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Abstract—This paper develops probabilistic analysis approach
to ensure generating capacity is sufficient to balance load (de-
mand) in power grid. In the future grid, most generation will
come from variable sources, such as solar and wind. This means
the grid can be only balanced probabilistically. Variability of
renewable generation requires using storage, which must be a
part of the analysis. Further, mandated reliability of the power
systems is very high. This means the probabilistic analysis must
carefully consider the combined impact of several random factors
and include extreme events. The paper presents numerical prob-
abilistic calculus methodology addressing all mentioned issues. It
is illustrated for example using actual ISO data.

Index Terms—Loss of Load, Renewables, Storage, Probabilistic
Analysis, Data-driven Modeling, Quantile Regression

I. INTRODUCTION

This paper develops tools for probabilistic analysis of grid
reliability. The problem is to ensure generation capacity is
sufficient for balancing electricity demand. Industry uses well-
established analysis methods, e.g., see [1]. Yet, increase in
variable generation from renewable sources creates new issues.
States of California and Hawaii push for 100% renewable
energy by 2045, Massachusetts, by 2050. France, Germany,
Denmark, and other EU states have similar plans.

Existing methods for analysis of grid based on dispatchable
generation are unsuitable for grid dominated by variable
generation and with substantial energy storage. Probabilistic
analysis of the latter is complicated by electricity demand,
wind, insolation, and storage being strongly coupled variables.

The primary application considered herein is grid planning
on a regional level. The problem is to analyze the adequacy of
the generation (and storage) capacity to support the demand.
The same probabilistic analysis tools can be applied to utility
operational problems such as setting reserves and electricity
market trading. The tools could be also used for distribu-
tion systems with a variable generation that might become
autonomous.

A. State of the Art

The established method for evaluating grid reliability is to
assume generator outages are independent random variables
and use discrete convolution for probabilistic modeling, see
[1], [7]. In existing practice, other random factors are usu-
ally included by Monte Carlo analysis with the sampling of

loads and using capacity credit for Variable Energy Resources
(VER). Monte Carlo analysis extensions for a system with
storage are considered in [11], [12].

Closer to the approach in this paper, in [2], operational
reserves are analyzed by convolving distributions of plant
outage, conditional load, wind and solar forecast errors. These
are considered to be independent random variables, which
might be inaccurate.

The convolution method is attractive for grid reliability
problems, but its practical use is limited by several factors.
First, probabilistic modeling of time series requires many
years worth of data. This has been recently addressed for
load forecasting by using Quantile Regression (QR) modeling
[3], [9], [10]. NERC-mandated 1-in-10 reliability of the power
system (loss of load probability below 0.3%) requires comple-
menting QR with careful modeling of the distribution tails, see
[9], [10]. Second, peak load is known to be correlated with
wind, e.g., see [6]. It is also correlated with solar generation.
Finally, storage charge/discharge is highly correlated with
VER generation and demand.

B. Contributions
This paper introduces probabilistic calculus that allows

addressing the mentioned limitation. The contributions of this
paper are as follows.

First, the paper demonstrates how data-driven conditional
probability distribution models can be used to analyze the
reliability of grid power balancing.

Second, the developed probabilistic power balancing anal-
ysis methods are extended to the grid with storage by adding
energy balancing analysis.

Third, this paper demonstrates example scenarios that illus-
trate the use of proposed methods for planning trades between
wind and storage.

C. Outline
The paper outline is as follows. Section II introduces oper-

ations of numerical probabilistic analysis. Section III presents
data-driven modeling methods illustrated by ISO New England
data examples. Section IV applies the developed tools to power
balancing. Finally, Section V demonstrates an application
of the power and energy balancing methods to grid with
substantial storage and wind generation.
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II. PROBABILISTIC CALCULUS

This section introduces operations of numerical probabilistic
analysis. The operations allow combining random variables
that represent demand, outages, wind, and storage for evalu-
ating grid reliability in a computationally scalable way.

A. Distribution Sampling
Consider random variable u with known probability distri-

bution. Numerical probabilistic analysis requires sampling of
the Cumulative Distribution Function (CDF) Fu as

Fu[k] = P(u ≤ k∆h), pu[k] = Fu[k]− Fu[k − 1], (1)

where k is an integer sample number and pu is the Probability
Mass Function (PMF) for the sampled CDF Fu. If sampling
step ∆h is small enough, such approximate model is accurate.
The CDFs of the original distribution and sampled distribution
match exactly at the sample points. The CDF Fu can be inter-
polated between the samples to give a continuous distribution.

As an example, consider Bernoulli distribution

P(u = 0) = q, P(u = h) = 1− q. (2)

Applying (1) to (2) yields the sampled Bernoulli PMF

pu[k = 0] = q, pu [k = dh/∆he] = 1− q, (3)

where pu[k] = 0, for all other k and dxe is the least integer
that is greater than or equal x.

B. Independent Variables
Sampled models allow effective computation of distribu-

tions for variable sums. Consider two independent random
variables u and v sampled on the same uniform grid. As well
known, the PMF of the sum u+ v is discrete convolution

pu+v[ · ] = pu[ · ] ∗ pu[ · ]. (4)

Consider an example of computing outage distribution for
a set of power generating units. The outages are described
by independent Bernoulli distributions of the form (2) with
different parameters for each unit. The distribution of the
total outage power can be computed as a convolution of the
individual sampled Bernoulli distributions of the form (3).

This example describes a well-known approach used for
power systems reliability planning, e.g., see [1]. It is compu-
tationally efficient because it avoids combinatorial complexity
present in exact summation of N different Bernoulli variables.

The accuracy of the sampled approximation can be checked
by observing convergence as the sampling step is reduced.
To understand why the approach provides accurate results,
consider the error ũ of approximating u with a sampled
variation û. For any other sampled variable v we have

maxFũ+v[ · ] ≤ maxFũ[ · ]. (5)

Inequality (5) holds because

max (Fũ[ · ] ∗ pv[ · ]) ≤ maxFũ[ · ] ·
∑
k

pv[k], (6)

where the sum in (6) adds to 1. According to (5), approxima-
tion errors are attenuated as they propagate through addition
of independent variables.

C. Conditional Distributions

Consider a sampled conditional random variable u|Z, where
independent variables (regressors) Z are in a finite state space
with states Zj that have probabilities P(Zj). For example
described in Subsection III-A there are 4,032 such states. For
each Zj , there is a conditional variable and associated PMF

uj = u|Zj , uj ∼ puj
[ · ]. (7)

Evaluating grid reliability requires computing expectations,
such as Loss Of Load Expectation (LOLE), that can be
represented through certain conditional distributions as

E[u ≤ 0] =
m∑
j=1

∑
uj≤0

puj
[k] ·P(Zj), (8)

where index k is limited to the sampled values uj ≤ 0.
Now consider two conditionally independent random vari-

ables u and v. This means uj = u|Zj and vj = v|Zj are
independent for any given j. Conditional independence neither
implies nor follows from the independence of variables u and
v. For a sum w = u+ v, conditional distribution w|Z can be
computed by convolving conditional PMFs for u and v at all
Zj to obtain the PMFs for wj = w|Zj

pwj [ · ] = puj [ · ] ∗ pvj [ · ], (j = 1, . . . ,M). (9)

D. Linearly Dependent Variables

Consider a linear model where random variable w is used
as predictor of variable u

u = v + γ · w, (10)

where γ is a constant and v is prediction residual independent
of w. Though variables u and w in (10) are dependent, their
sum can be represented as a sum of two independent variables

u+ w = v + (1 + γ) · w, (11)

Distribution of (11) can be computed through the convolution

pu+w[ · ] = (1 + γ) · pv[ · ] ∗ pw[ · ], (12)

Now consider a conditional distribution, where

u|Z = v|Z + γ(Z) · w|Z. (13)

In (13), Z and w can be viewed as independent predictors of
u, while v is prediction residual. Using notation of (7)

(u+ w)j = vj + (1 + γ(Z)) · wj , (14)

where the PMF can be computed similar to (12) as

p(u+w)j [ · ] = (1 + γ(Zj)) · pvj
[ · ] ∗ pwj

[ · ], (15)
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E. Quantile Model

Distribution model might be available in quantile form

P(u ≤ Qi) = qi, (i = 1, . . . ,m), (16)

where Qj are quantiles and qj are quantile levels that are
related to 50/50, 90/10, etc levels used in the industry. Let
{ui}Ni=1 be independent samples of the random variable u.
Then qj in (16) can be empirical quantiles qj = nj/N , where
nj is the number of points in the set such that ui ≤ Qj .

For NERC one-in-ten requirement quantiles of interest have
just 2-3 hourly samples per year available for modeling. For
modeling of distribution tails, when q � 1 or 1 − q � 1,
consistent approach is suggested by Extreme Value Theory
(EVT), see [8]. Power system data often follow Exponential or
Generalized Pareto distributions predicted by EVT. Estimating
2-3 parameters of these distributions from the data allows
extrapolating the tail into the quantiles where data are scarce.

F. Quantile Model Sampling

Consider computing sampled model {yk, fk}Kk=1 of the
form (1) from data (16). As first step, quantiles Qj are
interpolated on a uniform grid of values uk = k∆h to obtain
quantile levels yk. Direct interpolation does not work very
well because differentiating the CDF to get PMF amplifies
numerical errors. The approach that was found to work well
is based on solving optimal smoothed approximation problem

minimizeF ‖Y − F‖2 + ρ‖D3F‖2, (17)

where Y = col{yk}Kk=1 is the resampled quantile data vector,
F is vector of smoothed CDF values fk, D is the first
difference matrix, and ρ is a regularization parameter. The
sought PMF values are pu[k] = fk − fk−1. Smoothing filter
(17) for CDF is related to the well-known Hodrick-Prescott
filter, with additional differentiation in (17) to get the PMF
from the CDF. Matrix D3 is sparse tri-diagonal, therefore
solution to (17) can be efficiently computed for large problem
size K.

III. DATA-DRIVEN MODELS

A. Modeling Data Example

This section uses ISO New England (ISO-NE) service
area data for 2016. These publicly available time series data
include: load [4] and wind generation [5]. We model wind
intensity as a non-dimensional variable with PDF supported
on [0, 1] interval. The wind generation in the examples is wind
intensity (random variable) times wind nameplate capacity,
which depends on the scenario. The distribution of wind
intensity is estimated from historical ISO-NE data.

Modeled load (electricity demand) is conditional on vector
Z ∈ <45 that includes 12 binary regressors selecting calendar
months, 7 regressors selecting weekdays, 24 regressors select-
ing hours of the day, and 2 selecting holiday or not. There are
total of 12 × 7 × 24 × 2 = 4, 032 states for Z. Conditional
distribution for wind uses Months and Hours regressors only;
wind does not depend on Weekday and Holiday.

B. Quantile Regression

Quantile model of distribution for random variable u con-
ditional on regressors Z has the form

P(u ≥ βZ + α) = q (18)

Parameter vector β and scalar α in QR model (18) can be
estimated by solving an LP problem, see [10] and references
there. QR is linear in Z and has one parameter more than the
number of regressors. For wind, regressor vector Z includes
Month and Hour indicators, the total of 36 = 12 + 24. This
is 8 times fewer regression parameters and better statistical
averaging than simple binning of the data for each month at
each hour, which requires 288 = 12×24 bins. The difference is
in QR assuming that month and hour impacts add up linearly.

C. Multiple QR

Consider Multiple Quantile Regression (Multiple QR) prob-
lem for building QR models from data set

D ≡ {ui, Zi}Ni=1 (19)

Consider matrices

U = [u1, . . . , uN ]T ∈ <N,1 (20)
Z = [Z1, . . . , ZN ]T ∈ <N,m (21)

As discussed in [10], multiple QR can be formulated as
sparse convex optimization problem in Second Order Cone
Program (SOCP) form. Model parameters, scalars αi and
vectors βi, correspond to QR quantile levels qi (i = 1, . . . ,m).
They can be computed as minimizers for the following SOCP

{αi, βi}mi=1 = arg min
m∑
i=1

h(U − Zβi − αi; qi) (22)

+ λ
m∑
i=2

‖βi − βi−1‖2 + µ
m−1∑
j=2

(αj+1 − 2αj + αj−1)2,

h(Y ; q) = 1
2‖Y ‖1 + (q − 1

2 )1T
NY, (23)

where quantiles qi are on uniformly spaced grid on (0, 1)
interval and 1N is a vector column of N ones. The selection
of regularization parameters λ and µ is discussed in [10].

D. Conditional Distribution Example

As an example, ISO-NE wind generation data described in
Subsection III-A were used. Regressor vector Z included 24
Hours indicators and 12 Months indicators. As discussed in
Subsection III-C, multiple QR model of wind on a uniform
grid of qi with pitch of 0.05 was estimated by solving SOCP
problem (22) using one year worth of hourly data.

For each state Zj , the multiple QR model for wind provides
conditional sampled distribution in quantile form, see Subsec-
tion II-E. For each state Zj , a sampled PMF was obtained by
solving regularized resampling problem (17). Example PMF
of wind conditional on 12 noon and July is shown in Figure 1
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Fig. 1. Example PDF of wind intensity for 12 noon in July

E. Linear Dependence

Consider an extension of data set (19) with additional
explanatory variable w

DW ≡ {ui, wi, Zi}Ni=1 (24)

In addition to (20)–(21), introduce matrix

V = [w1Z1, . . . , wNZN ]T ∈ <N,m (25)

Multiple QR model for conditional distribution (13) can be
estimated by solving the following extension of SOCP (22)

{{αi, βi}mi=1, γ} = arg min
m∑
i=1

h(U − Zβi − αi − V γ; qi)

+λ
m∑
i=2

‖βi − βi−1‖2 + µ
m−1∑
j=2

‖αj+1 − 2αj + αj−1‖2

+ ν · ‖Dγ‖2, subject to Cγ = 0 (26)

Formulation (26) was used to estimate QR model for load
dependence on wind from ISO-NE data for load and wind
intensity described in Subsection III-A.

Linear conditional dependence of load on wind of the
form (14) is assumed, where u is the load, and w is the
wind intensity. The 45-indicator vector Z in the model is as
described in Subsection III-A. Dataset (24) includes samples
for u, w, and Z taken at every hour of one year.

Wind influences demand depending on the temperature.
This is modeled by assuming wind influence factor γ depends
on the calendar month. Components of γ corresponding to
consecutive months are assumed to be close. To program this
into (26), matrix C ∈ <33,45 is a selector for components
of γ corresponding to indicators of Hours, Weekdays, and
Holidays, which leaves out Months. Matrix D ∈ <12,45 in
(26) provides circulant differences of γ components corre-
sponding to Month indicators. Regularization parameter ν
controls smoothness of the estimated dependence of γ on
calendar month. Figure 2 shows wind impact coefficients γ
depending on calendar month. Figure 3 shows load and model
quantiles. At each point t, wind intensity w(t) and time-
dependent regressors Z(t) are used to obtain load quantiles
Qi = βiZ(t) + αi + γ(Z(t)) · w(t). Quantiles Qi that
correspond to quantile levels qi in the plot legend are plotted
along with the actual load.

Multiple QR model obtained from (26) covers quantile
levels q1 = 0.025 to qm = 0.975 with pitch 0.05. For a
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Fig. 2. Wind impact coefficients vs calendar month
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Fig. 3. System load and model quantiles for summer peak week

year worth of hourly data, there are about 200 points with
q ≥ 0.975 that are modeled as EVT tail, see Subsection II-E,
by looking at Peaks Over Threshold (POT) data

eR,k = yjk − Zjkβm − αm, (27)

where indexes jk are such that eR,k > 0. EVT Pareto tail
model q = α(Q) is fitted to the POT data eR,k, see [8], [9].
The sampling the tail model α(Q) yields an extension of the
multiple QR model to the tail beyond quantile level qm. For
the tail, QR parameters β are assumed to be the same as βm.

Similar to (27), the left tail is modeled based on POT data

eL,k = yjk − Zjkβ1 − α1, (28)

where indexes jk are such that eL,k < 0.
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Fig. 4. QQ and PP plots for the load

Figure 4 illustrates model fit for the load data. The central
panel shows PP plot of quantile level q in the QR model vs
empirical quantile level defined in Subsection II-E. The left
and right panels show QQ plots of the QR model quantile Q
vs empirical quantile for the left and right tail respectively.

IV. GRID BALANCING

This section applies the developed tools to power balancing
assuming there is no storage. Storage is included in Section V.
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A. Example System

As an example, consider power balancing for the ISO-NE
service area. The example scenario is based on actual ISO-
NE data for 2016 with nuclear capacity replaced by wind and
increased fixed transfer capacity.

Load and wind data used for modeling are described in
Section III-A. The model of wind intensity distribution is the
same as described in Section III-D. The model is scaled by
the assumed nameplate capacity of wind generation. Multiple
QR load model is the same as illustrated in Figure 3.

B. Outages

Capacity and outage data for ISO-NE service area are re-
ported into NERCs GADS database. The total C0 = 36.4GW
of dispatchable capacity is provided by 306 thermal generating
units. Equivalent Forced Outage Rate - demand (EFORd) data
give outage probabilities.

28 29 30 31 32 33 34
Capacity (GW)

0

0.2

0.4

0.6
OUTAGED GENERATION CAPACITY

Fig. 5. Outage probability distribution

The GADS data provide unit capacity levels h and outage
probabilities q in model (2). Sampled Bernoulli distribution
models (3) were obtained from h, q and sampling step ∆h =
1MW. Outage PMF is a convolution of the sampled Bernoulli
distributions for the individual outages, see Subsection II-B
and [1]. Outage PMF is shown in Figure 5.

C. Reserve Margin

Reserve margin R is a random variable

R = F + C −O − L+W + S (29)

where the r.h.s. terms are as follows:
F is the fixed transfer capacity of 5GW,
C is the dispatchable generation capacity of 36.4GW,
O is the random variable giving total power capacity of the

outage units with PMF shown in Figure 5,
L is the load with conditional distribution model described

in Subsection III-E,
W is wind nameplate capacity W0 = 13.94GW times wind

intensity, which is modeled as described in Section III-D,
S is used to model discharge power of energy storage in

Section V and assumed zero in this section.
Consider distribution of R in (29) conditional on 45-

indicator vector Z described in Subsection III-A. In (29), F ,
C, and S are constants. Random variable O is independent
of L and W . Load L is linearly conditionally dependent on
Wind W , similar to (13). Conditional distribution PMFs for

(−L) + W |Z can be computed in accordance with (15). To
compute the conditional PMF of R|Z, negative outage (−O)
is then added as conditionally independent random variable
see Section II-B and (9).

Described calculations consider distributions for outage O
and wind W conditional on Z defined in Subsection III-A.
For O, the PMF is the same for any Z. For W , the PMF is
the same no matter what Holiday and Weekday indicators are.

The obtained sampled conditional probability distribution
of reserve margin R (29) is illustrated in Figure 6 for Z
corresponding to 12pm, Wednesday, July, Workday.

-5 0 5 10 15 20 25
Reserve (GW)

0

0.05

0.1

Pr
ob

ab
ili

ty

RESERVE PROBABILITY DISTRIBUTION

Fig. 6. PDF of reserve margin R for 12pm, Wednesday, July, Workday

D. LOLH Reliability Analysis

Negative reserve margin (29) R indicates that the grid can-
not be balanced; there is not enough generating capacity. There
are several ways of quantifying NERC one-in-ten requirement
for capacity adequacy. This paper considers Loss of Load
Hours (LOLH), the expected number of hours for the loss
of load per year, and requires that LOLH ≤ 2.4.
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Fig. 7. Loss of Load Probability, LOLPj , in the peak week

Conditional distribution of reserve margin allows computing
Loss of Load Probability (LOLP), see Figure 7,

LOLPj = P(R ≤ 0 | Zj) =
∑
Rj≤0

pRj
[k]. (30)

Computing LOLH in accordance with (8) and (30) yields

LOLH = 365× 24×
N∑
i=1

LOLP(Zj) ·P(Zj) (31)

States Zj with Holiday indicated have probability P(Zj) =
pH/2016; the rest, P(Zj) = (1 − pH)/2016, where pH =
9/365 is the holiday probability.
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V. GRID WITH RENEWABLES AND STORAGE

This section provides an extension of Section IV analysis,
where energy storage is included.

A. Example Scenarios

Consider three scenarios based on ISO-NE data with scal-
ings and modifications described below and in Table I. Sce-
nario 0 with no energy storage was considered in Section IV.
Scenario 1 has some storage and more wind generation, in
Scenario 2 there is more storage. All scenarios yield LOLH
of about 2 hours computed as described below.

Variable Scenario 0 Scenario 1 Scenario 2
Dispatchable Capacity 34.4GW 34.4GW 34.4GW

Wind Nameplate Capacity 8.7GW 17.4GW 3.49GW
Energy Storage (4-hour) - 2.5GW 3.5GW

Fixed Transfer 5GW 2GW 2GW
Load 37.8GW 37.8GW 37.8GW

TABLE I
GRID PLANNING SCENARIOS

Scenarios 1 and 2 assume storage with capacities SC =
2.5GW and SC = 3.5GW respectively that last nS = 4 hours
at peak generation. Probability distributions of wind intensity
W , outage O, and load L are as described in Section IV.

B. Grid Planning

Power balancing problem for each scenario can be formu-
lated as discussed in Section IV. This section adds a constant
storage generation capacity assuming it is always available.

The last assumption holds if energy storage is never fully
depleted. The new part of the analysis in this section is
checking if the stored energy is depleted for each period of
time. It is assumed that for 12 hours of the daily cycle, there
is opportunity to recharge the storage to full capacity. This is
a realistic assumption. It is then sufficient to check that the
stored energy is not depleted for all periods of consecutive
1, 2, . . . , 12 hours without recharging.

C. Energy Margin

Energy reserve margin Rn for a period of consecutive n
hours is the sum of reserve margins R (29) through these
hours. It can be computed as convolution with rectangular
window, Rn = rn ∗R, where

rn = [1, 1, ..., 1] (32)

Applying the convolution to each term in (29) yields

Rn = Fn + Cn −On − Ln +Wn + Sn, (33)

where the r.h.s. terms are as follows
Fn is the fixed transfer capacity for energy, Fn = n · F ,
Cn is the dispatchable energy capacity, Cn = n · C,
On is the energy outage; assuming outages for each our are

independent, the PMF of On is n-fold convolution of
outage PMF in Figure 5 with itself,

Ln is energy demand variable, with conditional distribution
estimated as described in Section III from the data rn∗L,

Wn is wind generation variable, with conditional distribution
estimated as described in Section III from the data rn∗W ,

Sn is the energy provided by the storage; assuming there was
no charging, Sn ≤ min(SC , SC · n/nS). Energy balance
risk analysis assumes that Sn = min(SC , SC · n/nS).

For a given window width n in (32), calculation of condi-
tional distribution Rn|Z follows the methodology of Subsec-
tion IV-C to combine distributions of the r.h.s. terms in (33).

D. Planning Results
For conditional distribution Rn|Z, risk P(Rn ≤ 0) and

associated LOLHn can be calculated as described in Subsec-
tion IV-D. Figure 8 shows computed risk of energy balancing
LOLHn vs n for Scenarios 1 and 2 in Table I. Note that
LOLH1 is the same as LOLH for power balancing.
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Fig. 8. Energy LOLHn for Scenarios 1 and 2 vs. window width n.

For both scenarios LOLHn is smaller for n > 1. This
means power balancing risk dominates energy balancing risk.
Scenario 2 shows about the same LOLH as Scenario 1: adding
1GW of storage replaces 13.9GW of wind nameplate capacity.
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