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Abstract— The paper considers stochastic optimization of
the electricity procurement in the day-ahead power market.
The novelty is in addressing the random errors of time
series forecasting of electrical power loads and prices in the
procurement. This problem is currently important because
of the increased random variability in the power grid that
is caused by growing integration of renewable generation.
This paper presents a methodology for stochastic optimization
using data-driven models. We consider non-parametric models
of multivariate distributions based on multiple quantile re-
gressions, built from historical data sets. The statistics, such
as cost expectation, required for the stochastic optimization
are computed numerically using these models. Applying the
methodology to utility data shows that 2% improvement of the
costs is feasible.

I. INTRODUCTION

The growing integration of renewable generation increases
random variability of electrical power loads and prices in the
power grid. The problem requires new analytical approaches.
This paper discusses stochastic optimization in the electrical
power market using time series forecasting models and
stochastic models of the forecast errors. The non-parametric
stochastic models are built from historical operation data.

Stochastic optimization is used in power market appli-
cations, such as wind power generation and storage in the
market, see [1], [2]. It is also used for power procurement
in the day ahead electricity markets, see [3], [4]. Stochastic
optimization using Gaussian models of the prices has been
considered in [5], [6], [7]. These papers do not address other
distribution shapes. The demand and spot prices are non-
Gaussian; their peaking is described by long tails. This paper
presents data-driven stochastic models for the optimization.

A flexible non-parametric multivariate model is given by
quantile regression, see [8]. Quantile regression is used in
many applications and is included with major statistical
packages as a software function. However, so far, it found
limited use for building non-parametric multivariate distribu-
tion models that can be used in stochastic calculus.

This paper applies an optimization-based approach de-
scribed in [9] to simultaneous estimation of multiple quan-
tiles in the non-parametric model. The approach is scalable
to extremely large training data sets because it uses the
alternating direction method of multipliers (ADMM), see
[10], [11]. For high (or low) quantiles, where the data is
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scarce, the approach uses a parametric model of the tail with
fixed quantile regression slope, similar to, e.g., [12].

The stochastic optimization based on a non-parametric
multivariate quantile regression model of the entire distribu-
tion appears to be new. Existing quantile regression uses are
mostly for off-line analysis of the data such as risk estimation
in finance [13]. The model for wind power generation in
[14] could be used for forecasting; the additive quantile
regression model separates each regressor variable and is not
truly multi-variable.

The contributions of this paper are as follows. First, it
formulates a stochastic optimization approach to power pro-
curement using non-parametric models of the distributions
with long tails. Second, it presents a computational method
for building the model from historical data by formulating
and solving a convex optimization problem. Third, it demon-
strates the approach for electrical utility data.

As the example, we use time series of hourly electrical
power loads and spot market electricity prices collected over
several years. The non-parametric models of the proposed
form are trained on older historical data, then backtested for
stochastic optimization of power purchase decisions in the
day-ahead power market. It is shown that using proposed
stochastic optimization approach could lead to 2% savings.

II. SINGLE QUANTILE REGRESSION

We will consider a dataset

D = {Zi, yi}Ni=1, (1)

where scalars yi are response variables and vectors Zi ∈ <n
are explanatory variables (regressors). Index i describes the
sample and N is the number of samples available, which
can be very large. In what follows, we assume that data
(1) are i.i.d., and follow unknown (but fixed) conditional
multivariate distribution p(yi|Zi). In forecasting applications,
i is the time sample and the i.i.d. assumption means time-
invariance of the underlying process.

A. Quantile Regression Problem

We assume that the unknown generating distribution
p(yi|Zi) for (1) can be characterized through the probabilities

P (yi ≤ y(q)|Zi) = q, y(q) = Ziβ(q) + α(q), (2)

where q ∈ (0, 1) is the quantile level, β ∈ <n and α ∈ <
define a quantile regression hyperplane in the data space.

For a given quantile level q, model (2) can be found
by solving a linear programming (LP) problem, see [8].
We build a smoothed optimization formulation for joint
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estimation of multiple quantile levels that deals with the
quantile crossing problem. The formulation yields a QP
problem and is described in [9]. The paper [9] discusses a
scalable implementation of ADMM (see [10], [11]) to solve
the QP problem for a large number of the training data points.
Figure 1 illustrates the model training logic. The model is
computed from Input, the dataset (1). Quantile Grid refers to
set of quantile levels {qj}

nq
j=1, where the quantile regression

is computed; nq is the number of the levels in the grid.
The ADMM Solver takes input data (1) and the quantile
grid and outputs Quantile Regression Model described by
the parameter set {β(qj), α(qj)}

nq
j=1.

Fig. 1. Quantile regression solution logic.

B. Large Response Variable

The described smoothed model interpolates the data,
where it is available. The distribution tails, i.e., the large
absolute values of response variables y have to be modeled
separately. The stochastic models for very low or very high
quantiles can be extrapolated beyond the data range if their
parametric form is known. Extreme Value Theory (EVT),
predicts that in many cases the distribution tails, which
describe the extreme events, follow a Pareto (power law)
distribution. The tails can be estimated using peaks over
threshold (POT) method.

The application examples of Sections III and V, use
log coordinates. Thus, the Pareto distribution becomes an
exponential distribution. Consider the first qL = q1 and the
last qR = qnq quantile levels on the quantile modeling grid
as the tail thresholds. The POT method exceedances are

eL,j = yj − Zjβ1 − α1, j ∈ JL, (3)
eR,k = yk − Zkβnq − αnq , k ∈ JR, (4)

where JL ≡ {j : yj < Zjβ1 + α1} and JR ≡ {k : yk >
Zkβnq + αnq}.

We model the probability distributions of eL,j and eR,k as

−eL,j ∼ qL · Exp(θL), eR,k ∼ qR · Exp(θR). (5)

The parameters θL and θR are estimated as a part of the
smoothed optimization formulation for the quantile model;
see [9] for more detail.

III. POWER LOAD MODEL EXAMPLE

The motivating example for development of the proposed
non-parametric approach is modeling of electrical power
demand for a utility. The hourly load and price data from an
anonymous US utility are described in [15]. The modeling
methodology was applied to the total system load. The range
of the loads is 11.544 to 33.222 GW, with the average
value being 18.0166 GW. The data covers a time range from

January 2011 to June 2013 with sampling interval of one
hour, N = 21, 696 samples at all.

Let Pt be the load demand. The data is sampled every
hour and t is the number of hours elapsed since the start of
the data collection. We use logarithmic load, normalized by
P0 = 1 GW, as response variable yP,t

yP,t = log (Pt/P0) . (6)

We used 45 non-linear regressors Zt that depend on time,
previous load values, and previous prices. The regressors that
depend on time indicate which day of the week, month, and
hour of the day it is, and whether it is a holiday. We use
the log load and log price values from 24 hours ago for
the effect of day ahead forecasting. More detail of the time
related regressors can be found in [16].
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Fig. 2. Plot of quantile regression load forecast.

Median regression, described by (2) with q = 1/2, is used
to illustrate our model for forecasting of the power load data
in Figure 2, over a period of 101 hours. This model can be
expressed as yP,t = Ztβ(1/2) + α(1/2). We also plot other
quantile forecasts of the power load distribution for q = 0.1
and q = 0.9. One can see that the median regression forecast
matches the data reasonably well.

We choose a uniform quantile grid spacing of 0.01 from
q1 = 0.01 to qnq = 0.99. Figure 3 shows the PP (probablity-
probablity) plot illustrating the accuracy of the data fit for
the developed model. The abscissa is quantile level q in
the fitted model (2), P(yt < ZtβP (q) + αP (q)) = q.
The ordinate is the empirical quantile level estimated as the
fraction of the data points in the set where the inequality
yt < ZtβP (q) + αP (q) holds. The full description of the
load model parameters is described in [9].

IV. PRICE MODEL EXAMPLE

Dataset [15] described in Section III includes the spot price
of the electricity. Let πt be the price at time t. The price
ranges from $12.52 to $363.80, with average value being
$48.51. It is sampled at an hourly rate, the same as the load.

We model the logarithmic price yπ,t = log πt. In what
follows, we consider the following two conditional quan-
tile models πt(q|Zt) and πt(q|yP,t, Zt). The first model
πt(q|, Zt) has the same form as the load forecasting model
in Section III. Similar to Figure 2, Figure 4 shows the
quantile regression forecast of the electricity power prices
for q = 0.1, 0.5, 0.9 along with the actual prices for a 100
hour interval. One can see that the price forecast matches
the data reasonably well.
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Fig. 3. PP plot for non-parametric distribution model fit for the load data.
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Fig. 4. Plot of quantile regression price forecast.

The second price model πt(q|yP,t, Zt) has the same form
as the first price model πt(q|Zt) with one extra regres-
sor, yt, added. This model assumes that the actual load
is known at forecast time. We need this conditional dis-
tribution for the stochastic optimization described in Sec-
tion V. We will show the extra regressor explicitly, assuming
the model of the form (2) with the quantile regression
hyperplane given by Ztβπ + yP,tγπ + απ . The model is
estimated similar to (2) by optimizing over decision variables{
απ(qi),

[
βπ(qi)

T γπ(qi)
]T}nq

i=1
. Figure 5 shows the actual

prices πt and the two median quantile models. As expected
the model with the extra regressor fits the actual prices better.
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Fig. 5. Spot prices πt vs forecasts πt(q|yP,t, Zt) and πt(q|Zt) for q = 1
2

.

We used the same quantile level range and nq quantiles
as the power load models in Section III. The PP plot in
Figure 6 illustrates the accuracy of the price data fit for
the estimated non-parametric distribution model. The plot is
similar to Figure 3. The full description of the price model
parameters is described in [9].
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Fig. 6. PP plot for non-parametric distribution model fit for the price data.

V. STOCHASTIC OPTIMIZATION OF DAY-AHEAD COST

The utilities order power in the electricity market a day in
advance. If the actual power load is higher, the utility has to
buy additional electricity at much higher spot price. The goal
of the stochastic optimization approach in this section is to
minimize the total expected cost. The stochastic optimization
relies on the models described in Sections III and IV.

We consider stochastic optimization at given time t, when
regressor Zt is known. The future (day-ahead) log-load yP,t
is defined by the conditional quantile model of the form (2)
discussed in Section III. The future (day-ahead) log-prices
yπ,t are defined by the conditional quantile model of the
form (2) discussed in Section IV.

The stochastic optimization requires to estimate the ad-
vance cost and the expected spot cost components of the total
expected cost. These costs depend on the advance order

Pa(t) = P0e
yP,t , (7)

where yP,t is the logarithmic load that can be related to the
quantile model of Section III. One can always find a quantile
s such that in (7) yP,t = yP (s) for Section III model

yP (s) =


yP (qL) + θ−1P,L log s

qL
, s < qL

Ztβ(s) + α(s), qL ≤ s ≤ qR
yP (qR)− θ−1P,R log 1−s

qR
, s > qR

(8)

The extra log terms for s < qL and s > qR come from the
analytical quantile function (inverse CDF) of the exponential
distribution assumed in Section II-B.

The advance cost is the deterministic value πadv,tPa(t),
where πadv,t is the advance price at time t.

At(s) = πadv,tP0e
yP,t(s), (9)

The spot cost is the random variable defined by the future
load and spot price, in a day from the order. To compute the
expected spot cost, we need the joint probability distribution
over the log spot prices yπ and log load yP conditional on the
regressors Zt, which we denote as p(yπ, yP |Zt). According
to the conditional probability rule,

p(yπ, yP |Zt) = p(yπ|yP , Zt) · p(yP |Zt). (10)
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Similar to quantile model (8) for yP = yP (q), we can
write a quantile model for yπ . In Subsection IV, the log
price yπ is modeled through the conditional distribution
p(yπ|yP , Zt). The conditional quantile model for yπ is then

yπ(r, q) =

 Ztβπ(r) + γπ(r)yP (q) + απ(r), rL ≤ r ≤ rR
yπ(rL, q) + log(r/rL)/θπL, r < rL
yπ(rR, q)− log((1− r)/rR)/θπR, r > rR

(11)
where θπL and θπR are the estimated left and right tail rates
of the price distributions. The quantile level gridding for r
is the same as for q in Section III.

The spot cost C(s) depends on the advance order Pa(t) =
P0e

yP,t(s) because the utility has to pay the spot price only
when this order is exceeded. The spot cost expectation is

Eyπ,yP [C(s)] =

∫ ∞
−∞

∫ ∞
−∞

eyπ(r,q)P0

·
(
eyP (q) − eyP (s)

)
+
p(yπ(r, q), yP (q))dyπ(r, q)dyP (q),

(12)

where the integrand is the spot cost times the excess demand.
The joint pdf in (12) can be expressed in terms of quantile
levels q and r by using (10), where in accordance with (2)

p(yP |Zt) = dq/dyP (q), (13)
p(yπ|yP , Zt) = dr/dyπ(r, q). (14)

Changing the integration variables in (12) to r, q and using
(13), (14) yields

Eyπ,yP [C(s)] = P0

∫ 1

s

∫ 1

0

eyπ(r,q)
(
eyP (q) − eyP (s)

)
drdq.

(15)

To compute integral (15), we substitute the expression (8)
for yP (q) and (11) for yπ(r, q). Each of the expressions
(15), (8) breaks into three parts: the numerical model for the
middle part of the distribution and two analytical models for
the inverse CDFs of the tails. Their product in (15) yields the
following 3×3 matrix of the partial integrals to be evaluated

B(s) = P0

 BL,L(s) BL,M (s) BL,R(s)
BM,L(s) BM,M (s) BM,R(s)
BR,L(s) BR,M (s) BR,R(s)

 , (16)

where the subscripts L, M , and R indicate the left tail, the
middle part, and the right tail respectively. The subscript
combination describes an integration rectangle in the area of
the integration in (15). The expected spot cost Eyπ,yL [C(s)]
(15) is the sum of the nine matrix entries in (16).

The logic of evaluating (15) using (16) is outlined in
Figure 7. The input is the desired quantile level s at which

Fig. 7. Logic of evaluating expected spot cost (15) using (16).

the expected spot cost is evaluated. The two models yP (q)
(8), yπ(r, q) (11) are used to compute each matrix element of
B(s). The expected spot cost follows after this computation.

The partial integrals in (16) can be computed as follows

BL,L(s) = CLGL(s, fL(s), γπ(rL)), (17)

BL/R,M (s) =

∫ rR

rL

eZtβπ(r)+απ(r)

×GL/R(s, fL/R(s), γπ(r))dr,
(18)

BL,R(s) = CRGL(s, fL(s), γπ(rR)), (19)

BM,L/R(s, s
′) = CL/R

∫ qR

fM (s)

(
e(1+γπ(rL/R))yP (q)

−eyP (s)+γπ(rL/R)yP (q)
)
dq,

(20)

BM,M (s) =

∫ qR

fM (s)

∫ rR

rL

eyπ(r|q)
(
eyP (q) − eyP (s)

)
drdq,

(21)
BR,L(s) = CLGR(s, fR(s), γπ(rL)), (22)
BR,R(s) = CRGR(s, fR(s), γπ(rR)), (23)

where the index L/R means that the expression is valid for
either index L or R. The integrals in (20)–(21) are evaluated
numerically for given s using the smoothed non-parametric
models described above. The integrals involving the tails
have been evaluated analytically. For the right tail integral
to converge, the tail parameters must satisfy θπ,R > 1
and θP,R > maxr{γπ(r)}. For the example dataset, these
tail parameters were θP,L = 39.2248, θP,R = 31.7821,
θπ,L = 6.9101, and θπ,R = 7.2108. The left tail integrals
exist for any s > 0.

Formulas (17)–(23) include several interim expressions
described below. The function GL/R(·, ·, ·) is computed as

GL/R(s, s
′, γ) = FL/R(s

′, 1+γ)−eyL(s)FL/R(s′, γ), (24)

FL(s, γ) =

∫ qL

s

eγyL(q)dq

=
q
−γ/θP,L
L eγyP (qL)θP,L

γ + θP,L

[
q
(γ+θP,L)/θP,L
L − s(γ+θP,L)/θP,L

]
,

FR(s, γ) =

∫ 1

s

eγyP (q)dq

= q
γ/θP,R
R eγyP (qR) θP,R

θP,R − γ
(1− s)(θP,R−γ)/θP,R .

The constants CL and CR in (17)–(23) are

CR = eZtβπ(rR)+απ(rR) θπ,Rr
1/θπ,R
R

θπ,R − 1
(1− rR)

θπ,R −1

θπ,R ,

CL = eZtβπ(rL)+απ(rL)θπ,LrL/(θπ,L + 1).

The saturation functions in (17)–(23) are

fL(s) = min(s, qL), (25)
fR(s) = max(s, qR), (26)
fM (s) = min(max(s, qL)), qR). (27)
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The total cost T (s) can be computed from (9) and (15) as

T (s) = A(s) +E[C(s)] (28)

Based on (9), advance cost A(s) is a non-decreasing function
of s. Based on (15), the expected spot cost E[C(s)] is a
non-increasing positive function of s. The optimal trade-off
between the advance cost and the spot cost that minimizes the
total cost for some s can be found numerically by computing
T (s) (28) on a grid of s ∈ (0, 1).

VI. COST OPTIMIZATION EXAMPLE

The non-parametric models for the load and price were
trained on the utility data set as described in Sections III
and IV. The stochastic optimization algorithm was then
backtested on the last 6 months of the data, which were
excluded from the model training. The constant advance
price πadv,t = $50/MWh was assumed. At each step, the
optimal quantile level s∗ was found by computing total cost
T (s) (28) on a grid of s using formulas (17)–(23). A time
series segment for the computed optimal quantile level s∗(t)
is shown in Figure 8, where the lowest value is s∗ = 0.001.
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Fig. 8. Optimal quantile level sequence sample.

Figure 9 shows the actual realization of the total cost in
backtesting of the advance procurement strategy that uses
the optimized s = s∗ in (7), (8). The results from May 25,
2013 to June 2, 2013 are shown. The described optimized
procurement based on the smoothed quantile regression (QR)
model was compared to the baseline strategy based on the
ordinary least squares (OLS) regression. The baseline model
used the same regressors. The OLS regression parameters
were estimated from the same data as the QR model. The
baseline procurement strategy used the linear regression
forecast of the log-load in (7). Figure 9 also includes the
median regression strategy that used s = 0.5 in (7), (8). In
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Fig. 9. The hourly total cost over a sample 200 hour period

Figure 9, when the smoothed QR strategy has a lower total
cost than the baseline, it is by a significant amount; when
cost is higher than OLS, it is by a much smaller amount.

The total cost for the 6 month period for each strategy is
summarized in Table I. The total savings of the optimized
strategy based on the smoothed QR model are $85.666 mil-
lion compared to the OLS baseline. The median regression
strategy saves $11.203 million, it is much closer to the OLS.

TABLE I
COST RESULTS ($/BILLION)

Strategy/Model Smoothed QR Median OLS
Total 6-Month Cost 3.83 3.91 3.92
Percentage Savings 2.19% 0.29% 0%
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