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Abstract—This paper discusses probabilistic methodology for
Transmission System Planning. Recent NESCOE memo suggested
that current transmission planning procedure at ISO-NE might
create inconsistency within the region and between the devel-
opment plans of various transmission owners. The proposed
methodology establishes base cases and contingency testing as
means for consistent probabilistic assessment of reliability for
a proposed transmission system plan. The system stress is
computed through consistent probabilistic modeling and the
base cases established by systematically sampling corresponding
probability distributions. The methodology is illustrated for a
simplified two-zone model of the power system.

Index Terms—contingencies, outages, planning, probabilistic,
transmission, relaxation

I. INTRODUCTION

Transmission planning requires that the system is designed
to operate reliably over a broad spectrum of system condi-
tions and following a wide range of probable contingencies.
The North America Electric Reliability Corporation (NERC)
Transmission Planning TPL Standards define a set of manda-
tory performance requirements for the planning [1]. Each
Transmission Planner and Planning Coordinator perform an-
nual assessment of their portion of the Bulk Electric System
to identify system deficiencies and plan corrective actions or
system upgrades to meet the performance requirements.

Existing methodologies for transmission system reliability
planning, followed by Regional Transmission Operators (RTO)
such as ISO New England (ISO-NE), are mostly based on
deterministic approaches. The established approach is to find
a set of base cases that covers all corners of the system
state space and represents system conditions under “reasonable
stress” [2]. Those base cases are then tested with credible
contingencies for transmission criteria violations. Transmis-
sion update plans are then developed based on the revealed
transmission violations. Since the system space is very large, a
set of assumptions and guidelines on the topology, load levels,
generation availabilities, and transfer conditions are used in
establishing the base cases. For example, ISO-NE uses 90/10
summer peak load level for its control area, and generally
takes two generation resources out of service in a local study
area. For intermittent resources, five percent of nameplate is

This work was supported by ISO New England.

modeled for on-shore wind, twenty percent for off-shore wind,
and twenty-six percent for the solar generation [3].

These practices and guidelines are mostly based on engi-
neering judgment, and the resulting base cases do not provide
probability guarantees of transmission system risk. A key
drawback of the existing approach is not considering probabil-
ity and severity of system stress in establishing the base cases.
It is possible that a less likely higher peak load in combination
with a smaller loss of resource availability may result in a
greater system stress than at the usually considered 90/10
load level with more resources unavailable. In addition, current
transmission planning practice may create inconsistency within
the region and between the development plans of various
transmission owners. As noted in [2], addressing these issues
requires to re-assess base case development in the transmission
system planning process.

This paper proposes a probabilistic approach to establish the
transmission planning base cases by systematically sampling
the combined probability distributions of load level and gener-
ation unavailability. Different from the existing approaches, the
proposed approach looks for the highest probability conditions
that can over-stress the system.

The contributions of the paper are as follows.
First, system risk is formalized. The risk is the product

of impact (system stress) and probability. The system stress
is defined through the most probable outages that lead to
transmission criteria violations for a given load level.

Second, the base cases are established as conditions that
create the highest risk. This provides a consistent approach to
base case selection when fully covering all conditions at given
level of the probability might be infeasible.

Third, the paper develops an optimization technique to
determine the worst risk with respect to both the probability
and the impact of N-1 contingency on the transmission system.

Finally, the paper proposes a relaxation approach to finding
specific generator failures that result in the base case outages.

The paper outline is as follows. Section 2 provides an
overview of the proposed approach in a formal setting. Section
3 defines system stress by computing the smallest outage
violating the transmission criteria. Section 4 establishes Base
Cases following Section 3 stress definition. Finally, Section 5
presents computational results for example two-zone system.
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II. APPROACH OVERVIEW

This section presents a high level overview of the proposed
approach in a more formal mathematical setting. It introduces
the problems to be solved using the proposed approach.

A. Probabilistic Model of Load

Consider a service area with K zones connected by trans-
mission lines. Power demand in zone k is assumed to be

Dk = ak · L, (1)

where total system load L is considered as random variable.
Constant zonal load factors ak are such that

K∑
k=1

ak = 1 (2)

In what follows, we assume that random variable L has
distribution with survival function F (x) = P(L ≥ x) that
is known. For given load, the risk of transmission criteria
violations can be defined as Stress×Probability, S(L)×F (L),
where S(L) is system stress for given load level and F (L)
gives the probability of the load being at that level or higher.
Computing stress S(L) requires probabilistic modeling of
outage that is discussed next.

B. Probabilistic Model of Outage

Assume that total system load L, and zonal demands Dk

in (1) are given. Zone k has generator capacities described
by vector Hk with components Hk,i. Consider generators
outage vector Ok with components Ok,i If generator i in
zone k is available, then Ok,i = 0. In case of the generator
outage, Ok,i = Hk,i, where Hk,i is the generator capacity for
generator i.

Assuming the outages in different zones are independent,
the probabilities of outages in the zones exceeding given levels
Qk can be computed as

R(Q) =
∏
k

Pk(Qk) (3)

Pk(Qk) = P

(∑
i

Ok,i ≥ Qk

)
(4)

The survival functions Pk(Qk) in (3)–(4) are monotonically
non-increasing functions of their arguments Qk. As discussed
further in the paper, these functions can be computed from
GADS data using the convolution approach, see [4].

C. Evaluating System Stress

Stress S(L) is defined as a minimum level of zonal outages
(maximum zonal outage probability) such that exceeding that
level is guaranteed to cause transmission criteria violation.

Consider zonal outage magnitude vector Q with compo-
nents Qk in (4). For given load L and outage Q, possible
transmission criteria violation can be found by checking all N-
1 contingencies. Each contingency corresponds to one of the
transmission lines being down. If the load cannot be balanced
for at least one of the contingencies, then transmission criteria

violation index V (Q;L) = 1. If there is no violation, then
V (Q;L) = 0.

Finding system stress level can be then formulated as the
following optimization problem.

S(L) = arg min
Q

R(Q), (5)

subject to Q ∈ F(L), (6)

where outage probability R(Q) is given by (3)–(4) and feasible
domain F (L) is defined as the set of all zonal outage power
vectors Q such that V (Q;L) = 0.

Solving problem (5) for given load L gives the outage
level vector Q∗(L) and the stress S(L) = R(Q∗(L)) as the
probability of exceeding these levels.

Next section discusses in some detail exact mathematical
formulation and solution of problem (5) and computation of
the stress S(L).

D. Worst Case Risk

Assume that load probability distribution and, hence, F (L)
are known. Risk can be computed as S(L) · F (L) on a grid
of values of L using (5)-(6). This allows to find load L∗
that presents the worst case (maximum) risk S(L) · F (L) of
transmission criteria violation and corresponding worst case
stress S(L∗).

In practice, risk S(L)·F (L) is usually a unimodal functions.
To understand this, note that for small loads survival function
is bounded, F (L) ≤ 1, and stress S(L) is small. For large
loads, function F (L) decays, while stress S(L) increases.

III. ESTABLISHING BASE CASES

The proposed approach is to generate and analyze base
cases that cause maximum stress at load level L∗ representing
maximum risk of transmission criteria violation. This section
introduces the method. Some examples are discussed in the
next section.

A. Generation Dispatch

Transmission criteria violation can be checked by formu-
lating and solving a Security Constraint Economic Dispatch
(SCED) problem in the DC power flow setting.

Fixed problem parameters include total generation capaci-
ties Ck in the K service zones and flow capacities Tm in M
transmission lines connecting the zones. These parameters are
aggregated into vectors C ∈ <K with components Ck and
T ∈ <M with components Tm. The SCED problem assumes
zonal demand vector D ∈ <K with components Dk in (1) and
generation outage vector Q ∈ <K with components Qk are
fixed problem parameters as well.

SCED is formulated as an optimization problem with de-
cision variable vector G ∈ <K . Components Gk of G are
the dispatched generations for the zones. Given generations G
and demands D, the flows through the transmission lines are
given by F = S(G−D), where S ∈ <M,K is the shift factors
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matrix. SCED problem looks for solution that works for each
contingency

minimizeG γ(G) (7)
subject to 1T (G−D) = 0, (8)
0 ≤ G ≤ C −Q, (9)
|U(G−D)| ≤ T, (10)
|Un(G−D)| ≤ Tn, (n = 1, ..., N), (11)

where the inequalities involving vectors are applied
component-wise and γ(G) is a scalar valued cost of
the generation dispatch. Equality constraint (8) describes
balance between system-wide power generation and demand.
Inequality constraint (9) describes power output limitations
for generators. The ability to withstand all ‘N-1’ contingencies
is described by (11), where Tn is the transmission capacity
vector and Un is the shift factors matrix corresponding to
the n-th contingency. Vector Tn is the transmission capacity
vector under the n-th contingency.

B. System Stress

Transmission criteria violation is defined by feasibility set
F(L) of problem (7)–(11), where L enters the problem
through zonal demands D in (1). If the problem is infeasible,
transmission criteria are violated. Otherwise, if the problem
is feasible, there is no violation. The feasibility depends on
linear constraints (8)—(11), which define set F(L), and does
not depend on cost function γ(·) in (7).

Computing stress S(L) in accordance with definition (5)–
(6) can be done by solving the following problem

S(L) = min
Q,G

R(Q), (12)

subject to 1T (G−D) = 0, (13)
0 ≤ G ≤ C −Q, (14)
|U(G−D)| ≤ T, (15)
|Un(G−D)| ≤ Tn, (n = 1, ..., N), (16)

where R(Q) is given by (3)–(4).
We call problem (12)–(16) of computing system stress S(L)

the Critical Outage Magnitude Problem (COMP). Its solution
is the critical outage Q∗. This is the minimal (in the sense of
probability R(Q) in (3)) outage guaranteed to make SCED
problem (7)–(11) infeasible and, thus, transmission criteria
violated.

C. Solving COMP

For solving COMP, it is convenient computationally to deal
with the outage magnitude defined through a logarithm of the
outage probability R(Q) in (3) as

M(Q) = − logR(Q) (17)

Outage metrics M(Q) (17) has the meaning of the negative
log-likelihood, which is commonly used in Bayesian analysis.
By using (3), we get

M(Q) = −
∑
k

logPk(Qk) (18)

It can be convenient to use alternative stress metrics

M (0)(Q) = γ
∑
k

Qk (19)

This can be considered as a special case for (18) where outage
probability distributions are exponential distributions. Such
model matches Garver’s rule known in capacity planning. The
rule implies that outage distributions have exponential tails.

Since (17) provides a monotonic one-to-one mapping be-
tween M(Q) and R(Q), the original COMP problem (12)–
(16) can be replaced by the following problem

maximizeQ,GM(Q), (20)
subject to {Q,G} ∈ G(L), (21)

where set G(L) is defined by constraints (8)–(11).
Although set G(L) is convex, problem (20)–(21) is generally

nonconvex because of M(Q) in (18). In practice, it can be
efficiently solved using Sequential Linar Programming (SLP)
approach. The initial step of the SLP is to solve problem
(20)–(21) where M(Q) is replaced by M (0)(Q) (19). Linear
value function (19) and linear constraints (8)–(11) yield an
LP problem that can solved efficiently. At step k of the SLP
method, where k > 1, the value function is replaced by
M (k)(Q) = g(k−1) · (Q − Q(k−1)), where Q(k−1) is the
optimizer from the previous. Gradient vector g(k−1) is

g(k−1) =

[
∂M(Q)

∂Q1
, . . . ,

∂M(Q)

∂QK

]
Q=Q(k−1)

(22)

D. Outage probability distribution
The above formulation requires computing R(Q) in (3).

This, in turn, requires computing Pk(Qk) in (4), the survival
functions of the probability distributions for Ok =

∑Jk
i=1Ok,i.

Bernoulli random variables Ok,i in the sum take values
{0, Hk,i} with probabilities {1− pk,i, pk,i}, respectively.

Computing the distribution can account for many combi-
nations of outages O that have similar impacts. In general,
the distribution is defined on 2Jk states that are combina-
tions (partial sums) of Hk,i for different subsets of indexes
i = (1, . . . , Jk), where Jk represents the number of gener-
ators in zone k. This creates computationally unmanageable
combinatorial complexity.

The complexity becomes linear and the distribution can be
computed easily in a special case where all Hk,i/∆h are
integers for some fixed ∆h. In that case, distribution states are
integer multipliers of ∆h not exceeding

∑
kHk,i. Distribution

for a sum of two independent random variables X and Y
defined on the same uniformly sampled real states can be
computed as a convolution

P(X + Y = z) =
∑
x

P(X = x) ·P(Y = z − x). (23)

The approach to approximate the probability distribution in
(4) is to select a small enough ∆h and approximate Hk,i as
an integer multiples ∆h by rounding. The distribution of the
sum can be then computed by convolving individual Bernoulli
distributions on the discrete state space. This is a well known
approach, e.g., see [4].
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E. Base Cases

Solving COMP problem (20)–(21) yields an optimized vec-
tor Q∗ with components that are generation capacity outages
Q∗,k for the zones. Establishing a base case requires finding
which generator outages correspond to this loss of capacity.

Finding the outaged generators can be formulated as the
following sampling problem. Given the total outage h, find
vector d with binary components di = {0, 1} such that

Jk∑
i=1

Hidi ≈ h. (24)

If approached directly, the sampling problem has combina-
torial complexity and is computationally hard. A relaxation
formulation of problem (24) is proposed below. The formu-
lation is related to compressive sensing, specifically, sparse
decomposition problem.

Consider the problem of maximizing Bayesian likelihood
for binary outage d ∈ {0, 1}Jk . Vector d is described by
generalized Binomial distribution that is a product of Binomial
probability distributions for each generator outage.

P(d) =
∏
j

p
dj
j · (1− pj)

1−dj , (25)

where pj is the outage probability for generator j and dj are
binary variables. Based on (25), the log-likelihood has the form

logP(d) =
∑
j

wjdj +
∑
k

log(1− pj), (26)

where wj = − log(p−1
j − 1).

The relaxation approach replaces binary variables dj with
real variables xj , where 0 ≤ xi ≤ 1. The relaxed problem
maximizes log-likelihood (26) to achieve (24), i.e.,

maximizex
∑
i

wixi, (27)

subject to h ≤
∑
i

Hixi ≤ h+ ∆h, (28)

0 ≤ xi ≤ 1, (i = 1, . . . , Jk), (29)

where xi are decision variables, h is the outage, and ∆h is
outage sampling accuracy. The LP problem (27)–(29) can be
solved efficiently to find xi. If for all i we have xi = 0 or
xi = 1, then d = x is an exact solution of the original problem
of maximizing log-likelihood (26) to achieve (24). Typically,
all but one variables xi in the optimal solution of (27)–(29)
are either 0 or 1; one variable might have a fractional value
between 0 and 1.

Optimized discrete solution in the vicinity of the relaxed
solution, can be found using the following polishing approach.
The fractional weight is rounded first to 0, then to 1. For each
of these two cases, each one of the remaining bits is flipped to
generate Jk−1 potential solutions, where Jk is the number of
decision variables in (29). The approach thus needs to check
2Jk − 2 potential solutions and pick a feasible solution with
the maximal objective function cost in (27).

For given zones capacities Q∗ and system load L∗, the
binary outages dj of generators for each zone can be computed
as described above. These outages provide the critical base
case for checking transmission criteria violation.

IV. EXAMPLE TWO-ZONE SYSTEM

Figure 1 shows a two-zone system example. The two zones
roughly model ISO-NE service area and have the total gener-
ation capacities of C1 = 9.75GW and C2 = 25.77GW. Three
transmission lines with capacities T1 = 1.2GW, T2 = 1.2GW,
and T3 = 0.55GW, respectively, connect the zones.

Fig. 1. Two-zone System Example.

The zonal demands D1 and D2 are defined by (1) where the
load distribution factors are a1 = 0.2648 and a2 = 0.7352.

A. Load Probability Distribution

Computing risk in accordance with Subsection II-D requires
knowledge of the survival function F (L) for the load distri-
bution. The load distribution was modeled based on historical
data for the ISO-NE system demand for three recent years.
The modeling is focused on distribution tail, which describes
the peak load. The tail was modeled using logarithmic peaks-
over-threshold (POT) data, i.e., the positive values of

Vj = log(Lj/L∗), (30)

where Lj is the system load data point and L∗ is a fixed load
value, such as 95/5 load.

Random variable V in (30) was modeled using Extreme
Value Theory (EVT), see [5]. Exponential distribution (Pareto
distribution of the load tail) was fitted to the POT data (30).
The model fit is illustrated by Quantile-Quantile (QQ) plot in
Figure 2 that shows empirical quantiles of V vs. the quantiles
of the fitted distribution e−θV for θ = 14.52.

The final model factors in a forecast for 32% load increase.
The tail part of the survival function for the load distribution
has the form

F (L) = P(D ≥ L) = f∗ · e−θ log(L/L∗) (31)

where f∗ = 0.05, θ = 14.52, and L∗ = 21.34GW are
estimated from the historical data and the forecast.

Survival function (31) is illustrated in Figure 3 in the Loss of
Load Hours (LOLH) format. The horizontal line shows LOLH
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Fig. 2. QQ Plot for Log-load POT Data

= 2.4, which corresponds to the 1-in-10 requirement. The curve
shows F (L)·365·24, the expectation for the exceedance hours
per year vs load level in GW.
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Fig. 3. Yearly Load Exceedance Expectation (Hours)

The developed model can be compared to the Garver’s
rule used by industry for Resource Adequacy Planning, e.g.,
see [6]. Assuming known probability R∗ of exceeding past
peak load P , Garver’s rule states that exceedance of the load
level L has the probability R∗ · e−(L−P )/m. This implies
exponential tail for the load distribution. In this work, Pareto
tail model provided better fit to the load data. (The model
gives exponential tail for the log-load).

B. Outage Probability Distribution

Example system Figure 1 has 73 generator units in Zone 1
and 233 units in Zone 2. Generator outage probability model
is defined by capacities Hk,i and EFORd pk,i probabilities.
The capacities range from 10MW to 1250MW. The outage
probabilities range from 0.01 to 0.42.
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Fig. 4. Survival Functions for Outages in Two Zones.

Outage probability distributions (4) were estimated from this
data. The capacities were rounded to the multiples of 30MW
and the convolution approach in (23) was applied to estimate

distributions in the sums of independent random variables, see
[4]. Figure 4 shows computed survival functions Pk(Qk) for
two zones (k = 1, 2).

C. Computation of Stress

Consider formulation of SCED problem (7)–(11) for the
example system in Figure 1. It is assumed that load L and,
hence, the zonal demands Dk are fixed. Shift factors matrix
U is derived assuming single interface with nominal capacity
T1 +T2 +T3. For three contingencies, the interface capacities
change to T1 + T2 (Line 3 down) or T1 + T3 (Line 2 down)
or T2 + T3 (Line 1 down), respectively.
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Fig. 5. LP Feasibility Example.

Figure 5 illustrates feasibility domain defined by linear
inequality constraints (9)–(11) and generation constraint (8) in
inequality form 1T (G−D) ≥ 0. The coordinates in Figure 5
are net injections N1 = G1−Q1−D1 and N2 = G2−Q2−D2

for the two zones. In the net injection variables, flow con-
straints appear as slanted lines. Net injections are bounded
by N1 ≤ C1 − Q1 − D1 (vertical line ending with dot) and
N2 ≤ C2−Q2−D2 (horizontal line ending with dot). Feasible
points are shown as circular dots on the grid.

System stress S(L) is computed by solving COMP (12)–
(16). This is an extension of SCED problem (7)–(11) and
maximizes the outage subject to the feasibility constraints.
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The SLP method (22) was used to solve the COMP problem
for the example. It converged after one or two SLP iterations.
Figure 6 has the same format as Figure 5 and shows solution
as the intersection of two dotted lines corresponding to Q∗,1
and Q∗,2. The plotted isolines represent the value function
M(Q) = − logP1(Q1) − logP2(Q2), where Pk(Qk) are
shown in Figure 4.

D. Risk Computation

Risk of transmission criteria violation was computed for
a range of loads L sampled with 0.25GW interval. For each
load L, stress S(L) was computed by solving COMP problem
as described in Subsection IV-C. A value of F (L) was taken
from the load distribution estimate shown in Figure 3. Risk
of transmission criteria violation was computed as S(L) ×
R(L), see Subsection II-D for discussion. The computed risk
is illustrated in Figure 7 for a range of L values.
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Fig. 7. Risk vs Load

The risk curve has a single maximum achieved at L∗ =
35.5GW. The COMP solution for L = L∗ yields zonal outages
Q∗,1 = 0.52GW and Q∗,2 = 0GW that produce stress S(L∗).

E. Sampled Base Cases

To establish Base Cases for transmission system planning
analysis, one needs to pick specific outaged generator units.
These units in total should contribute generation outage Q∗,
the COMP solution discussed in Subsection IV-D. The sam-
pling problem of finding outaged units from Q∗ is solved in
Subsection III-E.
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Fig. 8. Sampled Generator Outages for the Example

Outage sampling problem (27)–(29) was solved with ac-
curacy ∆h = 30MW. For Zone 1, COMP outage Q∗,1 =

0.52GW; rounding to the nearest multiple of 30 MW yields
h = 510MW. The solution obtained for Zone 1 is illustrated
in Figure 8 and shows two outaged units: #24 and #57.
For these units H1,24 = 406.18MW, p1,24 = 0.2743 and
H1,57 = 129.6MW, p1,57 = 0.1228. Since Q∗,2 = 0, the
sampled solution and the base case have no outaged units in
Zone 2.

V. CONCLUSION

Figure 9 provides an overview of the proposed probabilistic
method for establishing base cases in transmission system
reliability planning.

Fig. 9. Overview Diagram

The approach looks for the highest risk of transmission
criteria violation as a product of the system stress and the
peak load probability. The system stress is measured through
maximal outage magnitude that makes the SCED problem
infeasible. The stress optimization problem, COMP, is then
formulated with linear SCED constraints that include trans-
mission contingencies. Generator outages and their probability
distributions in the COMP formulation are computed from
the EFORd data using convolution. The proposed approach
selects specific unit outages for the base case by solving the
optimal outage sampling problem. While the existing base-
case selection methods largely rely on engineering judgment,
the proposed method is based on a rigorous formulation. The
method produces a clearly defined risk level and specific base
cases associated with that risk.
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