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Abstract 
 

This paper presents a method for tuning the feedback controller of paper machine cross-directional 

control systems. The tuning method is based on identification of the process model, identification of the 

disturbance model and tuning the feedback controller by minimizing the paper property variations. To 

obtain a longer disturbance realization sequence and increase data available for identification of the 

process disturbance, 2-dimensional process identification residuals are used for identifying an integrated 

moving average disturbance model. The identification method is based on the Recursive Extended Least 

Squares. Based on the identified process and disturbance models, the Dahlin controller and control filter 

are tuned to minimize a quadratic performance index which includes the process output variance and the 

incremental control move variance. A penalty for excessive actuator move can be used to minimize the 

process variation while keeping the control action within acceptable bounds.  

 

The proposed method has been implemented in an industrial tuning tool. It has been validated using 

many sets of paper mill data. Extensive tests have shown that the identification algorithms are capable of 
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identifying the process model as well as the disturbance model with satisfactory precision. The tool 

predicts the closed-loop process variance and control variance with a satisfactory degree of accuracy. 

 

1. Problem statement 

 

This paper considers the tuning problem of the feedback controller of a commercial paper machine cross-

directional control system. Paper machines produce 2-dimensional paper sheet from the pulp suspension. 

On a paper machine, the paper properties, such as basis weight, moisture content and caliper, are 

measured and controlled in two directions, the machine direction (MD), i.e. the direction in which the 

paper sheet moves, and the cross-direction (CD), i.e., across the paper web. The goal of paper machine 

control systems is to compensate process variability and maintain the paper properties on target in both 

MD and CD. 

 

CD profiles of paper sheet properties are controlled by various CD actuators. Each type of CD actuator 

includes a set of the identical actuators located usually at evenly spaced points along the cross-direction. 

Depending on the application and the actuator type, there can be 20 to 300 individual actuator units in 

one CD actuator. An example of important CD actuator is the weight actuator, which adjusts the stock 

distribution across the machine by changing the opening of different sections of the slice lip in the 

headbox. Sensor measurements are located at a distance down the machine-direction from the actuation. 

Due to the high cost of sensors, limited number of sensors (1 - 2) measures only a zigzag portion of the 

paper sheet. From this limited number of measurements, the entire sheet profile must be estimated at each 

sampling time for feedback  control. This estimation can be performed in a straightforward manner using 

Kalman filtering and averaging techniques [1]. The control problem is to calculate the actuator moves 

based on the estimated profile at each sampling instance. 

 

For better control of papermaking processes, various advanced control strategies have been proposed and 

have achieved a certain degree of success [2 - 5]. However, most paper machine control systems still use 

some kinds of well established simple controllers, such as PI, PID, Dahlin and so on. Tuning of those 

controllers plays an important role in reducing impact of the process variability on the product uniformity 

and in ensuring that the process is operated at the chosen target.  

 

Controller auto-tuning has been an important research topic for a long time and various tuning strategies 

have been proposed in the literature. The Ziegler-Nichols method for tuning PID regulators [6] is a 

popular and widely accepted scheme. It is based on detection of the critical gain and critical period and a 

quarter decay criterion for controller parameter design. The Dahlin controller is a well known dead-time 

compensator and is widely used in industries. Its tuning requires the process model being identified and 

 2



the closed-loop time constant being chosen. E.B. Dahlin [7] gave some guideline for tuning the closed-

loop time constant. G.A. Dumont presented a thorough sensitivity analysis of Dahlin controller when 

subject to modelling errors [8]. He also proved optimality of Dahlin controller for a first order plus delay 

process perturbed by a first-order integrated-moving-average disturbance. Cluett and Wang [9] proposed 

a PID controller tuning method based on a specification of the desired control signal trajectory. In this 

scheme the users are provided with a tuning parameter that specifies the closed-loop response speed. It 

does give the users one more degree of freedom to chose the closed-loop performance, but it also 

increases the tuning burden. 

 

1.1  Paper machine Cross-Directional process model  

 
CD process model 
Paper machine CD control involves measuring a few hundreds of data boxes across the sheet and 

adjusting dozens of control elements (actuators). Adjustment of each actuator affects not only its 

corresponding measurement zone on the paper sheet but also that of its neighbor actuators. Therefore 

paper machine is inherently a multi-input-multi-output (MIMO) system with different number of inputs 

and outputs.  

 

For a conventional CD control system,  the high resolution measurement profile is usually transformed 

into a low resolution profile through a mapping algorithm [15], producing a profile with the same number 

of measurement output as the actuators (see Figure 1). Such a mapped process can be described as a 

square MIMO system where number of inputs and outputs is the same:   

 
v v v
y t g z G u t t( ) ( ) ( ) ( )= −1 ξ+ ,     (1) 

 

where  is a backward shift operator; t is discrete time; the output vector  has elements 

 such that each element is an averaged paper property measurement associated 

with the corresponding actuator zone; u(t) is n by 1 actuator input vector; ξ(t) is n by 1 process 

disturbance vector, each of its elements representing the lumped amount of process disturbance at a 

corresponding actuator zone; G, known as the interaction matrix,  is a n by n square matrix and each 

column of G can be formed with the CD response shape of its corresponding actuator; g(z

z−1 vy t( )

{ ( ), ,..., }y t i ni = 1

-1) is a scalar-

valued process time-response model and can usually be described as a first order, delayed process 

transfer function. 
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Figure 1: Simplified paper machine process and CD control system 

 

For the considered CD control system, control moves are determined by treating each actuator as an 

independent element, and then the subsequent control moves are adjusted taking into account spatial 

interactions using some decoupling techniques. For tractability of the tuning algorithm, it is assumed that 

the actuator responses do not overlap (in (2.1) G  is an identity matrix) and that each of actuators has the 

same dynamic response which can be described with a first order plus delay model. It is further assumed 

that the disturbance dynamics for each of actuator control zones are identical and there is no disturbance 

correlation between adjacent control zones. 

 

1.2  Feedback loop in a typical CD control system 

 
Under the above CD control assumption, the system is simplified as n independent feedback loops, which 

are identical. One of such loops is shown in Figure 2. It consists of a first order plus delay process model, 

a Dahlin controller, a control filter (first order), a display filter (first order) and a noise shaping filter. The 

tuning of the Dahlin controller time constant α and the control filter factor β depends on the dynamics of 

both the process and the disturbances. The following gives a brief description for each component in the 

feedback control loop. 
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Figure 2: Feedback loop of the considered CD control system 

 

Process time-response  model 
The process model relating actuator position to the scanned measurement is described by a first order 

plus time delay transfer function of the form  

 

g z
k a z

az
p

d

( )
( )

,−
− −

−=
−
−

1
1

1

1
1

     (2) 

 

where z-1 is a backward shift operator;  kp  is the process gain, d is the discrete process  time delay and a 

defines the process time constant; d and a can be determined through continuous to discrete parameter 

conversion: 

 

d T T
a e

d s
T Ts r

=

= −

int( / ),
,/      (2*) 

 

where Ts is the scan time, Td is continuous process time delay and Tr is continuous process time constant. 

The process parameters kp, d and a can be identified using an available method [10] from an 

identification experiment, such as a bump test. In the remaining context of this paper, it is assumed that 

the process model is available for tuning of the Dahlin controller and control filter. 

 

 Dahlin feedback  controller 

The feedback controller used in considered CD control system is a Dahlin controller. Its tuning requires a 

 5



process model being identified and a desired closed-loop time constant α being chosen. From Figure 2, it 

can be seen that the ‘process model’ used in design of the Dahlin controller should be a first order model 

whose dynamics is equivalent to that of the process model plus the first order filter. Thus the discrete-

time transfer function of the Dahlin controller can be written as: 

 

D z
k z

z z
c

d( )
( )

( )[ ( ) ... ( )
,−

−

− −=
−

− + − + + −
1

1

1 1

1
1 1 1 1

τ
α α z ]−    (3) 

 

where α defines the desired discrete closed loop time constant; d is estimate of the discrete process time 

delay; τ is the equivalent time constant of the filtered process (by control filter). The controller gain, kc is 

defined as: 

 

k
kc

p
=

−
−

1
1

α
τ( )

        (4) 

 

where kp is estimate of the process gain.  α and τ can be obtained through the conversion: 

 

α
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β
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      (4*) 

 

where Tα is desired closed-loop time constant (in seconds), Tτ  is the filtered process time constant (in 

seconds), also called the control time constant, Ts  is the scan time and β is the control filter factor. 

 

Control  filter 
For the considered CD control system, the scanned measurement profile is filtered by a control filter to 

remove high frequency noise from the profile. The control filter is of the form of an exponential filter. 

The filter transfer function can be written as follows: 

 

F z
z

( )
( )

−
−=

− −
1

11 1
β

β
    (5) 

 

where β  is control filter factor and is one of the tuning parameters. 
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Display  filter 
The display filter affects only the displayed process profiles and has no effects on the actuator moves (see 

Figure 2). Unless the display filter is disabled,  it would filter the logged high resolution process profiles 

used by the identification algorithms, so its effect on the identification of the process and disturbance 

should be taken into account. The display filter has the form of an exponential filter. The filter transfer 

function can be written as follows: 

 

M z
z

( )
( )

−
−=

− −
1

11 1
ϕ

ϕ
    (6) 

 

where ϕ  is display filter factor. 

 

 1.3 Tuning problem 

 

Given the process model parameters (2) and display filter factor (6). The tuning problem is to find a 

suitable dynamical model of the process disturbance and determine the two tuning parameters: desired 

closed-loop time constant α of the Dahlin controller and the control filter factor β. 

  

In order to tune the controller and filter optimally, a disturbance model should be established. It is highly 

desirable to determine this model from the same set bump test data as used for the process model 

identification, without resorting to additional data collection. The problem of identifying the disturbance 

model from bump test data can be formulated as follows. The data available for identification of the 

process disturbance model is residual of the CD process model identification, this residual is obtained by 

subtracting the process model response to the actuator bump from the measured bump response  

 
v v vξ ( ) ( ) ( ) ( )t y t g z G u tbump= − −1 ,     (7) 

 

where the process time response model g(z-1) and spatial response model G are identified with an 

available method [11] from the same set of bump test data. In (7) time  t =  1, 2, …, m (scan number), 

where m defines the duration of the bump test, 
vu tbump ( )  is the actuator setpoint vector, and  is the 

measured bump response.  

vy t( )

 

Based on equations (2), (3), (5) and (6) and a noise model to be developed in next section, the Dahlin 

controller and the control filter are tuned to minimize the following performance index: 
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     (8)  

 

J E Y u= + →{ }2 2ρ ∆ min,

where E(.) denotes mathematical expectation of a random variable; E(y2) is the process output variance 

and E(∆u2) is the incremental control move variance; ρ is the control weighting factor that penalizes 

excessive actuator moves. The tuning objective is to minimize the process variation while keeping 

control moves within acceptable bounds. 

 

The paper is organized as follows. Section 2 discusses identification of the disturbance model and 

explains how to use the entire 2 dimensional process identification residuals for the disturbance model 

identification. Section 3 presents the strategy for tuning the Dahlin controller and control filter used in 

the considered CD control system. The model based prediction of the process and actuator variation is 

also discussed. The validation results of the developed tuning algorithms are presented in Section 4. 

Some conclusions are drawn in Section 5.  

 

2.  Identification of the process disturbance model   

 
The disturbances associated with the papermaking process have complicated dynamics and various 

forms. Besides step-wise load disturbances, such as grade change, stock volume and consistency change, 

there are substantial periodic disturbances caused by mechanical vibration, hydraulic pulsation and 

periodic variations in raw material. In order to tune the feedback controller for optimal disturbance 

rejection, a fairly accurate disturbance model needs to be built for prediction of the process variation and 

actuator variation. 

 

A suitable disturbance model should reflect generic characteristics of paper machine disturbances and 

should also be tractable for the automatic controller tuning. For a sheet forming process, such as a paper 

machine or a plastic film line, modelling the process disturbance in the form of an Integrated Moving 

Average (IMA) model [12 - 13] proved to be successful. According to our assumption that the 

disturbance dynamics is the same for all actuator zones and there is no disturbance correlation between 

adjacent control zones, the IMA model for the disturbance ξ(t) in (7) is assumed to have the form 

 
v vξ ( ) ( ) ( ) ,t N z e t= −1      (9) 

N z
C z

z
( )

( )−
−

−=
−

1
1

11
,     (9a) 

C z c z c zl
l( ) ...− −= + + +1

1
11 − ,    (9b) 
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where  is a vector containing independent white noise elements with zero mean and variance  

and  is a monic polynomial of order l. In what follows, C(z

ve t( ) σ 2

C z( −1) -1) will be identified from the measured 

data.  

 

Note that in [8] it is proved analytically that a Dahlin controller is a minimum variance controller for the 

processes of the form (2) if the disturbance structure has the form (9a), where l = 1. Furthermore the 

optimal tuning in this case is α = cl and no filtering (β = 1). This allows for a verification of the tuning 

methods to be developed further. 

 

2.1 Identification using CD residuals 

 

The CD identification residuals (7)  will be used for the disturbance model 

identification. Experience with mill data processing shows that due to limited duration (around 20 to 60 

scans) of a common industrial bump test the residual sequences for individual zones 

v
ξ ξ ξ( ) [ ( ),..., ( )]t t tn

T= 1

ξ i t( )  can be too 

short to give a consistent estimate of disturbance dynamics. If for all zones, the disturbance sequences 

can be described by the same dynamics and are uncorrelated, as assumed in (9), then each sequence can 

be regarded as a different realization of the same random process. In our disturbance identification 

scheme, the zone disturbance sequences are cascaded to form a single vector  

 
vv m m n n

T= [ ( ),... ( ), ( ),..., ( ),..., ( ),..., ( )]ξ ξ ξ ξ ξ ξ1 1 2 21 1 1 m   (10) 

 

and used to fit the following model: 

 

v vv
C z

z
e=

−

−

−

( )1

11
,    (11) 

 

where C(z-1) is a monic polynomial of the form (9b); ve = [e(1), …, e(mn)]T, is a scalar sequence of white 

noise with zero mean and standard deviation of σ; The model parameters to be identified include the 

coefficients of polynomial C(z-1) and σ. By using the extended sequence (10), it is possible to obtain much 

better disturbance identification results and more accurate process variation prediction than by identifying 

process disturbance dynamics for each zone separately. The discontinuities in the prolonged disturbance 

sequence (10) due to cascading different zone sequences would affect accuracy of the disturbance 
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identification. This negative impact could be reduced by applying some averaging and windowing 

techniques at neighborhood of the discontinuities.    

 

Notice that the polynomial  and the sequence C z( −1) ve  appear in a bi-linear way in equation (11), so a 

suitable identification method solving the nonlinear parameter estimation problem should be used. In this 

case a Recursive Extended Least Squares (RELS) identification method [10] is used to estimate 

simultaneously the white noise sequence 
ve  and the coefficients of the polynomial  in (9b). In the 

following subsection,  the basic RELS algorithm is outlined to apply to this case. 

C z( −1)

)

 

2.3 Identification algorithm 

 

In accordance with (9b), the stochastic process in equation (11) can be represented by the following 

difference equation 

 

v t v t e t c e t c e t ll( ) ( ) ( ) ( ) ... (− − = + − + + −1 11 ,   (12) 

 

where v(t), t = 1, 2, …,  mn, is the disturbance sequence given in (10), e(t) is the white noise sequence to be 

estimated as in (11) and c1, c2, …, cl, are the coefficients of the polynomial C(z-1) in the disturbance model 

(9b). The equation (12) can be represented in the regression form as 

 

∆v t x t e tT( ) ( ) ( )= +θ ,     (13) 

 

where the differentiated disturbance sequence is given by 

 

 ∆v(t) = v(t) - v(t-1),     (14) 

  

the parameter vector to be estimated is 

 

θ = [ , , ... , ]c c cl
T

1 2 ,     (15) 

 

and the regressor vector is 

 

x t e t e t e t l T( ) [ ( ), ( ), ... , ( )]= − − −1 2             (16) 
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The difficulty of the identification problem (13)-(16) is related to the fact that the variables e(t-1), ... , e(t-l) 

in the regressor vector x(t) (16) are unknown and have to be estimated jointly with the vector θ (15). In this 

work, such estimation is performed by the Recursive Extended Least Squares (RELS) algorithm. The 

RELS algorithm can be derived as follows. Assume that for a particular t, the regressor vector x(t) (16) is 

known. Define the one-step ahead prediction error as 

 

ε( ) ( ) ( ) $(t v t x t tT= − −∆ 1θ ) ,    (17) 

 

where  is an estimate of the vector θ (15) at the time t. $( )θ t

By replacing e(t-1), …,e(t-l) in (16) with the prediction error, we can obtain the estimate of x(t) at any time: 

x t t t t l T( ) [ ( ), ( ), ..., ( )]= − − −ε ε ε1 2                         (18) 

 

Using (18)  as the regressor vector in a recursive Least Squares estimation scheme instead of (16) and 

propagating the estimate of the residuals ε(t) (17) and a least squares estimate of parameter vector θ (15) 

forward in time yields RELS algorithm, which has the form 

 

$( ) $( ) ( )[ ( ) ( ) $( )
( ) ( ) ( ) / [ ( ) ( ) ( )],

( ) ( )
( ) ( ) ( ) ( )
[ ( ) ( ) ( )]

,

θ θ θt t K t v t x t t
K t P t x t x t P t x t

P t P t
P t x t x t P t

x t P t x t

T

T T

T

T

= − + − −

= + −

= − −
− −
+ −

1 1
1 1

1
1 1

1 1

∆ ],

)

)

   (19) 

 

where P(t) is the covariance matrix of the recursive least squares estimator of θ and K(t) is the prediction 

error gain vector at step t.  

 

This method, also known as Pseudolinear Regressions (PLR), combine the estimation of the parameter 

vector and unobserved components in the regressor. The initial conditions of the RELS algorithm are set as 

follows: the parameter vector θ = 0; the covariance matrix P = cI, where c is a large positive constant and I 

is identity matrix. The correct selection of the order of the polynomial  (9b) depends on the 

characteristics of the disturbances present on the process. Normally assuming the order of  to be 

between 1 and 5 is adequate to capture the frequency contents of interest in the disturbance signal.  

C z( −1

C z( −1

 

3 Tuning strategy  
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In the developed tuning tool, the Dahlin controller and the first order filter are tuned to minimize the 

following performance index: 

 

,     (20) 

 

J E y u= + →{ }2 2ρ∆ min

where E(.) denotes mathematical expectation of a random variable; E(y2) is the process output variance and 

E(∆u2) is the increment control variance; ρ is the control weighting factor that penalizes excessive actuator 

moves. The tuning objective is to minimize the process variation while keeping the control action within 

acceptable bounds. The performance index (20) can be evaluated in a straightforward way once the process 

model (2), the controller (3) - (5) parameters, and the stochastic disturbance model (9) are available. 

 

3.1 Evaluation of the performance index 

 
Evaluation of the performance index (20) can be divided into two steps 

 

1) Evaluation of  E y( )2

 

2) Evaluation of  E u( )∆ 2

 

The procedures for computing 1) and 2) are similar. We will explain 1) in detail and computations for 2) 

can be performed in completely similar manner. 

 

From the closed-loop system block diagram shown in Figure 2, we can derive the transfer function relating 

the process output y(t) to the white noise input e(t):  

 

H z
B z
A z

N z M z
g z D z F zy ( )

( )
( )

( ) ( )
( ) ( ) ( )

−
−

−

− −

− − −= =
+

1
1

1

1 1

1 11 1 ,    (21) 

 

where g(z-1) is the process model  given by (2), D(z-1) is the Dahlin controller transfer function given by 

(3), F(z-1) is the control filter transfer function in (5), M(z-1) is the display filter transfer function in (6), and  

N(z-1) is the disturbance model in (9a); A(z-1) and B(z-1) are polynomials with real coefficients dependent on 

the coefficients in g(z), D(z), F(z) and N(z). 
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    (22) 

 

Since e(t) is the unit variance white noise, the evaluation of  can be done according to [16] as E y( 2

 

E y
j

H z H z z dzy y( ) ( ) ( )2 1
= − −∫ 1 1 ,    (23) 

 

where ∫ denotes the integral along the unit circle in the complex plane, computed in the 

counterclockwise direction. Details of computation of (23) can be found in [16]. 

 

Evaluation of can be performed in a similar way. Based on the closed-loop block diagram in 

Figure 2, the transfer function  relating ∆u to the white noise input e(t) in (11) can be found as 

E u(∆ 2 )

H zu ( )

 

H z
B z
A z

D z F z N z
g z D z F zu

u

u
( )

( )
( )

( ) ( ) ( )
( ) ( ) ( )

= =
+

∆
1

,    (24) 

 

where ∆ = 1-z-1 and  and  are polynomials with real coefficients computed from (24), (2), 

(3), (5) and (9a). 

A zu ( ) B zu ( )

 

The evaluation of  can be performed according to [16] as E u(∆ 2 )

 

E u
j

H z H z z dzu u( ) ( ) ( )∆ 2 1
= − −∫ 1 1

)

    (25) 

 

The numerical procedure for computing the above integral can be found in [16]. 

 

3.2 Minimization of the performance index 

 

Having obtained the formulae for evaluation of  and  it is straightforward to compute a 

value of the performance index (20) against a chosen pair of the tuning parameters α and β. The optimal 

values of α and β can be obtained by minimization of the performance index (20). A direct global search 

E y( )2 E u(∆ 2
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method is used in our minimization scheme. It includes computing the values of the performance index 

(20) for different combinations of the tuning parameters α and β, locating the minimum value of the 

performance index, and finding the corresponding optimal values for α and β.  

 

 

 

 

 

 

 

Figure 3: A global search domain for finding optimal tuning parameters α and β 
0 

1 (1, 1) 

1      α

β 

 

The above method requires determination of a two dimension search domain projected by α and β. Notice 

that the desired closed-loop time constant α [0, 1] and admissible values for the control filter factor β in 

(5) are also within [0, 1]. Therefore we chose a unit square with vertex coordinates (0, 0), (0, 1), (1, 1), (1, 

0) as the search domain (Figure 3). A grid node in the search domain in Figure (3) represents a 

combination of α and β tested in the search. Increasing the number of tested combinations of α and β 

improves the accuracy and increases computational load of the global search. Usually 10 to 20 values of 

the parameters for each of α and β  have to be tested to reach a reasonable vicinity of the minimum of the 

performance index (20). Only approximate optimal values for α and β can be obtained in the described 

scheme. In our numerical experiments using both mill data and simulated model data, it is found that the 

performance index surface with respect to α and β is very flat close to the minimum. This suggests that 

from practical control performance viewpoint the approximate optimal tuning parameters may work as well 

as the more accurate ones, so it is not necessary to sacrifice computational speed of the tuning algorithms 

in order to pursue absolutely accurate values of the optimal tuning parameters. 

∈

 

Based on the above described tuning methods, a feedback controller tuning tool has been designed for 

tuning the Dahlin controller and control filter in Honeywell-Measurex CD control system. The tool is 

coded in MATLAB and some of its key algorithms have been implemented as ‘C’ modules embedded into 

a LabVIEW application currently on the market.  

 

4.  Validation of the tuning algorithms 

 

As the key parts of this tool, the performance of the identification of disturbance model, as well as 

prediction of the process variation E(y2) and incremental control variation E(∆u2) critically influence 

practical applicability of the tool, therefore these parts need careful testing and validation on real-life data. 
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4.1 Optimality of the Dahlin controller 

 

Dumont [8] proved that if the process is a first order with dead time and the process noise is described by a 

first-order integrated moving-average (IMA) process, then the Dahlin controller is a minimum variance 

controller provided that the closed-loop time constant α is set to c1 (the only coefficient of the polynomial 

C(z-1) (9b) in the noise model). In the following example, this analytical result is used to verify the 

developed tuning algorithm. 

 

Trans. function g(z-1) - process model D(z-1) - Dahlin controller 

Parameter kp Td Tr Tα kp Td Tτ

Value 1 60 sec.  120 sec. * 1 60 sec. 120 sec. 

Trans. function F(z-1) - control 

filter 

M(z-1) - display 

filter 

N(z-1) - noise model 

Parameter β ϕ c1 σ 

Value 1 1 0.75 1 

Table 1: Parameter values of each component transfer function  

 

A feedback control loop shown in Figure 2 was simulated The parameters of the transfer function for each 

component in the feedback control loop are given in Table 1. The scan time is set to 30 seconds. For 

verification of the Dahlin tuning constant α using the above results, the control filter and the display filter 

in the feedback loop are disabled (their filter factors are set to 1). The process model is assumed to match 

the real plant exactly. By continuous to discrete parameter conversion in (2*) and (4*),  the considered 

process is described by 

 

y
z

z
u

z
z

e=
−

+
−

−

−

−

−

−

0 22
1 0 78

1 0 75
1

3

1

1

1

.
.

.
    (26) 

 

The Dahlin controller for the process (26) is given by 

 

D z
z

z z
( )

. ( )( . )
( )

−
−

−=
− −

− − −
1

1

1

0 55 1 1 0 78
1 1

α
α α −3 ,    (27) 

 

where α defines the closed-loop time constant Tα in (4*). 

 

 15



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

+

Process variance vs. closed-loop time constant

Optimal alpha=0.750; P_var =   1.12
 

Figure 4: Optimality of the Dahlin controller 

 

The tuning performance index (20), where the control weighting factor ρ was set to 0 for purpose of 

verification of the tuning algorithms, was computed in accordance with (23) for different values of the 

tuning parameter α. Figure 4 shows the performance index versus the tuning parameter α. It can be seen in 

Figure 4 that the optimal α is 0.75 that is the same as the noise model parameter c1. This  confirms the 

result of [12] and also verifies the consistency of the tuning algorithm and software. 

 

4.2 Validation using paper mill data 

 
In order to validate the developed disturbance identification and process variation prediction algorithm, a 

mill trial was conducted in a Canada paper mill on July 17, 1997. The paper machine produces 40.5 g. 

newsprint. The basis weight is controlled by motorized slice lip actuators and moisture by water spray 

actuators. The average scan time is 26 seconds.  

 

Model identification 
During the mill trial, a weight bump test was performed and 38 scan data were collected. The developed 

software was used to process the bump test data and identified the process time response model. The 

identified process parameters together with the model fitting curve are shown in Figure 5. 
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Figure 5: Identification of the process time-response model 

 

An integrated-moving-average model in the form of (11) was used for the process disturbance 

identification. The degree of  the noise shaping filter  in (9b) is chosen as 1 and  the number of the 

valid control zones is 68. Figure 6 shows the identified parameters and the autocorrelation functions of the 

process variation and the residual. γ  illustrates how close the autocorrelation of the residual (dashed line) 

is to that of an white noise. A small obtained γ  (0.098) indicates that the identification result is credible. 

Since the original disturbance is close to an white noise (see Figure 6), it is adequate to choose the degree 

of  as 1. The identified disturbance model is as follows: 

C z( −1 )

)C z( −1

 

N z z
z

( ) . , . , .−
−

−= −
−

= =1
1

1
1 0 81

1
01709 0 098σ γ    (28) 

 

where σ is standard deviation of the residual and represents the process variation intensity. 
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Figure 6: Identification of the process disturbance model 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14
0

0.02

0.04

0.06

0.08

0.1

0.12
Noise model spectrum- solid;   spectrum estimate - dashed

Frequency rad/sec
 

Figure 6a: Spectrum of the open-loop process variation: predicted for the identified variation model (solid) 

and directly estimated from the data (dashed) 

 

Check of predicted process and actuator variation 
In order to validate the above identified models, two different controllers with parameters shown in Table 2 

were implemented and 55 scans of steady state closed-loop data for each of them were logged. Controller 

#1 is used at the mill, the controller #2 was implemented during the trial with the purpose of the prediction 

verification. In Table 2, Tα represents the continuous desired closed-loop time constant of the Dahlin 
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controller and β stands for the control filter factor (0 < β < 1, 1 - no filtering). The filtering of the control 

filter for the controller #2 was smaller than that for the controller #1 by more than 100%, so more 

aggressive actuator moves for the controller #2 could be expected (see Table 4). 

 

The prediction of the process and actuator variations based on the identified models and the used two 

controllers was evaluated through (23) and (25). The actual process and actuator variations were computed 

using TAPPI recommended formula [14], based on the logged process closed-loop steady state data. The 

predicted variation was compared with the actual variation in Table 3 and 4. 

 

 Controller one Controller two 

Process gain kp 0.2174 0.1952 

Process time delay Td 85.09 74.77 

Control time constant Tτ 129.35 119.27 

Closed-loop time constant Tα 258.70 268.4 

Control filter factor β  0.2 0.49 

Display filter factor ϕ  1 1 

Table 2: Parameters of two tested controllers 

 

Table 3 shows the measured and predicted 2 sigma of process variation for the two tested controllers. The 

prediction is very accurate and the error is less than 5%. Table 4 shows the predicted 2-sigma and 

measured 2-sigma for incremental actuator move. Although there were some prediction errors, the change 

direction of the actuator variation when tuning the controller was predicted correctly. When the controller 

parameters was changed from the setting one to setting two, the predicted actuator 2σ increased from 

0.1601 to 0.4072, which was in satisfactory correspondence with the change in real actuator variation ( 

increased from 0.1657 to 0.4448).  

 

 Controller one Controller two 

Predicted profile 2-sigma (23) 0.3471 0.3439 

Measured profile 2-sigma [13] 0.3421* 0.3323* 

* consists of MD and residual component 

Table 3: Comparison of predicted  2-sigma and measured 2-sigma for the process variation 
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 Controller one Controller two 

Predicted incremental control 

move 2-sigma (25) 

0.1601 0.4072 

Measured incremental control 

move 2-sigma [13] 

0.1657 0.4448 

Table 4: Comparison of predicted 2-sigma and measured 2-sigma for incremental actuator move 

 

Validation of  predicted process and actuator spectrum
The above process model and disturbance model identified from the open-loop data were verified by 

checking accuracy of the power spectrum prediction for the closed-loop operation. The predicted closed-

loop process and actuator spectrum based on the identified models and used controller were obtained 

with (A3) and (A4), while the measured power spectrums were computed from the process steady state 

measurement data using MATLAB function SPECTRUM.M. The predicted spectrum was compared with 

the measurement spectrum so that the identified models can be validated. 

 

Open-loop process spectrum check 

For the identified disturbance model (28), the predicted incremental process spectrum was obtained using 

formula (A2)  

 

01709
2

1 0 81
2

2.
|( . )|

π
ω− −e j   (31) 
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Figure 7: Comparison between predicted spectrum and measurement spectrum of the open-loop process 

variation 

 
This predicted spectrum was checked with the measurement spectrum computed from the open-loop 

disturbance sequences using MATLAB function SPECTRUM.M. Here again the zone disturbance 

sequences were cascaded in order to increase amount of data used for the spectrum estimation. 

 

Figure 7 showed that the predicted spectrum matched the  measurement spectrum fairly well. This 

illustrated a good applicability of the identified disturbance model. Since the same data set (the weight 

bump test data) was used for the disturbance model identification and for the measurement spectrum 

estimation, this check could only prove that the disturbance model was adequate and accurate for this 

data set. It would be shown in the following section that the identified process and disturbance models 

could be used for predicting the process and actuator spectra while the process was in closed-loop 

operation. 

 

Closed-loop process spectrum check  

The closed-loop transfer function relating the process output y(t) to the white noise input e(t) was given 

by (21),  where the parameter values in each component were listed in Table 5. These values were 

obtained from Figure 4, Table 3 and (28), based on the above mentioned process and disturbance 

identification results. Controller #1 was used for the closed-loop process spectrum validation. 

 

Trans. function g(z-1) - process model D(z-1) - Dahlin controller 

Parameter kp Td Tr Tα kp Td Tτ

Value 0.204 56.67  13.36 258.7 0.217 85.09 129.4 

Trans. function F(z-1) - control 

filter 

M(z-1) - display 

filter 

N(z-1) - noise model 

Parameter β ϕ c1 σ 

Value 0.2 1 -0.81 0.1709 

Table 5: Paramer value of each component transfer function used in the spectrum check 

The closed-loop predicted process power spectrum was obtained by substituting the parameter values in 

Table 5 into (A3) and was plotted in Figure 8 (solid line). MATLAB function SPECTRUM.M was used 

to compute the measurement spectrum using the steady state operational data. For comparison, the 

measurement spectrum was also plotted against the predicted spectrum in Figure 8 (dashed line). Good 

match between these two spectra shows not only the process model but also the disturbance model were 

applicable to the real process variation prediction. In Figure 8 the mismatch over  very low frequency 

range was likely caused by the way in which the disturbance sequences were handled. Putting the zone 
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disturbance sequences into one series would generally add some false low frequency component into the 

signal, so the information over very low frequency range (period > the bump test duration or duration of 

steady state data collection) should be disregarded. 
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Figure 8: Comparison between predicted process spectrum and measurement spectrum 
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Figure 9: Comparison between predicted spectrum and measurement spectrum for actuator variation 

 

Closed-loop actuator spectrum check 
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The predicted actuator spectrum was obtained by substituting the parameter values in Table 5 into 

formula (A4). The measurement spectrum was calculated using MATLAB function SPECTRUM.M 

based on the steady state data. The predicted actuator spectrum and the measurement spectrum were 

plotted in Figure 9. Good match between these two curves suggested that the identified process and 

disturbance models could be used for predicting the process variation and for tuning the feedback 

controller. 

 

5.  Conclusions 

 

Controller automatic tuning is a highly desirable and useful feature for an industrial control system. The 

feedback controller tuning method presented in this paper is designed to work with industrial Honeywell-

Measurex CD control systems and aims at assisting the field personnel in tuning and maintaining the 

feedback controller of the CD control systems. This would reduce the production loss due to intervention 

of the controller manual adjustment and improving paper product quality.  

 

In order to tune the Dahlin controller and control filter for optimal disturbance rejection, it is necessary to 

establish a fairly accurate model of the paper machine process disturbance. To increase data available for 

identification of the disturbance model, all zone disturbance sequences from the bump test CD residual 

are cascaded to form a longer disturbance sequence. By doing so, overall accuracy of the disturbance 

identification is improved due to the significant increase of the data available for the disturbance 

identification. Since optimality of Dahlin controller for a first order process and first order Integrated 

Moving Average disturbance has been proved analytically, the used Integrated Moving Average 

disturbance model allows to verify the developed tuning algorithms by comparing the tuning results to 

the analytical solution in the literature. It is shown by simulation and mill data tests that the used 

Recursive Extended Least Squares method has good convergence properties and applicability. For a few 

cases, when the disturbance data were not sufficiently rich, the RELS failed to give a correct estimate. It 

is possible to correct it by extending collection of the bump test data. 

 

The tuning of the closed-loop time constant α in the Dahlin controller and control filter factor β is based 

on minimization of the given quadratic performance index. Although the obtained α and β are 

approximate optimal values, the accuracy satisfies the most applications of paper machine CD control.  

 

The developed feedback controller tuning tool has successfully tested through simulation model, a 

hardware-in-the-loop paper machine simulator and many sets of mill data. Simulation has shown that the 

implemented identification algorithms are capable of identifying the process model as well as the 

disturbance model with satisfactory accuracy. For mill data tests it is shown that the identified 
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disturbance model captures basic characteristics of the process variation and overall the process variation 

is predicted with a satisfactory degree of accuracy. Fairly good match between the predicted spectra and 

the true spectra indicates that the identified models are applicable to prediction of the real process and 

actuator variation.  

 

The observed process variation prediction errors can be attributed to insufficient and/or inaccurate 

models, changing disturbance dynamics, actuation nonlinearity, short data sequence for the identification 

of the process and disturbance models and so on. For better tractability of the problem, in the developed 

algorithm it is assumed that the disturbances in adjacent zones are independent and the actuator CD 

response is narrow (about 1 or 2 zones wide). In most cases, the developed algorithms give reasonable 

tuning parameters as long as these assumptions hold.  

 

Appendix Some formulae for spectral prediction  
Consider the feedback loop in Figure 2, the disturbance model (11) can be written as 

 

∆
~

( )
~( )

( )
ξ

σ
z

e z
C z= −1 ,  (A1) 

 

where ∆
~

( )ξ z  is Z transformation of the incremental process variation sequence, ~( )e z  is Z 

transformation of the white noise sequence with zero mean and unit variance, C(z-1) is a monic polynomial 

of the form (9b), and σ is standard deviation of the disturbance identification residuals. The power 

spectrum of the predicted incremental process variation is 

 

σ
π

ω
2
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2
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The  closed-loop predicted process power spectrum can be obtained directly from (21) 
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 The predicted incremental actuator power spectrum can be obtained from (22)  
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