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ABSTRACT

This paper considers dynamical transient effects in the physical layer of an optical circuit-switched WDM net-
work. These transients of the average transmission power have millisecond time scales. Instead of studying
detailed nonlinear dynamics of the network elements, such as optical line amplifiers, a linearized model of the
dynamics around a given steady state is considered. System-level analysis in this paper uses modern control
theory methods and handles nonlinearity as uncertainty. The analysis translates requirements on the network
performance into the requirements to the network elements. These requirements involve a few gross measures of
performance for network elements and do not depend on the circuit switching state. One such performance mea-
sure is the worst amplification gain for all harmonic disturbances of the average transmission power. Another,
is cross coupling of the wavelength channel power variations. The derived requirements guarantee system-level
performance for all network configurations and can be used for specifying optical components and subsystems.
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1. INTRODUCTION

This paper considers dynamical transient effects in the physical layer of an optical WDM network. The physical
layer dynamics include effects on different time scales. Dynamics of the transmission signal impulses have a scale
of picoseconds. The timing recovery loops in the receivers operate in the nanoseconds time scale. Optical packet
switching in the future networks will have microsecond time scale. Development of such optical networks is yet
in its early stages. Most of the advanced development work in WDM networks is presently focused on circuit
switching networks, where lightpath change events (such as wavelength add/drop or cross-connect configuration
changes) happen on the time scale of seconds.

This paper is focused on the dynamics of the average transmission power related to the gain dynamics in
Optical Line Amplifiers (OLA). These dynamics might be triggered by the circuit switching events and have mil-
lisecond time scale primarily defined by the Amplified Spontaneous Emission (ASE) kinetics in Erbium Doped
Fiber (EDFA) amplifiers. The transmission power dynamics are also influenced by other active components of
optical network, such as automatically tunable attenuators, spectral power equalizers, or other light process-
ing components. When considering these dynamics, an average power of the lightpath transmission signal is
considered. High bandwidth modulation of the signal, which in fact consists of separate information carrying
pulses, is mostly ignored.

Ring WDM networks implementing communication between two fixed points are well established technology,
in particular, for carrying SONET over the WDM. Such simple networks with fixed WDM lighpaths have been
analyzed in most detail. Fairly detailed first principle models for transmission power dynamics exist for such
networks, e.g., see papers2, 4, 6 describing models for EDFA gain dynamics. These models are implemented in
industrial software allowing engineering design calculations and dynamical simulation of such networks. Such
models can potentially have very high fidelity, but their setup, tuning (model parameter identification) and
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exhaustive simulations covering a variety of transmission regimes are potentially very labor intensive. Adding
description of new network components to such model could require a major effort.

The difficulties with detailed first principle models will be greatly exacerbated for future mesh WDM net-
works. The future core optical networks will be transparent to wavelength signals on a physical layer. In such
network, each wavelength signal travels through the optical core between electronic IP routers on the optical
network edge with the information contents unchanged. The signal power is attenuated in the passive network
elements and boosted by the optical amplifiers. The lightpaths will be dynamically provisioned by optical cross-
connects, routers, or switches independently on the underlying protocol for data transmission. Such network
is essentially a circuit switched network. It might experience complex transient processes of the average trans-
mission power for each wavelength signal at the event of the lightpath add, drop, or re-routing. A combination
of the signal propagation delay and channel cross-coupling might result in the transmission power disturbances
propagating across the network in closed loops and causing lasting power oscillations. Such oscillations were
observed experimentally.8 Additionally, the transmission power and amplifier gain transients can be excited
by changes in the average signal power because of the network traffic burstliness.1 If for some period of time
the wavelength channel bandwidth is not fully utilized, this would result in a decrease of the average power
(average temporal density of the transmitted information pulses).

First circuit switched optical networks are already being designed and deployed. This technology develops
rapidly for metro area and long haul networks. Engineering design of circuit switched networks is complicated
by the fact that performance has to be guaranteed for all possible combinations of the lightpaths. Further, as
such networks develop and grow, they potentially have to combine heterogenous equipment from many different
vendors. A system integrator of such network might be different from subsystems or component manufacturer.
This creates a necessity of developing adequate methods for transmission power dynamics calculations that are
suitable for the circuit switched network business. Ideally, these methods should be modular, independent on
the network complexity, and use specifications on the component/subsystem level. The existing CAD tools
for optical network3 do not address these issues. This paper attempts to address a need for such methods for
analysis of the transmission power dynamic.

This paper applies modern dynamics and control system tools and practices to analysis of circuit switched
optical networks. Instead of very accurate nonlinear models, linear models with uncertainty are used to guarantee
integrated system performance. Such analysis might be somewhat conservative, but it is relatively easy to set
up and yields easily understandable specifications for network components. Only very high-level knowledge
about the components and subsystems is assumed. Unlike a detailed modeling and simulation approach, our
robust analysis is independent of the wavelength routing. This ensures its applicability in the design of switched
networks where a large number of different routings can be determined dynamically

Our technical approach to systems analysis is to linearize the nonlinear system around a fixed regime, describe
the nonlinearity as a model uncertainty, and apply robust analysis that guarantees stability and performance
conditions in the presence of the uncertainty. For a user of our approach, there is no need to understand the
derivation and system analysis technicalities. The obtained results are very simple and relate performance
to basic specifications of the network components. These specifications are somewhat different from those
commonly used in the industry, but can be defined from simple experimentation with the components and
subsystems. The obtained specification requirements can be used in development of optical amplifiers, equalizers,
attenuators, other transmission signal conditioning devices, OADMs, OXCs, and any other optical network
devices and subsystems influencing the transmission power. The analysis results could also provide specifications
for component and subsystem choice when integrating the networks from commercially available hardware.

The analysis below assumes that the wavelength routing is fixed and considers signal power variations from
the steady-state, average transmission power level. Such model linearization is a standard approach in systems
control theory and practice and is commonly applied to nonlinear system analysis. It allows applying powerful
tools of the control theory to the problem and achieving deeper insight into the dynamical transient effects
and their criticallity. The main issue with the linearization approach is that because of the nonlinearities the
linearized model gains might change depending on the transmission signal power for each lightwave signal.
This problem can be mitigated by performing robust analysis to obtain a guaranteed results for a range of the
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linearized system gains obtained at different operating points. Such robust analysis might yield somewhat con-
servative results, but it also allows using low-fidelity models and is valid for unpredictably changing conditions,
such as lightpath switching or introduction of additional wavelength add/drop points. The robust analysis is an
effective alternative to a detailed large scale simulation. In addition to being much less expensive, it also pro-
vides better insight into the influence of network element parameters on the large scale WDM network system
performance compared to the simulation.

2. MODELING POWER TRANSIENTS IN A TRANSMISSION CHANNEL

Consider a simple model of the transmission link neglecting the signal transients. A transmitted wavelength
signal is characterized by its average power pin at the link input and the average power pout at the link output.
The static model of the link has a general form of

pout = F (pin), (1)

where F (·) is a nonlinear function. The models of the form (1) are commonly used in the optical network design
practice. Such models describe attenuation of the transmission signal power in the fiber, filters, splitters, etc.
and signal amplification in the OLA.

Let pin,0 and pout,0 be the steady-state equilibrium signal power values at the input and at the output of the
link respectively. Let pin and pout be the ‘instantaneous’ values of the average power that could deviate from
pin,0 and pout,0. The deviation is assumed to be relatively small. The power amplification/attenuation gain g
of the link can be obtained by relating the dB values of the input and output power variations as

10 log10

pout

pout,0
= g · 10 log10

pin

pin,0
, (2)

g =
pin,0

pout,0

dF

dpin
(pin,0), (3)

where it is assumed that the dependence between the input and output power is purely static. In practice the
gain g can be observed by applying a small variation of input power and registering the variation of the output
power after the transients die out. The gain g describes propagation of the small average power disturbances in
the network. These disturbances are with respect to a given steady state operation regime. Note that the gain
g is conceptually different from the overall amplification gain as typically used in engineering of active optical
network elements such as optical amplifiers.

A more comprehensive model of the link might take into account dynamical effects manifested in the output
power transients observed during a rapid change of the input power pin as well as the external disturbances,
such as transmission noise, that influence the signal power. To introduce a linearized dynamical model, consider
the steady-state power levels p̄in,0, p̄out,0 at the input and output ports and their instantaneous values pin, pout

that include deviations from these steady-state levels. The dynamical variables describing the variations of the
signal power are

yout = c · 10 log10

pout

pout,0
, (4)

yin =
c

g
· 10 log10

pin

pin,0
, (5)

where c is the scaling factor and g is the gain (3). The same scaling factor c is introduced in (4) and (5) for both
the input and output signals. This scaling factor does not change the linear dynamical model relating yout to
yin and will be explained later on. The scaling factor 1/g in (5) is introduced such that the steady state (DC)
small signal gain of the link is unity. The introduced scaling normalizes the considered dynamical effects with
respect to the steady-state amplification or attenuation gain of the link. This allows separating the analysis of
dynamical transient effects in the network from an analysis and design of the average power propagation for a
transmission signal. For a long-haul transmission system each link might include an optical line amplifier (such
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as EDFA) and a length of a fiber. This transmission system would be typically engineered such that the signal
power gain in the amplifier compensates the power loss in the fiber. This means g ≈ 1 and the scaling factor
1/g in (5) is close to unity.

Assuming the signal variations from the steady state are small, the dynamical relationship between the input
and output signal power is linear and can be presented in the form

yout = h(s)yin, (6)

where s is the Laplace transofrm variable and h(s) is the link transfer function. The transfer function h(s)
describes the transient dynamics of the signal in the link. In accordance with (4), (5) this function is normalized
such that h(0) = 1. The transfer function h(s) might include the light propagation delay in the fiber length
in the link, signal power attenuation in the fiber, the dynamical effects and channel power cross-interaction in
the optical amplifiers, as well as influence of other active or passive optical devices, such as equalizers, filters,
attenuators, and splitters, included in the link.

In modern control theory, the maximal gain h(iω) is called an H∞ norm of the transfer function h(s) and
usually denoted as

‖h(s)‖∞ = sup
ω∈<

|h(iω)|, (7)

where a technical condition of transfer function h(s) being stable and proper is assumed. This conditions always
holds for the practical systems in question.

3. MODELING TRANSIENTS IN A WDM NETWORK

This section extends the model (6) towards a generic circuit-switched optical network configuration, such as
one schematically depicted in Figure 1. The cross-influence of the power for individual wavelength signals can
potentially result in the signal transients propagating along closed loop paths, despite the fact that none of
individual wavelength signals follows a closed path. The closed-loop propagation of the transients might lead
to sustained oscillations of the optical signal power. Such oscillations were observed experimentally.8 It is
important to foresee possibility of such oscillations when designing a network and avoid them for all possible
working regimes and switched circuit configurations.

Amplifier (OLA)

Transmitter 1 Transmitter 2
Receiver 1

Receiver 2

SwitchSwitch

Switch

OADM

Figure 1: Optical network example

Consider a mutivariable model for a single WDM transmission link carrying several wavelength signals, each
characterized by its average power. For each wavelength signal, the scaled input and output variables yin,k and
yout,k can be introduced similar to (4), (5), where k is the wavelength signal number for this link. These input
signals are collected into a vector Yin ∈ <N , where N is the number of the signals in the link. The vector Yin

has components yin,k. Similarly, the output signals of the link are described by the vector Yout ∈ <N with the
components yout,k.
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A multivariable extension of the linearized dynamical model (6) can be used to describe the relationship
between the input and output signals in the link as

Yout = H(s)Yin, (8)

where H(s) ∈ <N,N is a square transfer function matrix. The diagonal elements of H(s) in (8) describe the
transfer functions for each wavelength, similar to (6). The off-diagonal elements describe the cross-influence of
an input power change in one wavelength signal onto the output power change for another wavelength signal.

The transfer function H(s) can be split into two parts such that

H(s) = D(s) + T (s), (9)

where D(s) is a diagonal N ×N matrix of the ‘nominal’ transfer function with the diagonal elements dk(s) and
T (s) is a N ×N matrix describing the cross-influence of different wavelength signals. Note that in accordance
with the scaling (4), (5) and similar with the model (6) the steady-state gains of the nominal transfer function
are unity for each wavelength, i.e., D(0) = I, where I is the unity matrix.

In the control theory, it is well known that the maximal amplification gain of a dynamical linear operator
(transfer function) can be computed as an H∞ norm, a multivariable generalization of (7)

‖T (s)‖∞ = sup
ω∈<

σ̄ (T (iω)) , (10)

where σ̄(A) is the largest singular value of a matrix A, i.e., a square root of the largest eigenvalue of AT A.

The operator gain (10) will be used in analysis of the transient stability and transmission disturbance
amplification to follow. This analysis uses the bound ‖T (s)‖∞ ≤ t∗ as the only information about the transfer
function T (s). Such analysis might be somewhat conservative but can be readily applied in practice. The
‖T (s)‖∞ specification for the transfer function can be defined in practice with relative ease and without a need
to have a detailed model of the cross-influence between powers of individual wavelength signals. The analysis
to follow also includes a single parameter specification of the nominal transfer function model D(s) through a
maximal amplification gain with respect to the disturbances encountered in all the links along each lightpath.

Consider an alternative representation of a circuit switched WDM network, illustrated in Figure 1. For the
sake of the analysis, the network is modeled as a collection of separate communication links. Each link receives a
number of wavelength signals as its input. In the network, different wavelength signals on the output of one link
are connected to the inputs of other links. By pulling the connections together, the network can be presented
as in Figure 2

…………

Connections

Link #1

Link #N

input
signals

output
signals

Figure 2: Network model as communication links and their connections

The network links in Figure 2 can be described by extending the model of the form (8), (9) towards all the
links in question as follows

Y
(n)
out = H(n)(s)Y (n)

in , (n = 1, . . . , NL), (11)

H(n)(s) = D(n)(s) + T (n)(s), (12)
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where Y
(n)
in ∈ <Nn is the vector of the average input signal power variation for link n, Y

(n)
out ∈ <Nn is the vector

of the output signal power variation, and H(n)(s) is the matrix transfer function describing link n. Similar to
(6), the transfer matrix H(n)(s) for each link is split into the ‘nominal’ diagonal transfer matrix D(n)(s) and
the ‘perturbation’ matrix T (n)(s) collecting the wavelength signal cross-coupling and other effects outside of the
nominal model.

To describe the complete model including the network inputs, outputs and link connection, introduce the
following block-vector and block-matrix notations

Ȳin ≡




Y
(1)
in
...

Y
(Nn)
in


 , Ȳout =




Y
(1)
out
...

Y
(Nn)
out


 , (13)

H̄(s) = block diag{H(1)(s), H(2)(s), . . . H(Nn)(s)} (14)

By using (11)–(14) the network model can be described through the following matrix equations

Ȳout = H̄(s)Ȳin, (15)
Ȳin = K · Ȳout + BU, (16)
Z = CȲout, (17)

where U ∈ <M is the vector collecting the input signal power for all independent wavelength signals and Z ∈ <M

is the vector collecting the output signal power for the same wavelengths; M ≤ N . The block matrix H̄(s) is
described in (14). The entries of the ‘connection’ matrix K are either zeros or off-diagonal ones. Each unity
entry in K corresponds to a link output being connected to another link input in accordance with the row and
column number of this entry. The rectangular selection matrix C consists mostly of zeros and has a single unity
entry in each row. This entry describes the respective output signal of one of the transmission links observed as
a signal delivered by the network to a final receiver device destination. The rectangular selection matrix B has
structure similar to the structure of C. Each unity entry in B describes the network input signal (a component
of U) connected to one of the network link inputs.

It is important to note at this point that potential changes in switching and routing of the individual
wavelength signals in a transparent optical network would result in changing entries in the matrices K, B, and
C. The models of the links (15) do not change. The analysis to follow uses only general properties of the
matrices K, B, and C that do not depend on the particular signal routing configuration. Thus, this analysis is
valid for the current network configuration independently of the current switch states.

From the model (15)–(17) the vector Z of the network output power for all independent wavelength signals
can be found in the form

Z = CS(s)H̄(s)BU, (18)

S(s) =
[
I − H̄(s)K

]−1
, (19)

where I is the identity matrix of the appropriate size and S(s) is the sensitivity matrix for the network. The
transfer matrix S(s) defines the amplification effects for the transmission signal average power variations in the
network as related to the connection of the links in the network.

In accordance with (6) and (14) the transfer matrix H̄(s) can be presented in the form

H̄(s) = D̄(s) + T̄ (s), (20)
D̄(s) = block diag{D(1)(s), D(2)(s), . . . D(Nn)(s)}, (21)
T̄ (s) = block diag{T (1)(s), T (2)(s), . . . T (Nn)(s)}, (22)

where D̄(s) is the composite diagonal nominal transfer matrix for all network links and T̄ (s) is the composite
transfer matrix incorporating the cross-coupling effects for all links.
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By substituting (20) into (18), (19) one can derive the following representation of the network output signals

Z = CS1(s)H̄(s)BU, (23)

S1(s) =
[
I − S0(s)T̄ (s)K

]−1
S0(s), (24)

S0(s) =
[
I − D̄(s)K

]−1
, (25)

This representation explicitly shows the dependence of the output signal on the cross-coupling transfer matrix
T̄ (s) (22). If there is no cross-coupling, then T̄ (s) = 0, S1(s) = S0(s), and the network output signals (23) are
given by (18), where S(s) = S0(s).

4. ANALYSIS OF THE TRANSIENT PERFORMANCE

The analysis to follow is based on the assumption that the design of the network including the selection of the
OLA gains is based on the nominal model of the network for each wavelength signal. In accordance with (12),
such nominal models of the links are described by the diagonal transfer matrices D(n)(s) in (21) and they ignore
the channel cross-coupling and other effects attributed to the transfer matrices T (n)(s) in (22). Note that in
some practical cases the nominal models D(n)(s) might include only static amplification gains ignoring signal
power transients. Such models are commonly used in the practical network design. In this case the unmodeled
transient dynamics could be attributed to the transfer matrices T (n)(s).

Consider the expression (23) for the output signal power Z computed through the input signal power Z.
In the presence of the cross-coupling, the transients in the input signal power U such as a channel add/drop
or average power variation because of the traffic burstiness might cause large transients in the output signal
power Z. This would happen in accordance with the amplification characteristics of the operator S1(s) in (24).
The network design and the component specifications should guarantee that the signal amplification with the
operator S1(s) is small over all frequencies.

Consider the following operator gains calculated in accordance with (10)

s∗ = ‖S0‖∞, (26)
t∗ = ‖T̄ (s)‖∞ = max

k
‖Tk(s)‖∞, (27)

s1 = ‖S1‖∞, (28)

where s∗ is the gross measure of the nominal noise sensitivity S0 (24), and t∗ is the gross measure of the
cross-coupling and other unmodeled effects. In accordance with (22), the norm t∗ (27) corresponds to the worst
cross-coupling in all of the network links. In accordance with (23), (24), and (26), the parameter s∗ defines
a measure of the external disturbance amplification in the nominal model of the network, i.e., the model that
does not take the cross-influence of the wavelength signals into account.

For more detailed insight into evaluation of s∗, it must be noted that the matrix K in (16) is a projection
matrix. It selects a subset of the input signals and permutes their order. Therefore,

‖K‖ ≡ σ̄(K) = 1 (29)

From (23)–(29) it follows that the transient processes in the network are guaranteed to be stable as long as
the cross-coupling is small enough, i.e., if t∗ < 1/s∗. With the contribution of the cross-coupling effects is taken
into account, the input power perturbation effect on the network output S0(s)U is replaced by S1(s)U in (23).
The amplification gain s1 in (28) can be estimated as follows

‖Z‖∞ ≤ s1‖U‖∞ (30)

s1 =
s∗

1− t∗s∗
(31)

where ‖U‖∞ and ‖Z‖∞ are the maximal spectral powers for the average power variations of the input and
ouput transmission signals respectively. The inequality (30) follows from (28) and (23). The main advantage
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of the estimate (31) of the sensitivity s1 is its simple form. The estimate (31) shows that the power transient
amplification can increase out of hand as t∗ is getting closer to the stability boundary 1/s∗. For t∗ ¿ 1/s∗
the cross-coupling effects are guaranteed to have little effect on the noise sensitivity. The expression (31) gives
a convenient practical measure of the cross-coupling and other deviations from the nominal design behavior,
which can be tolerated in the network links and devices included into this links. This shifts the emphasis from
design and analysis of the entire optical network to the requirement specifications for individual network devices
that might be provided by different OEM suppliers.

In the above analysis, the nominal network design is characterized by a single number – the nominal sensi-
tivity s∗. This sensitivity depends on the nominal model of the network and can be evaluated at the stage of the
nominal network design. In accordance with (24) and (26) the nominal sensitivity s∗ depends on the lightpath
connections, as defined by matrix K and the nominal network link gains as defined by the transfer matrix D(s).
The matrix K could be changing in a network because of the re-routing of the lightpaths. Therefore, it is
desirable to characterize s∗ in terms of specifications for the nominal network gains.

The nominal network gains can be characterized by a single H∞ norm parameter

d∗ = ‖D̄(s)‖∞ = max
k
‖Dk(s)‖∞ = max

k,j
sup
ω∈<

|dj
k(iω)|, (32)

Dk(s) = diag{d1
k(s), d2

k(s), . . . , dnk

k (s)}, (33)

where d∗ can be considered as the largest input amplification gain of an wavelength signal over all network links
at any frequency of the average input power modulation.

Clearly, the guaranteed value of the nominal sensitivity s∗ grows with d∗. The question is: for a given value
of d∗ is it guaranteed that the sensitivity is less than s∗? Let n∗ be the maximal number of the links in the
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Figure 3: The dependence s∗(d∗, n∗) computed for n∗ ≤ 10
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path for any wavelength. The function s∗(d∗, n∗) describing the maximal (worst case) sensitivity s∗ that can
be possibly achieved for given d∗ and n∗ can be evaluated with help of µ-analysis.9 The detailed discussion of
the calculation is beyond the scope of this paper. Figure 3 shows the curves s∗(d∗, n∗) computed for n∗ ≤ 10.
These curves cover the case of the networks with up to 9 OXCs encountered for each wavelength.

5. DISCUSSION AND CONCLUSION
To recap, the robust characterization of the transient amplification in the network in (30), (31) describes the
entire WDM network with help of only three parameters: (i) the channel cross coupling parameter t∗ in (27), (ii)
the maximal nominal amplification gain d∗ (32) for the network links, and (iii) the maximal number n∗ of links
in a lightpath in the network. All these parameters can be easily obtained for a network being analyzed. The
robust sensitivity s1 in (31) takes into account the cross-coupling effects and can be computed from the nominal
robust sensitivity s∗. The latter is defined by d∗ and n∗ and can be evaluated from the plots in Figure 3.

The described robust sensitivity analysis automatically takes care of the potential presence of closed loops
and lightpath changes (switching). Of course, there is a price to pay for the analysis convenience - it might
be somewhat conservative. A detailed model of the network might give a more accurate prediction of the
transient amplification. A big advantage of our approach, however, is that the estimates of the amplification
gain d∗ and the signal cross-coupling t∗ parameters can be considered as hardware specifications for each of
the network links. As long as the network design complies with these specifications, the robust bound on the
transient amplification holds, even as the lightpaths are switched, network configuration is modified, or some of
the equipment replaced.

Our analysis implicitly assumes that the phase of the dynamic amplification gain dj
k(iω) and the cross-

coupling T (iω) are worst possible. This assumption is particularly reasonable if the propagation delays in the
network links are comparable with or larger than the time constants of the lightpath switching transients. Future
optical core networks will be have very fast lightpath switching times, while the signal propagation delays are
defined by the fiber link lengths and cannot be reduced. This means our analysis is most relevant for these
future networks.

The analysis results obtained in the paper do not depend on the network or switched circuit configuration.
Thought the analysis is based on control theory techniques, using its the results does not require a deep
background in the control theory. Engineering specifications of the network subsystems and components used
for analysis are easy to understand and use.
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