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ABSTRACT 
 

Structural health monitoring (SHM) systems might be exposed to broadly 
varying environmental conditions that can influence the damage observations 
obtained by the system. Extracting an underlying structural damage trends from 
noisy data is an important function of an integrated SHM system.   

This paper develops and demonstrates a spatio-temporal estimation approach for 
recovering underlying damage trends from a series of noisy SHM images. The 
optimal Bayesian estimation uses monotonicity constraints to model irreversible 
accumulation of the structural damage. The problem is cast as a Quadratic 
Programming (QP) problem with just under a million of decision variables and 
constraints. We have developed a specialized large-scale QP solver for such highly-
structured problems using an interior-point method with preconditioned conjugate 
gradient search step.  

We demonstrate the proposed approach for experimental data collected with the 
Acellent SMART Layer® attached to a composite panel aircraft skin sample. A 
series of impacts was applied to the sample to initiate and grow damage. Between 
impacts, data was collected at different set temperatures leading to a series of 
images containing both evidence of damage and environmental variation. The 
estimate obtained by solving the QP provides an excellent recovery of the 
underlying damage trend while rejecting the spatial and temporal noise.  
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INTRODUCTION  
 

Development of structural health monitoring (SHM) systems for aircraft is 
driven by a desire to reduce structure ownership costs [1]. A goal is to automate 
present manual inspection regiments for aircraft. These were developed jointly by 
the US Air Force and US aircraft manufacturers starting in the late 1960s and 
assume that crack-like discontinuities exist in all the critical element of the 
structure. The flaws can potentially grow until they cause structural failure; the 
inspection regiment allows establishing damage state of the vehicle. Both the 
frequency and the resolution of the inspections ensure that the damage state does 
not become unsafe without multiple opportunities for detection. An effective SHM 
system must be almost entirely free from false alarms, unaffected by environmental 
conditions, sensor aging, and aircraft configuration changes. It must detect defects 
of ‘significant’ size at a very high level of confidence. 

While improving the resolution of the SHM system is desirable, lower 
resolution can be offset by more frequent inspections. These should provide low 
rate of misdetections and false alarms, despite measurement inaccuracies. SHM 
systems potentially must deal with broadly varying environmental conditions. For 
example, SHM data collected from an aircraft flying between Fairbanks, Alaska and 
Phoenix, Arizona could experience surface temperature varying by ~100 degrees 
between locations. Extracting the underlying trends from such noisy data is an 
important function of the integrated SHM system. Further efforts on processing 
algorithms are necessary to help overcome the environmental effect on ultrasonic 
SHM systems [2].   

Environmental conditions might cause changes in the SHM response in different 
ways. One mechanism is through changes in the structure properties, such as 
thermal expansion. For example guided elastic wave velocities can be quite 
sensitive to underlying material thickness [3, 4]. Another mechanism is through 
changes in the measurement system itself. Piezoelectric sensor materials, such as 
those based of a lead titanate-zirconate solid solution, show significant variation in 
their permittivity, coupling and mechanical quality factors with temperature [5]. 
This effects how the transducer loads the driver, the efficiency of the electrical to 
mechanical energy conversion, and the frequency content of the generated elastic 
wave. Aging is yet another source of transducer variation.  Although aging 
generally causes a smooth degradation in transducer performance, significant 
disturbances can cause discontinuous changes in this degradation profile.  

In this paper we demonstrate an approach based on optimal Bayesian estimation 
of damage from a sequence of 2D arrays of data scans corrupted by spatial and 
temporal noise. A specialized Quadratic Programming (QP) solver is used for 
computing an optimal estimate. This large scale QP solver pushes state of the art in 
optimization and is efficient enough to be suitable for avionics implementation.  

The concept of post-processing 2D arrays of SHM data to reduce the noise was 
proposed in the earlier papers [6, 7], where a linear spatio-temporal filtering 
approach was used. Herein we extend this earlier work by making an explicit use of 
the knowledge that the structural deterioration is irreversible. The damage 
monotonicity constraint leads to the proposed estimation approach that is nonlinear 
and more complex computationally, but performs much better than the linear filter.    
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EXPERIMENTAL DATA COLLECTION 
 

A representative data set for demonstrating the environmental variation effects 
and the filtering algorithms was collected with an SHM sensing system developed 
by Acellent Technologies. The system uses a network of distributed piezoelectric 
sensors/actuators embedded on a thin dielectric carrier film called the SMART 
Layer [8, 9] in combination with a portable diagnostic unit called the ScanGenie, to 
evaluate the condition of a structure. In its Active Sensing Mode, the ScanGenie 
actuates the transducers to generate pre-selected diagnostic signals and transmit 
them to neighboring sensors.  The responses can then be interpreted to determine 
the size and location of damage within the inspected region.  In its Passive Sensing 
Mode the SMART Layer sensors can continuously monitor the structure for impact 
events.  Specifically the system can: 

• Obtain real-time information on the integrity of a structure during service 
• Detect visible and hidden damage in metal and composite structures 
• Characterize damage from: i) fatigue cracks in metallic fittings, ii) 

delaminations and disbonds in composite components, iii) deterioration in 
bonded joints and iv) projectile impact damage 

• Reduce inspection and maintenance costs by providing maintenance 
personnel with the tools to easily assess damaged and take preventive action 

 
 

     
Figure 1. Composite panel with sensors 

 
Figure 1 shows an experimental setup, a 
flat 4’×4’ composite panel instrumented 
with 49 sensors distributed in a 7×7 grid 
with 7” separation between transducers. 
The panel was subjected to a series of 
impact events at a known and common 
location.  Data was collected after each 
of the nine impacts at equilibrium 
temperature for two different impressed 
environments: 20 and 40 deg C. 

Figure 2.  Diagnostic images obtained at 
20 and 40 deg C after 3, 6, 9 impacts. 

To generate the images, a technique based on Total Signal Energy (TSE) was 
used to calculate damage index values for each actuator-sensor pair.  The TSE of 
the scatter signal is compared to the TSE of the baseline signal and a corresponding 
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damage index is calculated.  The values for each path were used to generate a map 
highlighting the location of structural changes.  The map was then smoothed using a 
two-dimensional finite impulse response filter to produce the final images.  These 
images, shown in Figure 2, provide a visual representation of the location of 
structural changes and can be used as a qualitative measure of the damage extent. 
As Figure 2 illustrates, the environment variation can make a significant 
contribution to the images with signal to noise levels ~ 4:1 for fully developed 
impact damage and much lower for the early levels of damage.   

 
 

SIGNAL PROCESSING APPROACH    
 

Consider a data set Y comprising a sequence of observed diagnostic images. A 
truth data set X comprises a sequence of the underlying damage maps. 

 

Y  = {Y(1) , …, Y(N)},     (1) 

X  = {X(1), …, X(N)},      (2) 
 

where Y(t) are the observed damage images, such as those in Figure 2;  X(t) are 
underlying damage maps, which we would like to estimate, and t is scan number.  

An optimal statistical estimate of X  from Y  can be obtained by maximizing the 
conditional probability, P(X|Y). In accordance with the Bayes formula, the 
probability of the hidden underlying data conditional to the observed data can be 
factorized as P(X|Y) = P(Y|X)⋅P(X)⋅c, where c is a constant independent of X. The 
MAP (Maximum A posteriori Probability) estimate can be obtained by solving the 
optimization problem 

 

L = -log P(Y|X) - log P(X)  →  min      (3) 
 

In order to formulate the optimization-based estimation problem in more detail, 
we need to define the observation model P(Y|X), and the prior probability P(X), the 
first and second term in (3) respectively. 

The observation model characterizes SHM imaging system and was assumed as  
 

)()(**)( tEtXBtY += ,    (4) 
 

where B is a blur operator (noncausal 2-D convolution kernel) and E(t) is the noise, 
assuming Gaussian noise uncorrelated in space and time.  

The assumed prior probability model reflects the following knowledge of the 
underlying damage map X(t): (i) the damage for each pixel is monotonic 
nondecreasing in time, i.e., irreversible (ii) the damages in the neighboring pixels 
are correlated. A Markov Random Field model incorporating this knowledge is 
discussed in detail in the paper [10].  

With the assumed observation and prior model the MAP estimate (4) can be 
expressed as a convex constrained optimization problem of the form 
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where (U, V) is a dot product of the two images U and V considered as flat vectors; 
2

F
U  is a squared Frobenius norm (sum of the squared values of all pixels);

1
U  is a 

1-norm (sum of the absolute values of the pixels); and R is a non-causal 2-D 
convolution kernel coming from the Markov Random Field model. The first sum in 
(5) is a data fit error corresponding to the observation model. The last two sums in 
(5) come from the prior probability; they add a spatial and a temporal regularization 
terms. The constraints come from the temporal part of the prior model.  

The Quadratic Programming (QP) optimization problem (5) can be solved 
numerically. Solving the QP problem yields an optimal estimate X. The solution X 
depends on the choice of the spatial regularization operator R (5) which can be 
considered as a tuning parameter. A systematic procedure for choosing R to achieve 
the desired filtering performance is discussed in [10].  

The formulated MAP optimization problem (5) is a large-scale QP problem that 
might have than a million decision variables and constraints. Standard QP solvers, 
such as Mosek, do not work for problems of this size. The problem (5) is highly 
structured and can be solved very efficiently. We have developed a specialized 
large-scale QP solver using an interior-point method with a preconditioned 
conjugate gradient search step. The solution for the experimental data is produced 
within minutes on a PC and provides an excellent estimate of the trend while 
rejecting the spatial and temporal noise.  

The interior-point method in the developed QP solver uses a logarithmic barrier 
function for the constraints in (5). As usual for interior-point methods e.g. [11] it 
takes 10-50 Newton steps to achieve convergence. Each Newton step is 
computationally expensive because it requires solving a linear system with a 
Hessian matrix for step direction, where in this case the Hessian is a million by 
million matrix. The developed method uses an iterative approximate solution of the 
Newton step system by a Preconditioned Conjugate Gradient (PCG) method. The 
key is choosing a preconditioner matrix in the PCG, which is discussed in [10].   
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 Figure 3.  Signal processing logic for the SHM data. 
 
The overall logic of the computations is illustrated in Figure 3. The images Y(t) 

from the SHM sensor system are accumulated into a batch series. Then, a QP 
problem (5) is formulated by setting up the blur convolution operator B, the spatial 
regularization operator R, and the temporal smoothing parameter r. Solving the QP 
problem with the developed large-scale solver provides the estimates of the 
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underlying damage maps X(t). The process is repeated after a new image Y(t) 
becomes available.   

  
 

RESULTS 
 

As a demonstration of the proposed approach, the diagnostic images 
experimentally obtained at the two temperatures were combined to generate a 
sequence of 24 SHM images corresponding to random temperatures within the 
range and increasing damage. These 24 images made the input data Y (1) and were 
used for estimating the underlying damage maps X (2). Each image has 171 × 171 = 
29,241 pixels, a total of 701,784 pixels in each of the data sets X and Y.   

The optimization-based estimation approach used a Matlab implementation of 
the large-scale QP solver discussed above. Running on a 3.2 GHz Pentium IV the 
solver takes a few tens of minutes to produce a solution. A ‘C’ version of the solver 
is expected to provide an order of magnitude improvement when completed.   

 

 
Figure 4.  Filtered results for the test data set. 

 
After an appropriate choice of convergence criteria and adaptation parameters 

the algorithm was used to process the test data set illustrated in Figure 2. The results 
are shown in Figure 4. The images displayed in the left column show the SHM 
observation data Y(t) for t = 3, 13, 24. The images in the right column show the 
corresponding underlying damage estimates X(t). (We assume that initially there is 
no damage and subtract the baseline image). Notice that the filtered images X(t) on 
the right show a single peak, which accurately recovers the damage location.   
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As one can see, the proposed nonlinear filtering scheme substantially improves 
the quality of the damage estimate. The filtered image shows evidence of damage in 
the exact location where it was initiated and grown via the impact loading. Because 
of the environmental variation, the raw images show phantom damage in multiple 
locations on the plate. 

 
 

CONCLUSIONS    
 

We have demonstrated an approach for extracting underlying damage trends 
from SHM data distorted by noise and environmental variation. A set of SHM data 
obtained experimentally under controlled environmental variation conditions was 
used to demonstrate the approach. The noise in the data achieved up to 25% of the 
underlying damage signal, which was accurately recovered.   

The optimization-based estimation approach exploits the damage accumulation 
being monotonic, irreversible, to discriminate between the signal and the noise. The 
simple and fundamental model can be used for a broad range of SHM applications 
for different data types and structures.  

The key to implementing the approach is a large-scale QP solver. The 
developed approach and the solver software were demonstrated to perform well for 
realistic data. With a limited additional development, the approach can be ready for 
avionics implementation.  
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