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Abstract—This paper develops a method for estimating trends
of extreme events statistics across multiple time periods. Some
of the periods might have no extreme events and some might
have much data. The extreme event distribution is modeled with
a Pareto or exponential tail. The method requires selecting an
extreme event threshold and then solving two convex problems
for the tail parameters. Solving one provides a smoothed tail rate
trend, solving another, the smoothed trend of the tail quantile
level. The approach is illustrated by trending the 10-year extreme
event risks for S&P 500 index daily losses and for peak power
load in electrical utility data.

I. INTRODUCTION

Long tail distributions appear in many signal processing
problems such as internet traffic analysis [1], image processing
[2], [3], and risk in finance [4]. Detection and decision
algorithms for these problems require distribution knowledge.

The Peaks Over Threshold (POT) exceedance data is usually
sparse and simple parametric fit procedures, such as the Hill’s
estimator for the Pareto tail model, are used [5], [6], [7], [8].
To improve estimation, [9], [10] propose using a conjugate
Bayesian prior, the Gamma distribution. The prior distributions
that are long tailed can also reduce sensitivities to spurious
outliers, see [11], [12].

In modern signal processing problems, there could be thou-
sands of one-per million extreme events. This affords more
detailed extreme statistics modeling, such as estimating trends
of tail parameters, the subject of this paper. The trends of
extreme event risks are of much interest in problems of climate
science, finance, industrial data, and actuarial risk.

There seems to be little prior work on multi-period estima-
tion for the tail models. One ad hoc approach assumes that tail
distribution parameters depend on time in accordance with a
given regression model. In [13], this is a linear trend model.
In [14], a more complex regression is used. The non-convex
problems in [13], [14] are computationally difficult. The multi-
period model in [15] uses a Bayesian prior for the exceedance
number, but not for the tail parameter; the non-smooth prior
complicates the computation. The multi-period formulation in
[16] is for extreme value distributions with finite tail.

There seems to be no prior work in optimal multi-period
estimation of long tail models. This paper addresses the gap.
Its contributions are in (i) multi-period models for trends
of Pareto or exponential tail parameters based on conjugate
priors and (ii) an efficient method for optimal estimation of
these models. For the formulated model, the optimal Bayesian
estimation of the tail parameter trends separates into two

convex optimization problems for tail shape and tail quantile
level parameters. These problems can be efficiently solved.

The paper proposes selecting the prior hyper-parameters
such that desired smoothing action of the estimator is attained.
The method is applied to the estimation of the trends of 10-
year extreme event risks in two examples: (i) daily loss in
S&P 500 index data, and (ii) peak load in electrical utility
data. Since such events do not happen every year, these are
non-trivial problems.

II. SINGLE TIME PERIOD PROBLEM

To introduce the problem, we start from a well-studied
baseline case of extreme event modeling from the data set

D = {xi}Ni=1, (1)

where scalars xi are i.i.d. data, i is the sample index, and N is
the total number of samples. We consider the right tail events.

This paper models the probability of extreme quantiles.
Based on the EVT, we assume that the tail density of the
generating distribution for {xi} follows either a Pareto or an
exponential distribution. To model the Pareto right tail we use
the POT method of EVT for log exceedances yi = log(xi)−A,
where A is the threshold. For the exponential right tail, we
assume the POT exceedances yi = xi −A.

Using the conditional probability definition, see [17], yields

P(y > u) = P(y > u|y > 0) ·P(y > 0), (2)

where u is a positive parameter, q = P(y > 0) is the tail
quantile level, and Ftail(u) = P(y > u|y > 0) is the tail
probability (survival function). In what follows, we estimate q
and the tail probability density function ptail(u), which is the
derivative of the cumulative density function, 1− Ftail(u).

To estimate the tail probability density, we assume that

ptail(y) = pExp(y) = θe−θy, (3)

where y = log(x)− A for the Pareto tail and y = x− A for
the exponential tail. The maximum likelihood estimate (MLE)
of the tail rate θ is

θ̂ = arg max
θ

∑
yi≥0

(log θ − θyi) =
1

meanyi≥0{yi}
. (4)

For Pareto tail and minyi≥0{yi} = 0, expression (4) is the
same as the Hill’s estimator [5].

The quantile level parameter q can be estimated from the
number of tail points n = card{yi ≥ 0} in the N -point data



set (1). Each data point (1) follows a Bernoulli distribution: it
either is in the tail with probability q or not, with probability
1 − q. Thus, n follows a binomial distribution B(N, q),
see [18]. For known n, the MLE estimate of the distribution
parameter q is (see the Supplementary Material)

q̂ = arg max
q∈(0,1)

n log q + (N − n) log(1− q) = n/N. (5)

III. MULTI-PERIOD OPTIMAL ESTIMATION PROBLEM

The main contribution of this paper is a multi-period risk
trend model extending the formulation of Section II.

A. Problem Formulation

Consider a multi-period dataset, a generalization of (1),

D = {{xtj}Nt
j=1}

T
t=1, (6)

where t is the time period, j is the sample number inside the
time period, Nt is number of data points in the time period,
and T is the total number of time periods. As in Section II, we
analyze log exceedances ytj = log xtj − A for Pareto tail or
ytj = xtj−A for exponential tail. The choice of the threshold
A is discussed below in Sections V and VI.

For each time period t, we assume an exponential distri-
bution (3) for ytj , with rate θt. For nt = card{ytj ≥ 0}, we
assume a Binomial distribution (5) with parameter qt,

ytj |(ytj ≥ 0, θt) ∼ Exp(θt), (7)
nt|qt ∼ B(Nt, qt). (8)

In this multi-period setting, the right tail is defined by
{qt, θt}Tt=1. If there are not enough extreme value (POT) data
for accurate estimation of the tail model at each time period, a
usual approach is to pool all the data and estimate one model
for all time periods. This paper proposes a more consistent
non-parametric approach. We introduce Bayesian priors for qt
and θt and compute maximum a posteriori (MAP) estimates
to get their smoothed trends.

B. Prior Distributions

For the trend of the rate parameters θt, we assume the prior

θt/θt−1 ∼ Gamma(β + 1, β), (9)

where the Gamma distribution Gamma(α, β) is the conjugate
prior for the exponential distribution (7). In (9), we set α =
β+ 1. The mode of Gamma(β+ 1, β) is unity for any β > 0.
If there are no POT data in the current time period (nt = 0),
the ‘prior-only’ MAP yields θt = θt−1.

The parameter β defines the ‘tightness’ of the prior (9). In
case β = 0, there is no prior and tail model for each time
period is estimated separately. For β = ∞, the estimates are
forced to be the same for all t. This is equivalent to pooling
all the data and estimating one model. For 0 < β < ∞, the
estimate is smoothed, and more smoothing for larger β.

For the quantile level parameters qt, we assume the prior

log qt/ log qt−1 = − log zt, zt ∼ Beta(η, η(e− 1) + 1), (10)

where Beta(α, β) is the Beta distribution. The properties of
prior (10) are similar to (9). For η = 0, each qt is estimated
separately. For η =∞, a common estimate for all qt is forced.

The priors (9) and (10) are based on the conjugate priors for
the distributions (7) and (8). They allow simulating Markov
chains of θt, qt that follow the prior model; this property holds
in most filtering models used in signal processing. The prior
hyper-parameters β in (9) and η in (10) can be conveniently
tuned; this is discussed in Section IV. We next show that priors
(9), (10) lead to MAP problems that can be solved efficiently.
Section V shows that such MAP estimates provide superior
accuracy compared to the baseline methods.

C. Smoothing Filter Formulation

The joint MAP estimation of the formulated Bayesian model
(7), (8), (9), (10) splits into two independent problems for θt
and qt. These smoothing filter problems are discussed below.

1) Tail Rate Estimation: By combining the likelihood for
(7) and the prior (9) we get the posterior. The log posterior
for MAP estimation of θt has the form

Lθ =

T∑
t=1

nt (log θt − ȳtθt) + β

T∑
t=2

[
log

θt
θt−1

− θt
θt−1

]
, (11)

where ȳt = meanyjt≥0{yjt}.
The MAP estimate of θt maximizes Lθ subject to θt ≥

0, (t = 1, . . . , T ). After the variable change, rt = log θt,
the constrained non-convex problem of maximizing Lθ (11)
becomes an unconstrained convex problem

minimize
T∑
t=1

nt (ȳte
rt − rt) + β

T∑
t=2

(
e∆rt −∆rt

)
, (12)

where ∆rt = rt − rt−1. The smoothing filter estimate (12)
can be found using convex optimization methods, see [19].

2) Tail Quantile Level Estimation: Combining the likeli-
hood based on (8) and the prior (10) gives the log posterior
for MAP estimation of qt in the form

Lq =

T∑
t=1

[nt log qt + (Nt − nt) log(1− qt)]

− η
T∑
t=2

φ (log (log qt/ log qt−1)) ,

(13)

φ(x) = ex − (e− 1) log (1− exp (−ex)) . (14)

The MAP estimate of qt maximizes Lq subject to 0 ≤
qt ≤ 1, (t = 1, . . . , T ). Variable change ut = log(− log qt),
transforms the MAP estimation problem into an unconstrained
convex optimization problem

minimize
T∑
t=1

[nte
ut − (Nt − nt) log (1− exp(−eut))]

+ η

T∑
t=2

φ (ut − ut−1) .

(15)
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D. Risk Trend
The estimated tail model θt, qt allows to trend the risk Rt

of exceeding a given threshold u in (2).

Rt = P(y > u|θt, qt) = qt · e−θtu. (16)

The examples of Section VI set u such that exceeding it is a
1-in-10-years event for pooled data for all time periods.

The model also allows to trend Value at Risk (VaR), see [4].
VaR at confidence level α is defined by α = P(x ≤ VaRα).
For Pareto tail, y = log x−A; using (2), (3) we get

VaRα,t = exp

(
A− θ−1

t log
1− α
qt

)
. (17)

For exponential tail, y = x−A; the expression for VaRα,t is
as in (17) but without the exp.

IV. SMOOTHING FILTER SOLUTION

This section uses quadratic Taylor expansions of (12), (15).

A. Quadratic Approximation
For rt = r∗,t + vt in (12), the quadratic expansion is

minimize
vt

T∑
t=1

at (vt − ct)2
+

T∑
t=2

bt (vt − vt−1 − dt)2
, (18)

where the coefficients depend on the expansion center r∗,t
at = ntȳte

r∗,t , bt = βer∗,t−r∗,t−1 ,

ct = (ȳte
r∗,t)

−1 − 1, dt = er∗,t−1−r∗,t − 1.
(19)

Expanding (15) at ut = u∗,t + vt yields (18) with

at = w∗,t

(
nt + q∗,t

q∗,t − 1 + w∗,t
(1− q∗,t)2

(Nt − nt)
)
,

bt = ηφ′′ (u∗,t − u∗,t−1) ,

ct = w∗,ta
−1
t

(
q∗,t(1− q∗,t)−1(Nt − nt)− nt

)
,

dt = −φ′ (u∗,t − u∗,t−1) /φ′′ (u∗,t − u∗,t−1) ,

(20)

where w∗,t = exp(u∗,t), q∗,t = exp(−w∗,t), and the first and
second derivative of φ (14) are denoted by φ′ and φ′′.

B. Almost Uniform Periods
For the tail rate smoothing filter, assume that data in (12)

vary little for different time periods, |ȳt − ȳ∗| � 1, nt = n∗,
for t = 1, . . . , T . Then the quadratic expansion (18), (19)
centered at the mean solution r∗,t = − log ȳ∗ has the form

minimize
vt

T∑
t=1

(vt − ωt)2
+ ρ

T∑
t=2

(vt − vt−1)
2
, (21)

ρ = β/n∗, ωt = 1− ȳt/ȳ∗. (22)

For smoothing filter (15), assume that |nt − n∗| � n∗,
Nt = N∗, for t = 1, . . . , T . The solution for nt = n∗ is ut =
log(− log q∗), where q∗ = n∗/N∗. The quadratic expansion
(18), (20), centered at this solution has the form (21) with

ρ =
ηe

a∗(e− 1)
, ωt = (n∗ − nt)a−1

∗ log q∗ · (1− q∗)−1, (23)

a∗ = − log q∗

(
n∗ + q∗(N∗ − n∗)

q∗ − 1− log q∗
(1− q∗)2

)
. (24)

C. Filter Tuning
The smoothing filter (21) has a single parameter, ρ. It can

be expressed through the width w of the non-causal smoothing
filter window as (see the Supplementary Material)

ρ = e−1/w(e−1/w − 1)−2. (25)

This is derived by looking at poles of the filter impulse
response, see [20], [21], [22], [23]. Substituting β/n∗ in (22)
for ρ in (25) yields

β = n∗ · e−1/w
(
e−1/w − 1

)−2

. (26)

By substituting ρ from (23), (24) into (25), we get

η = a∗(1− 1/e) · e−1/w
(
e−1/w − 1

)−2

. (27)

The smoothing filters (12) and (15) can be tuned using rules
(26) and (27), (24). For a given data set, start by calculating

N∗ = meant{Nt}, n∗ = meant{nt}, ȳ∗ = meanytj>0{ytj}.

The prior parameters β and η are then computed based on N∗,
n∗, ȳ∗ in accordance with (26) and (27).

There is a single tuning parameter w. For w → 0, there is
no prior; the case w →∞ means pooling all the data together.

D. Computing the Solution
The smoothing filter solutions r̂t (12) and ût (15) can be

found by the Newton’s iterations. Each iteration solves (18),
(19) and (18), (20), respectively, using a sparse Hessian matrix.

The Bayesian estimates r̂t and ût can be assessed by
building credible intervals computed through the diagonal
elements of the inverse Hessian matrix at the solution, see [24].
The Hessian is defined by at and bt in the quadratic expansion
(18). See the Supplementary Material for more detail.

V. VERIFICATION AND METHOD PERFORMANCE

The proposed method was verified in a Monte Carlo sim-
ulation study. Each simulation generated a chain of tail rate
parameters θt for t = 1, . . . , T using the stochastic model
(9) and a chain of quantile level parameters qt using (10).
For each time period t, stochastic models (7), (8) with θt and
qt were used to generate nt tail data points ytj . The fixed
parameters of the simulations were: T = 500, N = 10000,
w = 10, Nruns = 100. We used n∗ = {10, 20, . . . , 100}
and ȳ∗ = {0.1, 1, 10, 100}. For each combination (n∗, ȳ∗), the
hyper-parameters β, η were set using (26), (27); then, Nruns
simulations were run. The simulated data was processed by
smoothing filters (12), (15) to estimate the parameters θ̂t, q̂t.

Figure 1 illustrates the performance of the proposed method.
The root mean square (RMS) estimation error θt − θ̂t was
averaged over the simulation runs for given ȳ∗ (upper and
lower plots) and n∗ (plot argument). The filter used the same
value of β as βS employed in the simulation. The proposed
method is superior to the baseline methods of pooling all
the data (β = ∞) or looking at each time period separately
(β = 0). It improves the RMS error by factor of 3.4 or more
compared to the baseline methods. Similar results hold for
ȳ∗ = 0.1 or ȳ∗ = 100 (see the Supplementary Material).
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Fig. 1. RMS error of the tail rate estimate: ȳ∗ = 1 (upper plot) and ȳ∗ = 10
(lower plot)

VI. EXAMPLES

We applied our method to two important signal processing
problems: computing risk for financial time series see [4], and
power grid monitoring, see [25]. In both examples, we used
the tuning rules (26)–(27) with w = {0, 4, 8, 18,∞} to set up
the parameters β and η. The tail estimation method parameters
used in these examples are summarized in Table I for w = 18.
The tuning parameter w should be chosen by the analyst.

TABLE I
PARAMETER SUMMARY (w = 18)

β η A R∗
Power Load 91,196 899,380 1.8 0.1/8760
S&P 500 Index 8,340.9 30,517 0.0098 0.1/252

A. Peak Power Load
The data set from [26] includes hourly electrical power

loads and ambient temperature data for a US utility. The data
allow to compute the aggregate load xt for the utility; it has
the range of 0.8 to 3.2 GW with the average of 1.6 GW.

The data covers a time range of 48 consecutive months
with the sampling interval of one hour, N = 38, 070 samples
in all. We considered each month as a time period, T = 48
periods in all. The power load has strong seasonal component.
To reduce its impact, we normalized the load values Ltj for
month t by the geometric mean value L̄m for calendar month
m = mod (t, 12) to compute the data (6) as

xtj = Ltj/L̄m, (t = 1, . . . , 48). (28)

The data has Pareto tail. Table I shows the threshold A
used to compute the log-exceedances ytj that have the average
exceedance probability R∗ = 0.1/8760. This is the probability
of seeing a 1-in-10-years event in one year of hourly data. The
upper plot in Figure 2 compares R∗ with 1−(1−Rt)720, where
Rt is from (16) and 720 is number of hours in a month. The
monthly threshold exceedance numbers nt are illustrated by
the lower plot of Figure 2. The plots are obtained for the five
displayed values of the smoothing parameter w in (26), (27).
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Fig. 2. Probability of a 1-in-10-years power load peak occurring in a given
month (upper plot). Exceedance number for each month (lower plot).

B. S&P 500 Risk

We used S&P 500 daily data [27] for a period from 1950 to
2013. Let Sd be the closing index value for trading day d. The
relative loss at trading day d is computed as xd = Sd−1/Sd.
The loss data for each year were combined to create a multi-
period data set (6) for T = 64 yearly periods.

Table I shows threshold A used to compute the log-
exceedances ytj for the Pareto tail. The average risk R∗ = 1−
α in Table I corresponds to 1-in-10-years loss event and gives
confidence level α = 99.96%. We also consider percentage
loss (xd − 1) · 100%. The VaR for the S&P 500 portfolio
percentage loss is then pVaRα,t = (VaRα,t − 1)·100%, where
VaRα,t is computed for xd in accordance with (17). The upper
plot in Figure 3 shows pVaRα,t.

The daily loss risk shows an increasing trend, from about
4% in 1950 to to about 6% in 2013. The labels for smoothing
parameters w used in (26), (27) are shown in the figure.
The lower plot in Figure 3 shows number nt of the yearly
exceedances. See Supplementaty Material for more results.
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Fig. 3. pVaRα,t at confidence level α = 99.96% for S&P loss occurring
in a given year (upper plot). Exceedance number for each year (lower plot).
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APPENDIX

APPENDIX A: BERNOULLI LIKELIHOOD IN (5)

Each point in the data set (1) follows a Bernoulli distribu-
tion: it either belongs to the distribution tail with probability
q or or not, with probability 1− q. The probability of having
n points belonging to the tail is given by

pB(n|q) = CnNq
n(1− q)N−n, (A.1)

where CnN = N !/(n!(N − n)!). For known n, the Maximum
Likelihood Estimate (MLE) of q can be obtained by maximiz-
ing log pB(n|q) in (A.1). This yields (5)

q̂ = arg max
q∈(0,1)

n log q + (N − n) log(1− q) = n/N.

APPENDIX B: QUADRATIC APPROXIMATION (18)

Non-linear filters (12) and (15) minimize loss functions of
the form

L(x) =

T∑
t=1

f(xt) +

T∑
t=2

g(∆xt), (A.2)

where ∆xt = xt−xt−1. This expression hides the dependence
on parameters and only shows explicit dependence on the deci-
sion variables that we optimize over. Quadratically expanding
(A.2) in a Taylor series about x∗,t, with xt = x∗,t+ vt yields,
after throwing out the constant terms

L(x) ≈
T∑
t=1

(
f ′(x∗,t)vt +

1

2
f ′′(x∗,t)v

2
t

)

+

T∑
t=2

(
g′(∆x∗,t)∆vt +

1

2
g′′(∆x∗,t)(∆vt)

2

)
,

(A.3)

where ∆vt = vt − vt−1. We denote the first and second
derivative of a function f with f ′ and f ′′ respectively and
introduce the notation

at = f ′′(x∗,t), ct = −f ′(x∗,t)/f ′′(x∗,t),
bt = g′′(∆x∗,t), dt = −g′(∆x∗,t)/g′′(∆x∗,t).

(A.4)

Then minimization of (A.3) can be written in the form (18)

minimize
vt

T∑
t=1

at (vt − ct)2
+

T∑
t=2

bt (vt − vt−1 − dt)2
.

APPENDIX C: TAIL RATE FILTER FORMULAS (19), (22)

Consider tail rate filter (12). It minimizes loss function of
the form (A.2) where

f(rt) = nt (ȳte
rt − rt) , g(∆rt) = β

(
e∆rt −∆rt

)
.

By substituting these expressions into (A.4) we compute at,
bt, ct, dt to get (19)

at = ntȳte
r∗,t , bt = βer∗,t−r∗,t−1 ,

ct = (ȳte
r∗,t)

−1 − 1, dt = −1 + er∗,t−1−r∗,t .

To understand performance of the smoothing filter for the
tail rate, assume that data in (12) vary little for different time
periods, |ȳt − ȳ∗| � 1, nt = n∗, for t = 1, . . . , T .

First, consider a baseline solution where ȳt = ȳ∗ for t =
1, . . . , T . In that case, solving (12) yields rt = r∗, where
ȳ∗e

r∗ = 1.
Quadratic expansion (18) centered at this baseline solution

has coefficients (19) where

dt = 0, bt = β, at = n∗, (A.5)

ct = (ȳte
r∗,t)

−1 − 1 ≈ 1

ȳ∗er∗ (1 + (ȳt − ȳ∗)/ȳ∗)
− 1

≈ − ȳt − ȳ∗
ȳ∗

= 1− ȳt/ȳ∗. (A.6)

By dividing (18) through by at = n∗ and using (A.5), (A.6)
we get filter (21) with parameters (22)

ρ = β/n∗, ωt = −zt/ȳ∗.

APPENDIX D: TAIL QUANTILE LEVEL FILTER FORMULAS
(20), (23)

Consider tail quantile level filter (15). It minimizes loss
function of the form (A.2), where

f(ut) = nte
ut − (Nt − nt) log (1− exp(−eut)) ,

g(∆ut) = ηφ (∆ut) ,

where φ(x) is defined in (14).
By substituting these expressions into (A.4) we compute at,

bt, ct, dt to get (20)

at = w∗,t

(
nt + q∗,t

q∗,t − 1 + w∗,t
(1− q∗,t)2

(Nt − nt)
)
,

bt = ηφ′′ (u∗,t − u∗,t−1) ,

ct = w∗,ta
−1
t

(
q∗,t(1− q∗,t)−1(Nt − nt)− nt

)
,

dt = −φ′ (u∗,t − u∗,t−1) /φ′′ (u∗,t − u∗,t−1) ,

where q∗,t = exp(− exp(u∗,t)). The first and second deriva-
tive of φ(x) is given by

φ′ (x) = ex
(

1− e− 1

exp (ex)− 1

)
,

φ′′ (x) = ex

(
1− (e− 1)

exp(ex) (1− ex)− 1

(exp(ex)− 1)
2

)
.

To understand the performance of the smoothing filter for
the tail quantile level, assume that data in (15) vary little for
different time periods, |nt − n∗| � n∗, Nt = N∗, for t =
1, . . . , T .

First, consider a baseline solution, where nt = n∗ for t =
1, . . . , T . In that case, solving (15) yields ut = u∗, where
u∗ = log log(N∗/n∗).

Quadratic expansion (18) centered at this baseline solution
has coefficients (19), where dt = 0, bt = ηe/(e − 1). The
expressions for at, ct use Nt = N∗ and q∗,t = q∗ =
exp(− exp(u∗)) = n∗/N∗. We approximate at ≈ a∗ by using
nt = n∗ in (20)

a∗ = − log q∗ ·
(
n∗ + q∗(N∗ − n∗)

q∗ − 1− log q∗
(1− q∗)2

)
. (A.7)
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Using this approximation of at, we get

ct = − log q∗

(
(N∗ − nt)

q∗
1− q∗

− nt
)
/a∗

= (n∗ − nt)a−1
∗ log q∗ · (1− q∗)−1.

(A.8)

Dividing (18) through by a∗ in (A.7) and using (A.8) we
get filter (21) with parameters (22)

ρ = ηea−1
∗ (e− 1)−1,

ωt = (n∗ − nt)a−1
∗ log q∗ · (1− q∗)−1.

APPENDIX E: NEWTON’S METHOD IN SECTION IV-D
Subsection IV-D mentions solving the optimization problem

with the Newton’s method. Each Newton’s step optimizes the
quadratic expansion of the form (18)

minimize (v − c)TQ(v − c) + (Dv − d)TB(Dv − d),

Q = diag (a1, ..., at, ..., aT ) , (A.9)
B = diag (b1, ..., bt, ..., bT ) , (A.10)

c = [c1, ..., ct, ..., cT ]
T
, (A.11)

d = [d1, ..., dt, ..., dT ]
T
, (A.12)

v = [v1, ..., vt, ..., vT ]
T
, (A.13)

where D is the two-diagonal first difference matrix with −1
on the main diagonal (except the last, zero, entry) and 1 above
the main diagonal. Matrices Q, B, and vectors c, d, depend
on the expansion center x∗ = [x∗,1, ..., x∗,t, ..., x∗,T ]

T . For the
tail rate and tail quantile level parameter filters, the entries of
these matrices are described by (19) and (20) respectively.

Differentiating the optimization index with respect to vector
v yields a system of linear equations. Solving it for v gives

v = H−1
(
Qc+DTBd

)
, (A.14)

H = Q+DTBD, (A.15)

where Q, B, c, d, are given by (A.9)–(A.12).
The Newton’s method iterations go as follows. Let x(n) be

the approximate solution at iteration n. We compute matrices
(A.9)–(A.12) using x∗ = x(n) as the approximation center.
Then, the Newton’s step v(n) is computed from (A.14). It is
used to get the next iteration of the approximate solution as

x
(n+1)
t ← x

(n)
t + v

(n)
t . (A.16)

The iterations continue until convergence is achieved. Since
the problem is convex and smooth, the Newton’s method
iterations are guaranteed to converge. In the examples, they
converge very fast.

APPENDIX F: CREDIBLE INTERVALS IN SECTION IV-D
Credible intervals can be computed using quadratic approx-

imation of the log posterior. This approach, known as Wald
approximation, is equivalent to approximating the posterior as
a normal distribution, see [24].

In (12) and (15), the log-posteriors for θt and qt are
parametrized by rt and ut. Since level surfaces are invariant
under re-parametrizations, see [24], the credible intervals for
θt and qt can be found through the intervals for rt and ut.

Consider a quadratic expansion of L(x), where L(x) rep-
resents either Lr(r) or Lu(u), around the optimal solution
x−x∗. The gradient at the optimum (dL/dx)|x=x∗ = 0, thus,

L(x) ≈ L(x∗) +
1

2
(x− x∗)T H∗ (x− x∗) , (A.17)

where H∗ is the Hessian (A.15) computed at the optimum x∗.
In the Wald approximation, the Fisher information matrix

H∗ is the inverse of the covariance matrix of x, see [24].
For any constant vector s, the linear combination sTx of the
components of x follows the approximate normal distribution

sTx ∼ N (sTx∗, s
TH−1
∗ s) (A.18)

The credible interval for xk is computed by taking sk = 1
and sj = 0 for all other j. It is the confidence interval for the
univariate normal distribution (A.18), see [28]. Using (A.15),
(A.18), we get the intervals [r−,t, r+,t] and [u−,t, u+,t] as

r±,t = r∗,t ± c
√(

H−1
∗
)
tt
, (A.19)

u±,t = u∗,t ± c
√(

H−1
∗
)
tt
, (A.20)

where constant c is the standard normal quantile at a given
confidence level. For 95% confidence level c = 1.96. The
credible intervals for [θ−,t, θ+,t] and [q−,t, q+,t] are then

θ±,t = exp (r±,t) , q±,t = exp (−eu∓,t) .

APPENDIX G: SMOOTHING WINDOW WIDTH IN (25)

Consider a linear filter of the form (21) given by

minimize
T∑
t=1

(xt − yt)2
+ ρ

T∑
t=2

(xt − xt−1)
2
, (A.21)

where xt is the input sequence and yt is the output sequence
While (A.21) implies finite sequences of length T , we further
assume T → ∞ and consider xt and yt as time series. By
differentiating with respect to xt and introducing a unit time
shift operator z we get(

1 + 2ρ− ρz−1 − ρz
)
xt = yt. (A.22)

This expression describes a non-causal i.i.r. filter. Its poles
can be obtained by factorizing the polynomial in the l.h.s.
of (A.22) into the stable and anti-stable factors of the form
(z − δ)(z−1 − δ). From (A.22) we get

δ = (1 + 2ρ−
√

1 + 4ρ)/(2ρ), (A.23)

where δ < 1. Both the causal and the anti-causal part of the
impulse response decay as δk, where k is the distance from
the response center. We define filter impulse response width
w from δw = e−1. This yields δ = e−1/w. By substituting
expression (A.23) for δ and solving for ρ we get (25)

ρ = e−1/w(e−1/w − 1)−2.
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APPENDIX H: ADDITIONAL VERIFICATION FOR SECTION V

Figure 1 in Section V shows Monte Carlo simulation results
for the proposed method obtained for ȳ∗ = 1 and 10.

Additional results obtained for ȳ∗ = 0.1 and 100 are shown
in Figure 4. The top and lower plot in Figure 4 shows the
case of ȳ∗ = 0.1, 100 respectively. In both plots, the RMS
error results for β = βTRUE are better than for β = 0 and
β = ∞. This indicates that the method developed is the best
by good margin for all studied tail length parameters ȳ∗.
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Fig. 4. Additional results of the Monte Carlo verification study for ȳ∗ = 0.1
(the upper plot) and ȳ∗ = 100 (the lower plot).

APPENDIX I: ADDITIONAL RESULTS FOR SECTION VI

In the examples of Section VI, Figure 2 shows the risk of
of 1-in-10-years power peak. The risk (16) is based on the tail
parameter estimates obtained by the proposed filters. These
tail rate and quantile level parameters are estimated for each
monthly time period in the energy load dataset. Figure 5 shows
the Bayesian estimate trends of θt and qt for five values of w
as displayed in the plot. For w = 18, Figure 5 shows the 95%
credible intervals computed as discussed in Appendix F.
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Fig. 5. Tail rate θt and tail quantile level qt parameters for the power load
data with 95% credible intervals marked as thin red lines.
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Fig. 6. Tail rate θt and tail quantile level qt parameters for the S&P 500
index with 95% credible intervals marked as thin red lines.

Figure 3 shows VaR (17) for the S&P 500 index based on
the tail parameters estimated by the filters. Figure 6 shows the
trends of tail rate θt and quantile level qt estimated for the
S&P 500 index. For the w = 18 curve, Figure 6 shows the
95% credible intervals.

The trends in both Figure 5 and Figure 6 indicate that
the data is increasingly heavier tailed with time. Two factors
contribute to that. First, the tail rate parameter θt decreases
over time. Since tail rate θt is effectively the inverse tail length
for time period t, this means the tail is becoming longer.
Second, the tail quantile level parameter qt is increasing with
time. This means the probability of an exceedance occurring in
time period t is increasing. The risk trend in Figure 2 and pVaR
trend in Figure 3 reflect that the tails in these two problems
are becoming increasingly heavy with time.

The upper plot in Figure 7 shows the trend of risk probabil-
ity 1− (1−Rt)252, with Rt from (16) and 252 trading days
in a year. The lower plot shows the worst yearly log returns
(the minimum log xd in Section VI-B) for each time period.
This plot confirms that the loss risk increases over the time.
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Fig. 7. Plots of risk trend of S&P 500 index losses and log of worst relative
yearly returns.
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