10 5 3-1020 9-10* 15-10¢ 10° 4-

leg in the model corresponds to half of the vehicle legs
(three legs). The model parameters, which approxi-
mately correspond to the experimental vehicle, are
given in Table 1. The values are expressed in SI.

In our experiments the force feedback gain k was set
to different values in the range 80-300.

First consider fast motions. As can be seen from
Table 1, the effective mass m, caused by the rotor dy-
namics is much larger than the other masses in the
system. The product kM is of the same order. There-
fore, in accordance with eq. (14), the damping of vi-
brations along the X coordinate is the lowest. These
vibrations describe force redistribution among the
supporting legs. The decrement for k = 320 is less than
the initial decrement by a factor of kK12 = 18. At k=
320, eq. (14) gives the frequency of these vibrations

v=1/(27) - [kc/(m + my)])'? = 15.5 Hz.

At large values of force gain (k = 300-400), small-
magnitude vibrations with a frequency of about 12 Hz
were observed in experiments. These vibrations may
be supposed to correspond to fast motions in the
model considered.

Now proceed with slow motions (15). These are
motions of the vehicle with actively compliant legs.
An increase in k behaves as if there were a rise in the
vehicle inertia. This rise is not very noticeable because
of a large inertia my,, of the drive (at k = 300, Mk/2 =
1500, and m, = 3000). The frequency of slow motions is

v=1/(2n) - [G/(Mk/2 + my)]"V* =~ 1.5 Hz;
the damping coeflicient is
{= b[(MK/2 + my)GT™ 12 = 2.

Thus, slow motions are strongly damped. For the sake
of comparison with theory, the system frequency re-

10

Fig. 4. Experimental magni-
tude-vs.-frequency plots of
vehicle pitch vibrations.
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sponse was obtained. For this purpose a disturbing
harmonic voltage was applied to the drives. This volt-
age was distributed among the legs so that several
modes of vehicle vibrations might occur. The magni-
tude of the vibrations of the vehicle body at a certain
point was measured.

If the harmonic disturbance force acting in the drive
is taken into account in the mathematic model, then
the reduced system describing motions for long time
intervals assumes the form

[%(1 + k) + mo]é+ bgq + Gq = F, sin (wt)

The amplitude of body vibrations is

go = Ww)F,,
Ww) = [(wz(% (145 + mo) - 6)2 + bng]_m (16)

where W{(w) is the frequency response of the system.
Experimentally obtained magnitude-vs.-frequency
plots are shown in Figure 4. The natural frequency of
the system is about 1 Hz, and the damping coefhicient
{ = 1.4, this being close to the theoretical estimate. As
can be seen from Figure 4, an increase in kleadsto a
decrease in the magnitude at high frequencies, in
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agreement with eq. (16). A relatively slight change in
the form of the magnitude-vs.-frequency plot with
increasing k can be explained by the fact that the ef-
fective mass m, of the rotors is two orders of magni-
tude larger than the body mass M,,.

3. Force Distribution in Locomotion over a
Rigid Surface

This section is concerned with the algorithms of com-
puting commanded force distribution in locomotion
over a rigid surface. The corrections s§’ to the com-
manded leg position are assumed to be zero. The dis-
tribution of vertical force components in locomotion
over a slightly uneven horizontal surface and distribu-
tion of vertical and horizontal force components in
locomotion within a dihedral angle are considered. In
the latter case some simplifying kinematic assump-
tions are made. Experimental results are presented.

3.1. Force Distribution Algorithms

Since a walking vehicle moves relatively slowly, the
influence of dynamic factors on force distribution may
be neglected. The commanded forces must be com-
puted proceeding from the body orientation relative to
the gravity vector, and from the leg configuration. We
use the vehicle body-fixed coordinate system OXYZ.
Suppose the surface is slightly uneven and the vehicle
body is in the horizontal position; then the OZ axis is
collinear to the gravity vector.

Force distribution can be determined by several
methods within the framework of static indeterminacy.
We consider eliminating indeterminacy by using a
certain optimization criterion. Let the vector W spec-
ify the configuration of the legs and the orientation of
the vehicle body determined from sensory data. Let G
denote the state vector specifying the set of the sup-
porting legs. Using W and G and the optimization

criterion, we can find the “optimum” force distribution

N =NP(W,G) (17)

In eq. (17) N =0 for the legs that are not in sup-
port. The vehicle configuration W varies slowly
enough. But the leg state vector G varies abruptly with
a change of the set of the supporting legs. Therefore,
the forces calculated from eq. (17) will also vary
abruptly and should not be tracked. So, let us perform
a smooth force redistribution during the joint support
phase, which separates the transfer phases of different
sets of legs.

Let G, and G,, be the states of the vehicle legs before
and after the joint support phase, respectively. During
the joint support phase, forces must vary smoothly
from N&W = NO(W(z,), Gy) to NO = NO(W(,), G,),
where ¢, and ¢, are the instants of the beginning and
the end of the phase. The part of the control system
responsible for force distribution operates indepen-
dently of the upper level (for example, a supervisory
one), which conirols the motion of the vehicle body.
Therefore, the vehicle configuration at the end (z,) of
the joint support phase is unknown beforehand. Nev-
ertheless, a desired force redistribution can be
achieved. Assume that during the joint support phase

NQ = (1 — a@))NP(W(1),Go)
+a(t)ND(W(1),G,), (18)
where a(?) is a linear scalar function varying from
a(t;) =0 to a(t,) = 1. The forces calculated from eq.
(18) coincide with the required values at ¢, and ¢,, and
at any instant satisfy the statics equations, which are
linear in forces. Thus in the beginning of the next
transfer phase, the legs to be transferred will be un-
loaded and the transfer will begin without jerks and
impacts. It may be supposed that a linear combination
of “optimum” distributions given by eq. (18) is quite
satisfactory in the sense of the criterion chosen.

To calculate the foot forces, it is necessary to know,
in addition to the vehicle weight P, the coordinates X’
and Y of the vehicle center-of-mass. In most of the
known walking vehicles, the mass of the legs amounts
to a considerable proportion of the total mass of the
vehicle. For this reason X and Y depend on the vehicle
configuration.
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be a vector in the OXY plane that connects the sus-
pension point of the ith leg with the leg tip. Assuming
the leg structure symmetric we may consider the
center-of-mass of the leg to lie in the leg plane. Then
the vector in the QXY plane connecting the suspension
point with the leg center-of-mass projection g is col-
linear to the vector p¥), and we may write

P = myp, (19)

where m, is the leg mass and m;is a scalar depending
on the angles in the second and third joints of the leg.

Relation (19) means that the leg is replaced by two
mass points: m,located at the leg tip, and m, — my
located at the suspension point and rigidly connected
with the body. In locomotion with a moderate step,
only the angles in the first joints of the legs vary con-
siderably. Therefore, we assume m,= m for all the legs.

Thus, the model of mass distribution is: the legs
with mass points # located on the leg ends and the
body of mass M, = M — ém, where M is the total
mass of the vehicle. X and Y are the coordinates of the
center-of-mass. In accordance with this model the
right sides in the statics equations are

P=(M_+6m)g
6
PX=mgy xV+MX.g 20
-]
6
PY=mgy y?+MX.¢g

i=1

Though eq. (20) defines the coordinates of the vehi-
cle center-of-mass in terms of the leg configuration
with some error, the advantage is in computational
simplicity. The experimentally identified parameters
are as follows: m= 0.7 kg, M. = 18 kg, X, =2 cm,
and Y,=0.

12

3.2. Distribution of Vertical Force Components

Calculation of Commanded Forces

Let the horizontal force components be zero. Then the
vertical force components must satisfy the static equi-
librium equations

S N9 =P
iel
3 NOx® = pX

i€l

3 NOyO = PY,

iel

21

where P is the vehicle weight, x?, 3/ are the coordi-
nates of the jth leg tip, and X, Y are the coordinates of
the vehicle center-of-mass. Summation in eq. (21) is
performed over the set I of the supporting legs.

Forces in n supporting legs should satisfy the three
equations in (21). It is clear that if n > 3, the solution
may be chosen ambiguously. There are different ways
of eliminating the indeterminacy. Let us require that
the vertical force components should satisfy

2 (VPP — min

iel

(22)

This condition has the sense of energy optimization
(i.e., minimization of energy consumption for sup-
porting the vehicle weight). It has been considered by
Klein and Wahavisan (1984). The exact condition of
energy optimization is more complex, and conse-
quently the computation of forces becomes more
complicated (McGhee, Olsen, and Briggs 1980; Ok-
hotsimsky and Golubev 1984). It should be noted that
the forces resulting from criterion (22) are of reason-
able values from the viewpoint of the criterion
max; N¥? — min, which corresponds to locomotion
over soil with a limited bearing capacity. Criterion
(22) is used mainly because of the computational sim-
plicity of the force distribution problem.

Write out the solution of eq. (21) that satisfies con-
dition (22). Introduce an n-dimensional vector N,
composed of the vertical force components; the vector
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of right sides of system (21)

P
P=| PX
PY |
and a 3 X n matrix
A ={a},

where

a;=1, ay=xW, ay=y®, (j= 1, n).
Then equation (21) may be written in matrix form as
AN, = P. The solution of this equation under condi-
tion of (22) is N,, = A*P (Gantmacher 1959), where
At = AT(AAT)™! is the pseudo-inverse of the matrix A.
If three legs are on the support, then the matrix A is
square and A* = A~!. This solution can be obtained by
the Lagrange multiplier method, and we represent it as
N, = A”p, where

D
P=| P
Ps

is the Lagrange multiplier vector. The latter equation
in the coordinate form is

N@=p+px®+py® (23)

It is convenient to determine the vector p =
(AAT)™'P as a solution of the system (AAT)p=P or
in terms of the coordinates

n S, S|(po P
Sx Sxx Sxy pz = P
Sy, So Syl ps P

S_x = 2 x(i)’ Sy = 2 y(i)’ ‘S‘n = 2 (x(‘))z’

el iel tel

Sxy = 2 x(i)y(i), Syy = 2 (y(i))z,

i€l i€l

24

where I denotes the set of the supporting legs and # is
their number. To reduce calculations, the solution of

system (24) was written analytically. Note that in cal-
culating the forces by egs. (23) and (24), the change in
the supporting legs set leads only to a change in the
summation set L.

A similar scheme for calculating the vertical force
components was suggested by Waldron (1986).

Experimental Results

The algorithm of commanded force calculation was
implemented on a Nova 2/10 minicomputer con-
nected with the analog computer of the remaining part
of the control system via analog to digital converters
and digital to analog converters.

Computation of the vertical force component distri-
bution was programmed in FORTRAN-4 with the use
of assembler subroutines of vector-matrix arithmetics.!
It requires about 17 K words of memory and has a
cycle time of about 70 ms (this time depends on the
gait pattern). The commanded horizontal force com-
ponents are zero. During the transfer phase, the verti-
cal force components are computed according to egs.
(20), (23), and (24), while during the joint support
phase, computations follow eq. (18). The force redis-
tribution described by eq. (18) begins when all the
ground contact sensors touch the support.

In the development of force control algorithms, it is
necessary to take into account the locomotion cycle
properties. Because of various errors and leg structure
compliance, contact with the support surface occurs in
a later (or earlier) section of the adaptation zone each
cycle. This takes place until the vehicle rises (lowers)
so that the contact sensors do not operate in the adap-
tation zone and the locomotion cycle becomes fixed.
Such an effect is multiply intensified in the case of
actively compliant legs. In this case the vehicle body
rises or lowers after several steps. To ensure normal lo-
comotion, it is necessary to correct the linear and
angular position of the body with respect to the bearing
surface. To this end, control of the vertical velocity
(v,), roll velocity (w,), and pitch velocity (w,) was ex-
ercised without displacing the locomotion cycles rela-
tive to the body. Correction was made after each step
at the beginning of the joint support phase. Linear and

1. These subroutines were written by E. V. Gurfinkel.
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Fig. 5. Experimental results
in the control of vertical force
distribution in locomotion
over rigid surface.
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angular errors between the bearing surface and the
plane through the middles of the adaptation zones of
the legs were calculated by the least squares technique
using the positions of the leg tips. Vertical and angular
velocities of the body were corrected proportionally to
these errors.

Measured and commanded forces, as well as clear-
ance, pitch, and roll variations were stored. These
experimental results obtained in the locomotion over
an even rigid surface with a diagonal gait (1, 6-2, 5-3,
4) are plotted in Figure 5. The vehicle moved forward
with a step length of about 10 cm. The position of the
plots corresponds to the disposition of the legs on the
top view (the numbers of the legs are indicated near
the ordinate axes). The plots of the forces, angular
displacements of the body, and the clearance in the
case of actively compliant legs shows that the algo-

14
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rithms ensure commanded force tracking with a high
quality of locomotion.

From Figure 5 it can be seen that during the joint
support phase one set of legs is loaded, another is un-
loaded. Redistribution of loads is smooth, without
jumps, as distinct from the situation when forces are
not controlled.

3.3. Control of Transversal Forces

Now consider a situation when it is necessary to con-
trol horizontal force components for the foot forces to
be within friction cones. Suppose that the vehicle
moves inside a dihedral angle formed by two rigid
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planes each making an angle ¢ with the horizon. The
line of intersection of the bearing planes is horizontal.
The vehicle body is also horizontal, and the OX axis
of the body coordinate system is parallel to this line.
The left and right legs are supported by different
planes, with all the supporting points lying in the same
horizontal plane.

Demand the contact forces to lie as close as possible
to the normals to the bearing planes. It is clear that
the longitudinal force components should be zero

N®=0 25)
and the forces lie in the OYZ plane.

Six equations of the static equilibrium specify a
resultant force vector and a resultant torque to be zero.
One of these equations always holds true because the
resultant force vector projection onto the OX axis is
zero in accordance with eq. (25). Since the supporting
points lie in the same horizontal plane, the three equa-
tions with vertical force components are of the form of
21).

Let us consider a vehicle walking through a tripod
gait and assume that the body center, O, is always
above the line of intersection of the bearing planes.
Suppose that three legs are on the support. The leg de-
noted by a lies on one side from the line of intersec-
tion; the legs b and c¢ lic on the other side at the same
distance. Thus, y® = y©@ = — 3@, The three equations
in (21) uniquely determine the vertical forces N'¥,
ieLI=(a b c}.

The two remaining equations contain the horizontal
force components

a b ) —

L il A (26)

Wx@+ NPx® + NOx@ =0

Three unknowns enter into the two equations in
(26). Thus, the distribution of the transverse forces N
depends on one free parameter. For instance, let the
force N in a middle leg be chosen as such a parame-
ter. Then solutions of (26) are of the form

@ — (o)
NO=—_NaX —X~
¥ hd x(b) — x(f)
B) — yla) 27
NO=—_pN@X _—*° 7
y y x(b) —— x(")

Fig. 6. The general view of
the vehicle in transversal
Jorce control experiments.

The vehicle may stay on one of the two triples. Let

forb=1, a

N&a) = N(za)tg ¢’ =
forb=2, a

4, ¢c=5
NP =—NPgy, = ¢ @

3, c=6
Thus, the force acting on the middle leg is orthogonal
to the bearing surface. If the vehicle center-of-mass
position satisfies

X=x@, Y=0 29)
then the forces acting on the legs » and ¢ are also or-
thogonal to the bearing plane. If the coordinates of the
center-of-mass slightly differ from their values given
by eq. (29), then the forces will not deviate insignifi-
cantly from the normal.

Computation of the distribution of the vertical and
transverse force components was programmed in
FORTRAN-4. The algorithms described in the pre-
vious sections were used for calculating the vertical
force components. The transverse force components
were calculated from egs. (27) and (28). Force redistri-
bution in accordance with eq. (18) was performed
during the joint support phase. The program cycle
time was about 90 ms. In experiments the vehicle
stamped by a triple gait between two rigid inclined
wooden planes (Fig. 6).2 The angle between each plane
and the horizon was ¢ = 35°. Figure 7 shows the time
dependence of the commanded and measured vertical

2. L. V. Saukh took part in these experiments.
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Fig. 7. Experimental results
Jor the transversal force
control.
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components of the force acting on the first leg. The
relationship between the vertical and transverse force
components for this leg is also presented. It can be
seen that as the leg is loaded, the horizontal compo-
nent increases proportionally to ensure an approxi-
mately constant direction of the force vector. The
forces in the other legs vary in the same manner.

4. Locomotion over Soft Soil

This section is concerned with the control of the vehi-
cle walking in soft soil. In this case, in addition to the
commanded position r. and commanded force N.,
real-time computations also include the commanded
leg sinkage S. from eq. (2). The computation of the
commanded leg sinkage is closely connected with the
computation of the commanded force. Note that one
of the algorithms considered here corrects leg sinkage
in the absence of force feedback.

4.1. Mechanical Properties of Soils

In locomotion over slightly uneven terrain, the hori-
zontal force components are negligible. For this reason
we are interested only in the load-sinkage curves. Such
curves for a number of soils and synthetic materials
were obtained experimentally with the aid of the vehi-
cle leg. All legs but one stayed on a rigid support; the
remaining leg was placed on soil or a synthetic mate-

16

Fig. 8. Load-sinkage curves
obtained by the vehicle leg:

—, loosened sandy loam;
-+, eranulated polyethyl-
ene.

Fig. 9. Load-sinkage curves
obtained by the vehicle leg:
—, rigid support; i+,
porolon layer.
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LORD (N)

SINKAGE (sm)

LORD (N)

rial to be investigated. The load on this leg was repeat-
edly changed from zero to a maximum value (about
100 N) and vice versa. The leg sinkage was determined
by means of joint angle sensors, and the load was
measured by means of a force sensor. Some of the
experimental load-sinkage curves are shown in Figures
8 and 9. A maximum load on the leg was 120 N, with
the foot area 30 cm?, resulting in a pressure of 40 kPa.
Note that the data presented are inaccurate. Figure 9
presents the load-sinkage curve obtained for an abso-
lutely rigid support. The slope of the curve corresponds
to the compliance of the vehicle and leg structure.

As seen from Figure 8 and known from the literature
(Bekker 1967), in natural soils the sinkage is irrevers-
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ible, Synthetic soil of polyethylene granules has similar
mechanical properties. For another synthetic material,
porolon { porometric polyurethane) (Fig. 9), the load-
sinkage relation is almost unambiguous and linear,
Thus, we consider only two simplified soil models.

For soils of the first type, all deformations are re-
versible, and the sinkage depends on load unambigu-
ously. Though such a situation is not widespread in
nature, the problem of locomotion over elastic soil is
of interest in itself. In the development of algorithms it
was assumed that the dependence of the force on the
sinkage was the same and known at any point on the
terrain.

The second type of soil has completely irreversible
deformations. Most natural soils are close to this
model. Such a soil behaves as an absolutely rigid sup-
port if the load on the foot becomes less than a maxi-
mum value already achieved. Note that the properties
of natural consolidating soils may differ considerably,
even at close points of terrain (Bekker 1967).

4.2. Basic Approaches to Locomotion Control

The simplest way to walk in soft soil is to fix the loco-
motion cycles. In this case the inhomogeneity of the
soil mechanical properties and unevenness of the sur-
face may lead to a considerable disturbance of the
vehicle motion.

A more complicated approach is the use of the loco-
motion cycle with an adaptation zone. In order that a
leg should strike the supporting surface in the adapta-
tion zone, it is necessary to stabilize the body position
relative to the support (roll, pitch, and clearance) by
compensating for leg sinkages. In a simple variant it
may be done by keeping the supporting polygon rigid
(Okhotsimsky et al. 1985). To obtain comfortable
motion, we individually corrected the motion of each
leg in accordance with its sinkage.

To correct the body motion and to control leg sink-
age, it is necessary to know the body position relative
to the bearing surface. For this purpose we used the
information on the leg positions relative to the body
and on the leg contact with the surface,

4.3. Locomotion over Elastic Soil

First, consider correction algorithms for leg motion
that allow for leg sinkage in the case where the me-
chanical properties of soil are known a priori. Two al-
gorithms of the body motion stabilization were tested
in locomotion over an elastic surface (a porolon
sheet). Let us assume that the force N¥) depends on
the sinkage s{? of the jth leg unambiguously

N® = ¢ s0), 30)
where soil stiffness C, is (known a priori) equal for all
the legs.

The first algorithm is based on the force distribution
control by means of force feedback. Since the load-
sinkage dependence is known a priori, the commanded
sinkage s¢) can be computed from the commanded
load on the leg.

The algorithm was implemented on the basis of the
vertical force control algorithm described in section
3.2. The motion of each supporting leg was corrected
for its sinkage computed from the commanded force,

s§=NG§ /c,.

A porolon sheet about 6 cm thick was used as a model
of linearly elastic soil. Its load-sinkage curve is shown
in Figure 9. Experimental results for the algorithm are
presented in Figure 10. The record is also shown of
the commanded and measured vertical force compo-
nents for one of the legs. The quality of tracking the
commanded forces in the remaining legs is similar.
The leg sinkage amounted to 5 cm, and variations in
the body position are an order of magnitude less. It
should be noted that information about the body posi-
tion obtained by means of a gyro attitude and a prox-
imity sensor was used only for recording but not for
control.

The second control algorithm also presupposes that
the soil properties are known a priori. The algorithm
corrects the motion of each leg with an allowance for
its sinkage, and does not use force feedback. The leg
sinkage will have commanded values if the corre-
sponding forces satisfy the statics equations. The com-
manded subsidence of each leg should be determined
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Fig. 10. Experimental resuits
Jor walking in porolon with
Jorce feedback and leg sink-
age control.
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on the basis of the previously computed force distribu-
tion.

Such an algorithm was implemented on the basis of
the algorithm used to compute commanded force
distribution described in section 3.2. In locomotion
over elastic soil (30), it was supposed that 5§ =
N@/c,, where N¢)is the commanded vertical force
component.

The experimental results for locomotion over the
same porolon sheet are presented in Figure 11. As can
be seen, the quality of stabilization of the body motion
is high, but the commanded forces are tracked worse
than in the previous algorithm (Fig. 10).

4.4. Locomotion in Consolidating Soil

Suppose now that the mechanical properties of soil are
unknown beforehand. Then the motion of each leg
should be corrected for its sinkage, which cannot be
computed beforehand but can be only measured.

The following algorithms are based on the assump-

18

Fig. 11. Experimental results
Jor walking in porolon with
leg sinkage control only.

—— measured force
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tion that soil deformation is completely irreversible. In
this case, if the load on the leg is less than the value
once achieved, the leg may be considered to be on a
rigid support. The absolute displacement of the body
may be determined from these leg positions.

Leg Sinkage Control

Let y and & be small deviations of the roll and pitch
of the body from its initial horizontal position and AH
be a change in clearance resulting from leg sinkage.
Write 5% for a small vertical displacement of the ith leg
after contact with soil relative to the body. The dis-
placement of this leg in the earth-fixed coordinate
system (sinkage) is
gl = AH — yx@ + gy + s 31)

Let us assume that n (n = 3) legs are on absolutely
rigid soil. For these legs, 6 = 0, and eq. (31) may be
used to determine the angular (y, 8) and linear (AH)
displacements of the body. The equations for deter-
mining the body displacement have the matrix form
ATs = q, where s = (s{0, sU2), . . ., sUx))7 is the dis-
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placement vector of the legs that are on the rigid sup-
port, and the vector q = (—AH, y, —8)7 specifies the
body displacement. The matrix A of size n = 3 is of
the form A = (a;}, where a,, = 1, @y, = xU), g, =
yU; (k= 1, n), xU9, yUs are the coordinates of the
tips of the legs on the rigid support.

The best mean-square evaluation of the body dis-
placement q from these equations is provided by the
formula

q = (ATA) 'ATs,

It is convenient to seek q as the solution of the equiva-
lent equation

(ATA)q = ATs,

which, if written in components, is of the form

n S S||-aH| |D
Sy S Sol| v | =D
Sy Sy Syl —0 D, (32)
D= 2 ng)’ Dx= S(zj)x(})’ Dy= 2 s(zj)y(j),
JEH JEH JEH

where H is the set of the indices of the legs on the
rigid surface. The expressions for Sy, S,, Sx., S,y Sy
are the same as in eq. (24) if the set of summation 1 is
substituted by H.

During the redistribution of loads on the legs the
sinkage of the legs standing on soft soil will increase.
The sinkage of each of these legs can be found by eq.
(31), using information on the position sensors. For
this purpose it is necessary to determine the body
displacement by solving system (32). To stabilize the
body and maintain the prescribed foot forces in spite
of leg sinkage, we set the change in the commanded
position of the ith leg in each control cycle equal to the
actual sinkage

s§ =00 (33)

With such an algorithm, the sinkage will increase
until the foot force becomes close to the commanded
value. The described algorithm (31)—(33) was imple-
mented on a computer and checked experimentally.

Fig. 12. Experimental results
Jor foot force control for
consolidating soil.

6

%
-
B
[
o
w
—————
% 1 2 3 4 5 6 7 8 8
TIHE (o)
g
8
Zg
2
3?
&
%I l‘ﬁ 2' 3: Lll 5‘ Gl 7| 8] 91

TIME (s)

All legs of the vehicle except the first leg stood on a
rigid support. The first leg was in soft soil (a layer of
polyethylene granules about 8 cm thick, with the gran-
ule diameter being 4 mm).

Force distribution was specified in such a manner
that, for the commanded forces satisfying eq. (21), the
load on the first leg varied from zero to a maximum
value (about 120 N). The experimental time depen-
dences of the commanded and measured forces and of
the sinkage are shown in Figure 12. The quality of
tracking the commanded forces was high enough in
spite of a considerable leg sinkage.

Locomotion by Tripod Gait

In locomotion by tripod gait, the loads on the three
supporting legs during the transfer phase are defined
unambiguously. Let us organize a uniform force redis-
tribution during the joint support phase as described
in section 3. Then during the joint support phase, the
loads on the legs of the one tripod gradually fall off to
zero. This tripod may be considered standing on a
rigid support, and we may use these legs to determine
the body displacement. At the same time, the legs of
the other tripod are being loaded and sunk in accord-
ance with the algorithms described in the previous
section.

To ensure normal locomotion, a leg should meet
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Fig. 13. Photograph of the
vehicle during tripod gait
walking in consolidating soil.

Fig. 14. Experimental results
Jor tripod gait walking in
consolidating soil.

the bearing surface in the adaptation zone. For this
purpose it is necessary to maintain the correct position
of the body relative to the surface by controlling the
angular (w, and w,) and vertical v, velocities of the
body. Since in the general case the bearing surface is
not planar, we demand that the sum of the squared
deviations of the middle points of the adaptation zones
from the bearing surface should be minimum. Let us
write z¢ for the body-fixed vertical coordinate of the
Jth leg (the leg is considered to be supporting). Let z¢)
be the desired vertical coordinate (that of the middle
of the adaptation zone).

For the sum of the squared deviations of z¢{? from
zU + 59 to be minimum, the body displacement AH,
, and @ should satisfy eq. (32), in which s{) = z0) —
z{. The angular (w,, @,) and linear (v,) velocities of
the body were taken proportional to the corresponding
desired displacements:

v,=—k,- AH, w,=—ky, o,=—k/f.

In experiments the gains k,, k,,, and k, were taken to
be approximately equal to 4/7,, where T, is the dura-
tion of the transfer phase.

At the beginning of the joint support phase, the
body motion should have ceased, because the algo-
rithm controlling leg sinkage tends to stabilize the
body (i.e., prevent its displacement with respect to roll,
pitch, and clearance).

The FORTRAN program that implements the
above algorithm requires about 20 K of memory and
has a cycle time of 140 ms. In experiments the vehicle

20
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walked with a tripod gait in a layer of polyethylene
granules about 6 cm thick, with a granule diameter of
4 mm. The load-sinkage curve for this soil is shown in
Figure 8.

A photo of the vehicle in the experiment is shown
in Figure 13. The experimental results are presented in
Figure 14. The quality of tracking commanded forces
and the stabilization of roll, pitch, and clearance is
high. For instance, clearance variation is less than
1 cm with a leg sinkage of about 5 cm, and pitch and
roll variations do not exceed 1 grad.

Walking with Soil Consolidation

In the case of the control algorithm at the transfer
phase (considered in the previous section), when leg
sinkage is not controlled, the load on the legs may rise
because of the displacement of the vehicle center-of-
mass. This may lead to an uncontrollable downfall of
the legs into soil and even to the “landing” of the
vehicle body on soil, or loss of stability if some of the
legs sink to a large extent.

To circumvent this drawback, a walking algorithm
with soil consolidation was developed. During the
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Fig. 15. Experimental results
Jor-diagonal gait walking in
consolidating soil.

4
TIME (e)

joint support phase, an intermediate loading of each
leg is performed to make contact with soil up to a
maximum achievable load. In this case leg sinkage
may exceed the permissible value only at the joint
support phase when the body position is controlled by
the remaining legs standing on the consolidated soil.

It can be shown that the load on a given leg is maxi-
mum when the vehicle stands on three legs, including
the given one. The supporting triples corresponding to
a maximum loading of each newly placed leg are de-
termined at the beginning of the joint support phase.
The latter is divided into K + 1 equal time intervals,
where X is the number of newly placed legs. During
the first K intervals, the forces are smoothly redistrib-
uted according to eq. (18) to load each newly placed
leg. Within the last interval, the legs to be transferred
are unloaded.

clearasnce

messured forceé

QP10 220 30 4w sb 80 70 8
TIME (a)

In other respects this algorithm is similar to that
described in the previous section. During the joint
support phase, the tips of the legs standing on the pre-
consolidated soil are considered to be motionless, and
the position of the legs being loaded is corrected. Dur-
ing the transfer phase, the body position is corrected.
The difference between the FORTRAN program im-
plementing this algorithm and that described in the
previous section is in the addition of a few new units.
Figure 15 presents the records obtained under the
same experimental conditions as in the preceding sec-
tion. The vehicle moved using a diagonal gait
(1, 6-2, 5-3, 4) with a step length of about 10 cm.

When several of the legs are transferred, force distri-
bution is similar to that shown in Figure 5. Since two
legs are put on soil at a time, the joint support phase is
divided into three parts: consolidation of soil under
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each of the two legs and transition to the final state
(i.e., unloading the legs to be transferred). A decrease
in load on each leg in the middle of the support phase
corresponds to force redistribution during soil consoli-

dation under the legs that are being placed at that time.

As can be seen the quality of commanded force
tracking and of stabilization of body motion is good.

Conclusion

The part of the control system of a six-legged walking
vehicle that ensures force control in locomotion over
rigid and soft bearing surfaces has been developed and
experimentally tested. Force control is based on force
feedback.

A mathematical model of the vehicle dynamics in
the presence of force feedback has been developed and
is in agreement with experiment. A number of algo-
rithms of commanded force computation have been
designed.

A high quality of tracking commanded forces has
been achieved in experiments because of a small (less
than 1 ms) delay in the force feedback loop closed
with the aid of a special analog unit. The time required
for computing commanded forces, 140 ms, is far less
than the locomotion cycle time.

During locomotion in soft soil, force control is
closely related to the correction for leg sinkage. In a
simpler case where the soil properties are known a
priori, the correction of leg position is computed on
the basis of the commanded force, with the quality of
locomotion in experiment being high. The quality of
motion is somewhat worse if the soil properties are
unknown beforehand. In this case the algorithms in-
clude the computation of leg sinkage under the as-
sumption of soil consolidation.

In all cases variations of the body motion were 3-10
times less than leg sinkage. The reliability of determin-
ing the moment of the leg’s contact with the surface
considerably influences the quality of the operation of
the algorithms developed.
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