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Abstract— This paper presents a novel approach for con-
strained state estimation from noisy measurements. The opti-
mal trending algorithms described in this paper assume that
the trended system variables have the property ofmonotonicity.
This assumption describes systems with accumulating mechan-
ical damage. The performance variables of such a system can
only get worse with time, and their behavior is best described
by monotonic regression. Unlike a standard Kalman filter
problem, where the process disturbances are assumed to be
gaussian, this paper considers a random walk model driven by
a one-sided exponentially distributed noise. The main contri-
bution of this paper is in studying recursive implementation of
the monotonic regression algorithms. We consider a moving
horizon approach where the problem size is fixed even as
more measurements become available with time. This enables
us to perform efficient online optimization, making embeded
implementation of the estimation computationally feasible.

I. I NTRODUCTION

This work studies prognostic estimation algorithms for
system health management applications. The initial motiva-
tion for the development of these algorithms was aircraft
maintenance automation. The problem statement and algo-
rithms can also be applied in many other applications where
system performance needs to be monitored and trended.
Such applications include automotive telematics, semicon-
ductor fab equipment, industrial and chemical processes,
and nuclear power plants. A specific focus of this paper
is on embedded algorithms for mission-critical systems.
These onboard algorithms are particularly useful for real
time trending in aerospace and biomedical applications.

We develop trending algorithms that provide reliable
online estimation of gradually deteriorating fault conditions
in the presence of noise. Many efficiency loss parameters
are associated with physical deterioration of hardware due
to mechanical wear or erosion. These parameters are a priori
known to grow (or decay) with time. They never decay (or
grow) unless a maintenance action is performed. We use the
monotonic regressionframework presented in [5] to model
such deterioration in fault parameters. Monotonic regression
is an advanced statistical technique that has been used for
some time; see [12], [13]. The prior publications in that
area provide ad hoc algorithms. In this work we model
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the monotonic behavior and present algorithms within an
optimal filtering formulation that can be implemented on-
line. The model uses a one-sided exponential distribution
for the random process driving the system state evolution.
This is unlike the well-known Kalman filter approach where
a symmetric (gaussian) distribution is used. See [5] for more
information about the monotonic regression model. The
work in [5] was focused on batch mode off-line processing.
In this paper we extend that approach towards embedded
online implementation.

One of the reasons why Kalman filtering is popular in
practice is its recursive nature. Most modern navigation
systems routinely use Kalman filters with simple models
for trending motion of mobile platforms. However a batch
optimization solution of the monotonic regression problem
results in a growing size of the problem as more measure-
ments become available. In many aerospace, automotive,
and other applications there is a need for embedded im-
plementation of the monotonic regression and the contin-
uous growth of the problem size is unacceptable due to
memory limitations. As a step towards recursive trending,
we use moving horizon approach to the optimization-based
solution. Such approaches were initially developed and
applied to control problems, which can be considered dual
to the estimation problems [6], [11]. More recently moving
horizon optimization has been used in the estimation setting,
e.g., see [1], [4]. The moving horizon formulation allows us
to keep the problem size fixed even as more sensor data be-
comes available. However considering only a subset of the
total available measurements complicates the convergence
analysis of the estimation method. This is a focus of current
research. The prior work in this area,e.g., see [9] however,
considers problems without constraints that are linearizable.
The receding horizon estimation formulation in this paper
is different because it is based on constrained optimization.

The paper is organized as follows; Section II introduces
our notation and the residual data model that we use in the
later sections. Section III briefly discusses the monotonic
regression framework used in this paper. Moving horizon
formulation is presented in Section IV, where the dete-
riorating trend is estimated by solving a fixed dimension
constrained quadratic programming (QP) problem at each
step. Section V discusses some computational issues, and
provides an example of the moving horizon trending algo-
rithm. Concluding remarks are given in Section VI.
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II. PRELIMINARIES

The mathematical problem statement considered in this
paper deals with trending gradually deteriorating fault pa-
rameters from noisy sensor data. Letx(t) be such a mono-
tonic fault parameter at the usage cyclet. As an example
think of x(t) as a variable describing wear in an engine
which can only get worse with time due to accumulating
mechanical damage. Lety(t) denote the estimate ofx(t)
at the cyclet. This estimate depends on internal sensor
measurements or on data from ambient conditions. The
estimatey(t) may differ from the performance deterioration
variablex(t) due to modeling inaccuracies or sensor noise
and is given as

y(t) = x(t) + γ(t), (1)

whereγ(t) is the ‘noise’ variable. The data model (1) is
used as a basis for the estimation algorithm design in this
paper. For the remainder of this paper we assume that in
(1) the observationy(t), the underlying trendx(t), and the
noise γ(t) are all scalars.γ(t) is an uncorrelated (white)
noise sequence, where variableγ is zero mean gaussian
distributed with the covarianceΓ

γ ∼ N(0, Γ) :
{

P (γ ≤ q) =
∫ q

−∞
p(γ)dγ,

p(x) = NΓ(x) ≡ 1√
2πΓ

e−x2/(2Γ)

}
. (2)

The trending algorithms can be easily extended to include
the case of multiple faults,x ∈ <n, n > 1. We only
consider the single fault case since it provides more clarity
in presentation.

III. M ONOTONIC REGRESSION

Consider the data sequencesx(t), y(t) in (1) on the
interval t = 1, . . . , N. We represent the sequences as

YN = {y(1), . . . , y(n)}, (3)

XN = {x(1), . . . , x(n)}. (4)

For now we limit our attention to the fixed size fault
trending problem, which is to estimate the underlying
fault parameter sequenceXN based on the observed data
sequenceYN . This problem is discussed in greater depth in
[5]. We only present a brief review of the results of [5] in
this section. In Section IV we will use the moving horizon
approach to develop recursive algorithms for the case when
the size of the estimation problem grows beyondN as more
measurements become available with time.

In addition to the statistical model of the observation
noise (2) we also need a statistical model for the fault
parameter sequence (4). A standard probabilistic method
for modeling the unknown underlying sequence is to use a
Random Walk model that has the form

x(t + 1) = x(t) + ξ(t), (5)

where ξ(t) is a normally distributed uncorrelated white
noise sequence with covarianceΞ

ξ ∼ N(0,Ξ). (6)

The initial state of the sequence is also assumed to be
normally distributed with the meanx0 and covarianceQ0

x(t = 1) ∼ N(x0, Q0). (7)

The filtering problem is to estimate theorbit x(t) of the
Markov chain (1)–(7) from the noisy sensor datay(t). The
state of the chain at timet is fully defined by the distribution
of the random variablex(t). Since variables are gaussian,
an optimal estimate of the trend for this classical random
walk model is given by the Kalman Filter. The derivation
of Kalman Filter is well-known and can be found in [7].

In the monotonic regression framework, we consider a
non-standard model of the random walk driven by a random
sequence with an exponential distribution for each term. The
nonlinear filter implementing the monotonic regression is
derived as an optimal estimator for this model. Letξ(t)
in (5) be anexponentiallydistributed uncorrelated noise
sequence. The exponential distribution is given as

ξ ∼ E(λ) :
{

P (ξ ≤ q) =
∫ q

−∞
p(x)dx,

p(ξ) = Eλ(x) ≡ 1
λ

e−x/λ

}
. (8)

The probability distribution of the initial conditions is still
given by (7). Now consider the problem of estimating the
orbit x(t) of the same Markov chain with the exponential
noise distribution (8) replacing the gaussian distribution
given in (6). The derivation is similar to the Kalman Filter
derivation and is given in [5]. It results in an optimization
problem that needs to be solved for finding the MAP
estimate of the orbitx(t). We just state the optimization
problem whose solution yields the required estimate and
refer the reader to [5] for further details of the derivation.

J =
1

2Q0
[x(1)− x0]2 +

1
2Γ

N∑
t=1

[x(t)− y(t)]2 +

1
λ

N∑
t=2

[x(t)− x(t− 1)] → min, (9)

subject to

x(1) ≤ x(2) ≤ . . . ≤ x(N). (10)

If the initial condition covarianceQ0 →∞, i.e., no a priori
information aboutx0 is available then the first term in the
loss index disappears and solving the problem would yield a
Maximal Likelihood estimate of the orbitx(t). On the other
hand if in (9) we assume that the initial state information is
exactly available, and the initial condition covarianceQ0 →



0 then it results in the following problem

J =
1
2Γ

N∑
t=1

[x(t)− y(t)]2 +
1
λ

N∑
t=2

[x(t)− x(t− 1)]

→ min, (11)

subject to

x(1) = x0; x(1) ≤ x(2) ≤ . . . ≤ x(N). (12)

The estimation of theorbit x(t) in the monotonic re-
gression framework is a QP problem with convex (linear)
constraints, and very efficient computational techniques are
available for solving such problems. A QP solver using
sparse arithmetic has been developed during the course of
this work. It is ideally suited to embedded implementation
and is used for the simulation results of Section V. The
solution to (9), (10) depends on the tuning parameter,
β := λ/Γ and the choice of the initial condition covariance.
The last term in the loss function (9) provides a linear
penaltyβ−1[x(N) − x(1)] for the overall increase of the
fault estimatex through the observation time. The weight at
this penalty is the ratio of the observation noise covariance
Γ to the fault driving noise covarianceλ. This parameterβ
can be tuned empirically to achieve the desired performance
of the filter.

So far we have assumed a univariate problem formula-
tion. In the multivariate form of (1)

y(t) = S(t)x(t) + γ(t),

wherex ∈ <n, y ∈ <m, S ∈ <m×n we can use a parameter
λ = λj to describe the exponential distribution of each
monotonic componentxj of vectorx. This will lead to the
following loss function

J =
1
2
[x(1)− x0]T Q−1

0 [x(1)− x0]

+
1
2

N∑
t=1

[S(t)x(t)− y(t)]T Γ−1[S(t)x(t)− y(t)]

+
N∑

t=2

n∑

j=1

[xj(t)− xj(t− 1)]
λj

→ min, (13)

whereQ0 is the initial condition covariance matrix andΓ is
the covariance matrix for measurement noise. We consider
the univariate case in this paper but the developed results
can be easily extended to include the multivariate problem
statement.

The main difficulty with the problem (9), (10) is in the
presence of the constraints. When the statistical model of
the underlying trend sequence (5) is driven by a gaussian
noise distribution (6) there are no constraints in (9) and we
just get a standard least-squares problem. If we assume a
gaussian distribution for all the random processes, then the

unconstrained least-squares problem takes the form

J =
1

2Q0
[x(1)− x0]2 +

1
2Γ

N∑
t=1

[x(t)− y(t)]2 +

1
2Ξ

N∑
t=2

[x(t)− x(t− 1)]2 → min, (14)

where Γ and Ξ represent the covariances of the mea-
surement and process noise respectively. This batch least-
squares approach is used in Section V to compare the
accuracy of the results of our moving horizon monotonic
regression filter.

IV. M OVING HORIZON ESTIMATION

The monotonic regression problem discussed in the pre-
vious section assumes batch processing of the data se-
quences and consequently limits the estimation problem
size. Whereas this approach may be suitable in some cases
many other safety-critical applications require embedded
filters for online optimization. The problem size grows with
time as an embedded filter processes more data resulting
in an increase in computational complexity. The moving
horizon formulation is specifically used to overcome this
problem.

The basic idea in the moving horizon approach is to
maintain a constant length of the estimation window by dis-
carding the oldest sample as a new measurement becomes
available. However working with only a subset of the total
available information raises some important performance
and stability issues which need to be addressed. Moving
horizon control, commonly called model predictive control,
has been studied extensively during the last decade; see
[10], [2], [3]. More recently the moving horizon strategy,
also referred to as sliding window, finite or limited memory
or receding horizon, has been applied to estimation prob-
lems; see [8], [9]. Most of the work in constrained moving
horizon estimation uses a least-squares framework, and the
results reduce to a standard Kalman filter in the absence of
constraints.

We present a moving horizon estimation algorithm for
monotonic regression which computes a new estimate at
each step by solving a finite horizon constrained QP prob-
lem. The data set at each step is defined by the current
time to current time minus a fixed horizon. Recursive
computations enable estimation of the fault parameters
using the most recent time interval. This allows us to keep
the problem size bounded as more measurements become
available.

A. Trending approach

The observed data sequenceYN in (3) yields a con-
strained QP problem of dimensionN given by (9), (10).
Define{I}N

1 := {t = 1, . . . , N} as the information interval
for this optimization problem. It is assumed that the estimate
based on{I}N

1 is computed efficiently enough for us to fix



the horizon size toN . In an embedded implementation of
the monotonic regression filter new data for processing con-
stantly becomes available,e.g., as a result of one additional
measurement the information interval{I}N

1 expands to
{I}N+1

1 := {t = 1, . . . , N +1}. For an arbitrary number of
additional measurements we define the estimation problem
over the interval{I}M

1 , with M > N , as

J =
1

2Q0
[x(1)− x0]2 +

1
2Γ

M∑
t=1

[x(t)− y(t)]2 +

1
λ

M∑
t=2

[x(t)− x(t− 1)] → min, (15)

x(1) ≤ x(2) ≤ . . . ≤ x(M) (16)

We refer to (15), (16) as the full information problem since
it takes into account all the available data at that instant.
This however results in a QP problem of dimensionM . As
more and more data becomes available for processing, the
information interval expands further and the dimension of
the constrained QP problem continues to grow.

B. Moving Horizon Scheme

The standard approach to proving convergence of moving
horizon estimation (MHE) for a purely quadratic loss func-
tion is the use ofarrival cost strategy. This is analogous
to thecost to goconcept used in control problems. Arrival
cost is used to summarize all the information prior to the
current horizon. The convergence of MHE algorithms based
on the arrival cost concept depends on the accuracy with
which the old data is approximated by the arrival cost.
In the specific case of monotonic regression, we have a
loss function with a linear penalty term and constraints.
The convergence results of [8], [9] cannot be applied
directly as a result. The arrival cost cannot be computed
in a convenient way for our problem. In this paper we
propose to use a quadratic cost as an approximation that
leads to practically convenient algorithms. The matching of
the MHE and the full information estimate in monotonic
regression framework is governed by the quadratic penalty
term for the initial condition of each horizon.

Consider a Moving Horizon Estimation problem over the
interval {I}M

M−N+1. From now onwards we use the end
point of the interval in subscripts to refer to the horizon that
it indicates. The MHE problem is defined over the interval
{I}M

M−N+1 as

J =
1

2Q0(M)
[x(M−N+1) − x0(M)]2

+
1
2Γ

M∑

t=M−N+1

[x(t)− y(t)]2

+
1
λ

M∑

t=M−N+2

[x(t)− x(t− 1)] → min (17)

x(M −N + 1) ≤ . . . ≤ x(M), (18)

wherex0(M) and Q0(M) define the initial state mean and
covariance for the moving horizon estimation problem over
the interval{I}M

M−N+1. The above MHE is a constrained
QP problem of dimensionN . As more measurements
become available (M increases), we continue to slide the
window accordingly. At every instant in the MHE, com-
putations starting from the new measurement are repeated
over a shifted horizon. This limits the MHE problem to a
fixed size while the full information problem given by (15),
(16) grows without bound. Note that fort ≤ N , MHE and
the full information problem are the same.

In a moving horizon regression filter we solve the fixed
dimension constrained QP problem of (17), (18) at each
step. One important aspect of computing the estimate in
each horizon is to define the initial state estimatex0(M) for
each next window.

Say we compute an estimate for the first horizon{I}N
1 .

This equals the full information estimate ast = N . Then as
an additional measurement becomes available, we slide the
window to compute the estimate over the interval{I}N+1

2 .
In doing so, we assume that the starting point for the
estimate in the interval{I}N+1

2 is known from the previous
estimate over the interval{I}N

1 . Let x̂(2|N) denote the
estimate for the second point of the sequence given mea-
surements over the interval{I}N

1 . Then we define the initial
condition estimate in the next horizon{I}N+1

2 by setting
x0(N+1) = x̂(2|N). In a similar manner we set the initial
condition for the next horizon{I}N+2

3 , denotedx0(N+2),
to equal x̂(3|N + 1). By explicitly defining the initial
conditions for computing the estimate in each horizon, we
can prove exactness of the moving horizon and the full
information monotonic regression filter for some special
cases. Mathematically we can express the specification of
initial condition for each next horizon as

x0(t) = x̂(t−N + 1|t− 1), (19)

where the notation̂x(k|j − 1) denotes the estimate for a
point k given measurements over the interval terminating
at j− 1. This way of specifying the initial condition works
well for the monotonic regression framework. It is easy to
keep track of the estimate from the most recent window to
specify the initial point of the next horizon. This does not
raise any complicating memory issues if the horizon size is
chosen appropriately.

C. Hard Constraint

Assume now that the initial condition covarianceQ0 →
0. Then the initial state is defined by the hard constraint
(19) and the MHE problem (17), (18) reduces to

J =
1
2Γ

M∑

t=(M−N+1)

[x(t)− y(t)]2 +

1
λ

M∑

t=(M−N+2)

[x(t)− x(t− 1)] → min, (20)



x(M −N + 1) = x0(M),

x(M −N + 1) ≤ . . . ≤ x(M). (21)

Using the hard constraint (21) is different from the
commonly used techniques in literature [8], [9]. These
results assume gaussian distribution and work with a loss
function with quadratic penalty terms.

We now state an important assumption which guarantees
convergence of the MHE monotonic regression algorithm
when the initial state is defined by (19).

Assumption 1:Assume that the moving average of the
sequence of measurements is increasing as we move from
one window to the next to compute the receding horizon
estimate. LetY denote the moving average of a sequence
of measurements,i.e.,

Y (t) =
1
N

t∑

t−N

Y (t), (22)

then an increase in moving average for each next horizon
implies

Y (t−N) ≤ Y (t−N + 1) (23)
This assumption is reasonable if the underlying trend

is monotonic nondecreasing and the estimation horizon
is considered large enough to provide sufficient statistical
averaging for reducing the noise influence on the fault
parameter estimates. We can now state the main proposition
for this MHE scheme.

Proposition 1: Given a monotonic regression framework,
the moving horizon estimate given by (20), (21) exactly
equals the full information estimate of (15), (16) if the
assumption in (23) is satisfied.

D. Other Covariance Choices

Proposition 1 is valid only for an appropriately chosen
horizon length for which the assumption in (23) holds true.
This assumption is somewhat limiting and not realistic in
most practical cases. The quadratic penalty term in (17) will
in general determine the error between the full information
estimate and the MHE. The scheme discussed in (20), (21)
is just one limit case of the penalty term. The other limit
case for the penalty term will be when the initial condition
covariance is very large,i.e., Q0(M) → ∞. This implies
that the initial condition for each moving window is left free
as the penalty term in the loss index disappears. Choosing
an appropriate initial state to guarantee convergence of the
MHE algorithm is a subject of current research. The choice
of measurement noise covariance to define the initial state is
suitable in some cases. The measurement noise covariance
is an easily available problem parameter that describes
the order of magnitude for the arrival cost distribution
covariance.

The moving horizon estimate is much easier to com-
pute than the full information estimate of (15), (16). As

additional measurements become available, the size of the
full information problem continues to increase, making it
computationally intractable. On the other hand the moving
horizon estimation algorithm can perform efficient online
estimation without being limited by excessive memory
requirements.

V. SIMULATION AND COMPUTATIONAL ISSUES

Many computational methods are available for solving
the convex optimization problem that we encounter in
moving horizon fault estimation. When dealing with specific
applications, a routine that best exploits the problem struc-
ture is usually more efficient than a general purpose solver.
We used primal-dual interior-point methods to develop a
solver that is based on sparse arithmetic. This solver is
used in estimation and numerical analysis of our receding
horizon monotonic regression filter. For a constrained QP
problem over a fixed length horizon of50 data points,
the developed solver outperforms the QP solver in the
MATLAB Optimization Toolbox by two orders of mag-
nitude. In an embedded implementation where repeated
estimates are required for each moving horizon this fast
processing is extremely important. The performance of the
developed solver is comparable to MOSEK which is the
commercially available benchmark in speed. The solver is
written in only 25 lines of MATLAB code which makes it
much easier to implement in an embedded framework. The
memory requirements for onboard processing depend upon
the length of the moving horizon. The memory allocated
by the developed solver for computing the fault estimates is
equal to the space required for storing an array of six times
the chosen horizon length. The efficient performance and
limited memory requirements make the developed solver
ideally suited for online implementation.

Fig. 1 shows the moving horizon estimate based on the
initial condition constraint (19) for a randomly generated
data sequence that satisfies the assumption in (23). The
full information estimate and the moving horizon estimate
overlap and appear as one curve. For the200 data point
sequence a moving window of size20 with a tuning
parameter value ofβ = 4 was used for this simulation.
Solution of batch least-squares using (14) is also plotted to
provide a comparison for the accuracy of our monotonic
regression filter. As shown, the MHE gives a much better
estimation of the underlying orbit than the least-squares
solution. The random scatter in the data is ignored and the
deterioration in performance is accurately captured by the
moving horizon estimate.

The convergence of MHE was found to be as good as that
of the corresponding full information problem. Whereas the
full information problem may converge in slightly fewer
iterations, it requires more complex computations at each
iteration. The MHE algorithm is more practical because the
problem size remains fixed at each step and the individ-
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ual iterations are faster requiring much less computational
power and memory usage.

Fig. 2 shows comparison of the two limit cases of the
moving horizon scheme discussed in the previous section.
The 150 point randomly generated data set was estimated
using a20 point sliding window with a tuning parameter
value of β = 3.7. The MHE algorithm based on the
fixed initial condition constraint of (19) matched the full
information estimate and gave a good approximation of the
underlying trend. The MHE based on the other limit case
of free initial condition performed better than batch least
squares (not shown) but was not as accurate as the estimate
based on initial condition constraint. In this problem if the
measurement noise covariance is used to define the initial
state for each moving horizon then the resulting estimate is
better than the one with free initial condition.

VI. CONCLUSION

Moving horizon estimation algorithms have been devel-
oped for monotonic trends. The moving horizon approach
allows for recursive implementation of the estimation al-
gorithm and is most useful for embedded filters. The de-
veloped technique shows superior performance in trending
deteriorating parameters in comparison with batch least-
squares. We show that the moving horizon estimate exactly
matches the full information estimate in a special case of
monotonic regression when an initial condition is specified
for each next horizon by a hard constraint. The developed
algorithms solve a constrained optimization problem of
a fixed size at each step and are well suited to online
implementation.

Current work includes extending the MHE algorithms to
the case where the underlying statistical model of the signal
sequence in (5) is assumed to be second-order. A second-
order model is useful for describing the accumulation of
secondary damage in a system caused by some primary
fault condition. Another area of current focus is to define
the initial condition state for each sliding interval in such a
way that it can provide a global convergence guarantee for
the moving horizon estimates.
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