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Abstract—This paper considers multi-dimensional infinite im-  In our proposed filter design approach, the design problem
pulse response (IIR) filters that are iteratively implemented. The js formulated as a linear program (LP), which incorporates
focus is on zero-phase filters with symmetric polynomials in ot the jmplementation requirements and the filter design

the numerator and denominator of the multivariable transfer ificati Thi bl be efficientl ved:
function. A rigorous optimization-based design of the filter is Specirications. This problém can be eniciently solved, see, €.g.,

considered. Transfer function magnitude specifications, conver-
gence speed requirements for the iterative implementation, and
spatial decay of the filter impulse response (which defines the o : . : :
boundary condition influence in the spatial domain of the filtered A. Multi-dimensional filter implementation
signal) are all formulated as optimization constraints. When the ~ We first give some background and context on the various
denominator of the zero-phase IIR filter is strictly positive, these known approaches to implementation of multi-dimensional
frequency domain specifications can be cast as a linear program g i ;
(LP) and then efficiently solved. The method is illustrated with Elttlars [8], [11], [14]. fi"'e""”.‘g thehse_ a:o%roache_? ng _alsr?
two two-dimensional (2-D) IIR filter design examples. elp to recap some of the main technical ideas utilized in this
work. The two longest used and most common approaches to
' multi-dimensional filtering are Fourier transform (frequency
domain) implementation and FIR filters.
Fourier transform methods can be applied to multi-
I. INTRODUCTION dimensional filtering in a rectangular noncausal coordinate
ILTERING of multi-dimensional signals is required indpmal'r?'tThti f|I]Eer |mplem§ntat|pn myolvesftratnliformlng‘]: the
many diverse areas. Signal processing applications gnal into the irequency domain, using a fast ourier trans-
grm (FFT), applying the filter as a frequency-wise multipli-

clude image processing, video signal filtering, computation i d i . Fourier t f t0 obtai
tomography, and more. Multi-dimensional filter mathematic ation, and computing an Inverse Fourier transiorm fo obtain
e filtered signal. One advantage of these methods is that

can be also used in grid methods for solving partial differenti ntially anv transfer function can be implemented. Th
equations, distributed control, and iterative learning control.ﬁi;re] d?a\yvb{:\ci wﬁhsFeouriue rCtrgns?(?rm nﬁethg di ise theat. thee
Usual (time-domain, one-dimensional) filtering is causal, . . . . L ney
: S . . require centralized processing of the entire multi-dimensional
there is a preferred direction in the one dimension. For
sagnal data array at once.

most multi-dimensional signals, however, there is no preferrée . . - . —
Lo . ; . Another widely used approach in multi-dimensional filtering
direction for the coordinates, which often represent Spatlrallies on EIR filters. ie. convolution with a kemel that
coordinates, and not time. Thus, non-causal filters are ?‘E\s finite support M[JIti.-d.i,mensionaI FIR filters have several
ten employed in multi-dimensional signal processing. Multi- pport.

: . A : advantages. They are simple, and involve only localized com-
dimensional finite impulse response (FIR) filters are well un-""". o
. . o utations, and so are amenable to a parallel computing imple-

derstood, since FIR filtering, causal or noncausal, is simply"a . )
. . . R mentation. They are always stable, and there is no conceptual
convolution of the signal with the FIR kernel. Infinite |mpulsedifference between causal and noncausal FIR filters. The main
response (lIR) filtering for causal (time-domain) signals |s$ '

staple of signal processing. For one-dimensional (1-D) signa rawback is that a large FIR filter order is often required to

Index Terms—multi-dimensional systems, iterative methods
IIR filters, digital filters, design automation, optimization.

S, .
the theory of noncausal IIR filter design and implementatiosnatls.]cy performance. reqwrer_nents. . .
. . . . . It is well known in 1-D signal processing that IIR filters
is less basic than the theory of FIR filter design, but still well . 4 O
) o . n have dramatically lower order than FIR filters with similar
understood; see, e.g., [20]. Multi-dimensional noncausal I . o : !
. : ; performance. This holds as well for multi-dimensional filters.
filters, the subject of this paper, are less well understood. - . )
o . : : The most often used multi-dimensional IIR filters are causal
The contribution of this paper is to present a consistent engi- . .
. . . .. first quad filters. A 2-D causal quad filter has the form
neering approach to implementation and formal specification-
driven optimal design of multi-dimensional noncausal IIR M N o L o
filters. The implementation is based on iterative (as com¥ = Y X bmnzi "2 Y+ > D amnz "z, (1)
pared to recursive) computations. We focus on zero-phase ™=07=0 m=0n=0
filters, which are the most commonly used noncausal filtessherez = z(j, k) is a 2-D input signaly = y(j, k) is an
output signal, and; ' andz; ! are unit shift (delay) operators
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can be interpreted as the IIR filter numerator and denominattistance from the left or right boundary respectively. In other
coefficients, respectively. We usually assume thgt= 0, so words, outside of the boundary layer with the characteristic
with initial conditions properly defined, the recursive updateidth 1/log(1/7), the result of the filtering on a finite interval
(1) can propagate in the two positive coordinate directiom®es not depend on the boundary conditions.
starting from the corner of the rectangular domain with the Consider now a noncausal 2-D IIR filter
two smallest coordinates. Causal recursive systems of the form
(1) have a well developed theory. The main drawback is that Bz, 22)y = Az, 22)x, (6)
causal first quad IIR filters (1) have suboptimal performance N N
for noncausal 2-D signals, which limits their utility. Alzi,2) = ) amn?y 23" ()
We consider now various approaches to noncausal lIR filter m=-Nn=-N
implementation. In the simplest 1-D case, an IIR filter with M M -
an inputz = z(j) and the outpuy = y(j) can be presented B(a1,22) = Z Z bmnzy "2 (8)
in the form m=-Mn=-M
M N Unfortunately, the above described approach of factorizing a
> obmr My =Y apz "z, (2) univariate filter denominator polynomial cannot be generalized
m=—M n=—N to 2-D noncausal filters, much less to higher-dimensional
wherez~" is the unit shift (delay) operator. The formal transfefilters. There are fundamental reasons why a general bivariate
functions in (2) can be introduced as polynomial B(zll,zQ) canngt be decomposc_ad into a ‘causal’
stable and anti-causal anti-stable polynomial factors [1].
y = A(z) , A common approach is to limit consideration geparable
B(z) 2-D filters, where the denominator can be factorized as

M N
B(z)= Y bmz ™, Az)= > anz" (3) B(z1,22) = Bi(z1) - Ba(22). 9)
m=—M n=—N
In the general case, there is no simple recursive upd

Each of the two univariate denominator ‘polynomiaf$; (z1)
A Bs(z2) can be factorized similar to (4). This yields the

E;gorréputmdg% Tromtaé n chéjogapci with (2). A St":‘)bleﬁlter implementation as a sequence of a 2-D FIR numerator
(Bounded Input Bounded Output) map— y can be fiter, two causal filters for each of the two coordinates,

computed from (2) provided that the denominator polynomlg d two anti-causal filters. Filters of the form (9) are well

_ﬁs.z).has nf(?_ z_er?s or:j.:.he l:n'tBnge’t"ﬁ.iz)“Z'Jl 7 0. understood but represent a limited subset of all 2-D IIR filters.
IS 1S a sutlicient condition for stability and necessary Only two approaches to realizing general noncausal 2-D

condition for asymptotic stability. In that casB(z) can be filters are known to the authors. The approach of [3] is to

factorized as represent (6)—(8) as a sparse system of linear equations and
B(z) = BL(2)B_ (27124, (4) solve it inside a bounded domain of the signals for given
boundary conditions. The solution involves manipulating ma-
trices of a large size (a multiple of the number of points in the
Ocfomain) and involves matrix transformations to reformulate

.B*(Z ) has.the Z€r0s 0B(z) outside the unit circle, and the problem as a sequence of solvable sparse matrix arithmetic
is an appropriate integer. Now, the outputan be representedSubproblems

in an easily computable form as a cascade of three operatorg, | i ar approach to implementing general noncausal 2-D
1 1 . . . . . .
ZfdA(Z)} . () filters, the one which this paper follows, is based on iterative

B_(z71) ' B, (2) ' [ computation of the filtered signal in (6)—(8). This approach

The first operator[2~?A(z)] = performs a noncausal FIR @PPears to be first suggested in [6], [7]. The equations (6)—(8)

filtering (convolution). The second operator is a causal staltE® iteratively solved by computing an update

IIR filter with transfer functionl/B. (z). The third operator _ _
is an anti-causal anti-stable IIR/filt&(I/)B_(z_l) that can be y(n+1) =yln) = Bz, 2)y(n) + Alar, ), (10)
applied by running a recursive update in the negative directisheren is the iteration number. The steady state solution of
starting from the final condition. Since none of the poles (zertise update (10) obviously satisfies (6). In (6), the numerator
of the denominatoB(z)) is on the unit circléz| = 1, both IR A(z1,22) and denominatorB(z1,22) can be scaled by the
updates have asymptotically converging impulse responsessame factor without changing the filter transfer function.
Let r < 1 be such that all the zeros d¥,(z) are inside Provided thatB(zi, 22)|z,|=1,]z,)=1 7 0 (a BIBO stability
the circle|z| < r and all the zeros o3_(z~!) are such that condition), this scaling factor can always be chosen such that
|z~ < r (outside of the circldz| = »—1). Then, an impulse the update (10) converges. Each step of the update involves
response of the filter (2) asymptotically decays at least as fasb 2-D FIR filtering operations with the kernelé(zy, z2)
asrlil, wherej is the distance from the center. Suppose thahd B(z, z;). These use localized information and can be
the filtering is performed on a large but finite interval. Thémplemented using parallel processing. The update (10) can
influence of the boundary conditions (initial condition and findle stopped when the solution change brought by the itertaion
condition) inside the interval decays a8!, where!l is the becomes sufficiently small.

where the polynomiaB_ (z) includes the zeros aB(z) inside
the unit circle with the removed coordinate origin, the fact

y:
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In additon to already cited work [6], [7], the iterative update In the usual time-domain (1-D) digital filtering, the most
filters (though not known under such name) are used in thasic and common approach is to use fixed form IIR filters
processing of static images, where performance requiremesush as Butterworth, Chebyshev, or elliptic. Given a pass or
are relaxed but conceptual clarity is important. Examplestop band these filters have a small humber (one to four)
of linear or nonlinear filtering operations achieved througbf parameters, such as filter order, that can be chosen as a
iterative update include such deblurring methods as Landwelpart of the design. The main advantage is the ease of use.
Method (based on gradient descent), Van Cittered upda#egreater flexibility in accommodating custom specifications
(least mean square update), and the nonlinear Lucy-Richardgoffered by optimization-based design approaches, such as
update. These methods are well described in the textbodksClellan-Parks FIR filter desigmgémez , see [23]) and Yule-
[11], [14]. Walker 1IR filter design yulewalk ; see [10]) functions in

The iterative implementation (10) of 2-D IIR filters has beethe Matlab Signal Processing Toolbox. These approaches find
known for two decades. Despite its conceptual simplicity, &n optimal (in some sense) filter satisfying flexible design
is not broadly used. One possible reason is that 2-D FHpecifications. A key to practical usefulness of these methods
filters are simpler to understand and implement than 24B that they provide a solution quickly, enabling interactive
IIR filters. A rigorous justification of the advantages of 2design iterations for accommodating engineering trade-offs.

D IR filters seems to be unavailable. This paper attemptsln 2-D filtering (image processing) there is a greater variety

to rectify that. Another reason is that until recently iterativef specifications than in 1-D. The most common approaches

implementation of 2-D IIR filters was feasible only for off-use FIR filters; 2-D IIR filter technology is not yet considered

line signal processing, where computational performance is moature. The standard 2-D FIR filter design methods imple-

that critical, but conceptual complexity might be. The recentiypented in the Matlab Imaging Toolbox include:

evolved ability to build systolic array processors implementing « Applying a 2-D window to a 2-D inverse Fourier trans-

the filtering iterations makes on-line 2-D IIR filtering feasible. =~ form of the desired frequency response;

The third reason might be the absense of filter design meth- Designing a separable 2-D filter as a direct product of

ods comprehensively addressing all the important engineering 1-D FIR filters in each coordinate;

issues. Such design approaches are proposed in this paper. « Using the McClellan transform to design approximately
circularly symmetric 2-D filter, based on a 1-D design
template.

B. Multi-dimensional IR filter design There is also work on developing more general transforms

The main engineering issues with design of iterativellp’ designing 2-D filters based on 1-D prototypes [21]. The

approach can be also extended towards design of 2-D IIR

implemented 2-D IIR filters are as follows. ?
, filters, e.g., see [24] and the references there.
1) The convergence of the update is not completely clear. o greater flexibility in accommodating custom specifica-

The update (10) can be.proved. to converge to a ste ns, filter structures, and better performance for a lower
state [6], [7]. However, its engineering use would regyter order can be achieved using optimization-based design
quire accurate estimates of the convergence rate. §p5_p fiiters. This is the approach we describe. For a se-
be practical, an iterative IIR filter should require fewefgcteq filter structure, optimization-based approaches find filter
computations, counting all iterations to achieve an agjeights that satisfy formal engineering specifications (design
ceptable error, compared to an FIR filter achieving thenstraints) and optimize one of the filter characteristics. Once
same objective. o again, a key to practical usefulness of these methods is fast
2) Therg_ls a need for quantifying |mp§\ct of the bou”da@olution and filter structure flexibility.
conditions. In the course of the iterations (10), the There js substantial research literature on optimization-
boundary condition influence might theoretically propa;aseq design of filters in general and 2-D filters in particular,
gate into the filtering domain and critically influence they,en, i the applications seem to lag behind. We will briefly
solution. o . survey only the most relevant work. The optimization-based
3) The design methods for noncausal multi-dimensional ligesign involves frequency gridding and for 2-D filters leads
filters are not well developed. There are no establishggdl |arge scale problems. Reliable and fast solution is possible
methods for designing such filters against formal speciff5 convex problem is posed [2]. Very efficient convex opti-
cation requirements including the above mentioned CORyization methods, such as interior-point methods, have been
vergence and boundary conditions requirements aloggyejoped in the last decade. These methods are scalable to
with filter performance. There could also be a need 10 agyge problems and can be efficiently used for filter design. In
commodate additional requirements such as robustngsgticular, modern solvers and fast hardware enables solution
to round-off error in digital implementation. of very large linear programming (LP) problems. Some LP-
This paper addresses the three above listed issues ibaaed filter design methods were first proposed more than two
constructive way. The first two issues (iteration converegendecades ago, but did not find very broad use earlier apparently
and boundary conditions) have not been integrated into a filteecause of the long computational times. At present time, LP
design procedure before. Doing so is one of the contributiosslvers provide fast solution (or a certificate proving there is
of this paper. Let us discuss the third issue, filter desigro solution, if the problem is infeasible). This paper formulates
method, in more detalil. an LP-based multi-dimensional IIR filter design.
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Some of the early work on using LP for design of linearanalysis approach ideas. Multidimensional IIR filter design is
phase 1-D FIR filters can be found in [22]. Related FIRiscussed in the next section.
filters design approaches, leading to LP and other convexConsider a 1-D noncausal zero phase IIR filter. Both numer-
optimization problems were studied in [27]. Optimizationator and denominator of the filter are symmetric with respect
based design of 2-D FIR filters has been studied in mamy the zero tap delay and have the form
papers. One of the ideas carried through from 1-D case is A2)
that for linear-phase FIR filters frequency response is real and y = (12)
linear in the design parameters, i.e., the filter weights. For B(2) v
example, equiripple filter design leads to an LP problem; see,

e.g., [25]. A ’ P A(z) = ag+ Y an(z"+2"), (12)

A range of convex optimization formulations for 2-D filter n=1
design focused on FIR filters and IIR filters with separable
denominator has been proposed and explored in [18], [17].
These require custom convex solvers, unlike an off-the-shelf
LP solver used in this work. Requiring that denominator ¥ the design, the numerator ordat and denominator order
separable limits design degrees of freedom. At the same tindé,are assumed to be fixed. The weightsanda; are the de-

a vast majority of noncausal 2-D IIR filter applications requir8ign parameters that are chosen to achieve filter performance,
zero-phase or linear phase filters. This includes all the des@fgcified as

examples in [17], [18]. A very important observation is that A(eiw)
for a symmetric zero-phase or linear-phase 2-D IIR filter, the  |D(w) — W(w)B(eiw)
denominator has a real positive frequency response. We will
see that because of this, the filter design can be formulatedwd®ereD(w), W (w), andR(w) are given frequency weighting

an LP problem. functions and( is a given frequency domain. Specification

It appears that an LP formulation of 2-D IIR filter desigrrequirements of the form (14) are common for many types
problem was first proposed almost 30 years ago in [5] (alsé filters including band-pass (low-pass, high-pass, and notch
see [8]), where an LP problem was solved at each step filfers) and deconvolution filters (deblurring in 2-D filters).
the iterative design process. There was relatively little work The gain of a band-pass filter is required to be close to unity
in this area since then, despite the tremendous advanceménts pass band and small, close to zero, in a stop band. For
in computational performance and LP algorithms. This papan equiripple designi¥ (w) = 1 and
extends the LP-based design of 2-D IIR filters from opti-
mization of basic filter performance (ripple) to a complete D(w) =1, R(w)=rp, weQ, (15)
engineering approach that yields practically acceptable opti- D(w) =0, R(w)=rs, we, (16)
mized designs and is easy to use. We incorporate the filter , o
transfer function magnitude requirements as design constraifffé€’® ¢ N 2, = Q is the frequency domain in (14),
along with the update convergence speed and boundary effeet IS the_pass band domainm, IS the pass band ripple
requirements. We also show how the robustness, e.g., to firff@nd:{2s is the stop band domain, and is the stop band
wordlength implementation, can be easily incorporated inf{PPle bound. A possible additonal specification is that the
our formulation. For two realistic 2-D IR examples in thidilter frequency response magnitude is bounded on transition

paper the solutions are computed in a few seconds using Efiuencies outside of the pass and stop band.

off-the-shelf LP solver. The approach of this paper is closely SPecifications of the form (14), (15), (16) can be used to de-

related to distributed array control design methods in [12?’cr|t_)e the four common filter design problems (all frequencies

[25], where similar LP problems are formulated for design i€ in the(0, 2z] range)

multi-dimensional 1IR filters in a control feedback loop. Low pass filter:Q, = {w < w,}, Qs = {w > w,},
The paper outline is as follows. To establish the technical ws > wy.

background needed for understanding of the proposed ap- High pass filter:Q, = {w > w,}, Q, = {w < w,},

proach, §2 considers issues 2 and 3: boundary effects and ws < wp.

formal design methods for zero-phase IIR filters. These are Band pass filterQ, = {w, 1 < w < wps}, Qs = {w <

discussed for a better understood case of 1-D noncausal IR ws1;wW > Wws 2}, Ws1 < Wp1 < Wp2 < Ws 2.

filtering. In §3, the proposed methods are extended to design of Notch filter: Q, = {w < wp 13w > wp 2}, Qs = w1 <

an iteratively implemented 2-D zero-phase IR filter including w < ws2}, wp1 < ws1 < Ws 2 < Wp 2.

issue 1, update convergence.y we discuss practical appli- |In a deconvolution/deblurring problem, the filter should

cability and extensions of the presented approaches and spg@gert the blur operatof, (¢*) in the pass band and the filter

ifications. The developed design methods are demonstrategéin should be bounded in the stop band (Whéfg(e™)| <

two design examples detailed 3. 1) to limit the noise amplification. The specifications (14) take

the form

M
B(z) = bo+ > bm(z7"+2"). (13)
m=1

R(w), w €, (14)

[I. ONE-DIMENSIONAL NONCAUSAL IIR FILTERS 4
This section considers a problem of designing 1-D nonP(w) =1, W(w) = Hy(e"), R(w) =1y, w € Qp, (17)
causal IR filter. The problem is used to introduce design andD(w) = 0, W(w)=1, R(w)=rs, weQ. (18)
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Note that for a zero-phase filter (11)—(13) the frequenaf the FIR filter is identically zero outside of the FIR filter
responsesd(e™) and B(e') are real. In accordance withsupport. Consider a general caselof ¢t < 1. One can show
(12) , (13), these frequency responses can be expanded athat smallert in (25) guarantees faster 2-sided decay of the

, ) filter impulse response. The following proposition holds
w\ T w\ T
A(e™) = cq (W)pa,  B(e™) = ¢ (w)py,  (19) Proposition 1: Consider an IIR filter 2 (11), where a

B(z)
co(w) = [1 2cosw ... 2cos Nw]®, (20) 4p/tap delay symmetric denominatdB(z) (13) satisfies
cp(w) =[1 2cosw ... 2cos Mw]”, (21) (25). Then the impulse responaék) of the IIR filter decays
Pa =lao ar ... aN]T; py=1[bo b1 ... bM]T, (22) as
where p, and p, are the design parameter vectors. The (k)| < -, e =M (27)

difference between the vectorg(w) and ¢,(w) is in their

size, i.e., the number of terms in the expansion. ; ; :
P ) . the boundary layer width estimate (23)rig = M/ log(1/t).
We assume thatl(z) and B(z) are mutually prime, i.e., do 5 oo« |+ is sufficient to prove (27) for the filtet /B(2),

not share any roots. The frequency response of the zero-pl:gf%e a cascade FIR filtet(z) would not change the response

filter B(e*) is real and i.e., cannot change sign (cross ze ; g : ;
. . X . ~'tecay rate. We will prove the following inequality equivalent
without the filter transfer function being unbounded (desi (2%/) P g thequally eq

constraint violation). As discussed aboviz) and B(z) are

defined up to a scaling factor, which can be always chosen Ih(k)| < t" , for [k|>n M (28)

such thatB(e*”) > 0 for w € [0, 27]. The design constraints 1t N

(15), (16) can be multiplied through by real positiBe™). DenoteC(z) = 1 — B(z). For anyn > 1

By substituting (19), this yields constraints linear in the design .

parameter vectorg, andp, at each frequency. These convex S [1+CG) +...+ 0" )] + 04(2)(29)

constraints can be handled in a computationally efficient way. B(z) 1-C(2)
Consider now an additional design requirement related t0The firstn terms in the square brackets in the r.h.s. (29)

the 2-sided decay of the filter impulse response and boundg@kcribe an FIR filter with-(n—1)M delay taps. The impulse

condition influence. The requirement is that the impulse rgasponse of this FIR filter is zero fok| > (n — 1)M. Using

sponse decays at least as fast@s, wheren is the distance inverse Fourier transform to evaluate the impulse response
from the impulse and is a design parameted,< r» < 1. The h(k) for |k| > nM yields

response decay ensures that boundary condition influence is

whereg is a constant; = t'/M < 1 is the same as in (24); and

limited to a boundary layer with a characteristic width k) = 1 S e—ikw g,
2r Jo B(ew)
ny = 1/ log(l/T) (23) 1 2m Cn(eiw) .
The decay of impulse response requires that the transfer = or o 1-— C(eW)e dw. (30)

function A B is analytical in the annulus . . .
(2)/B(z) Y Recall that in accordance with (25)¢C(e"™)] < ¢t < 1.

r<lzl<rt or<id (24)  Hence ’% < {- and (28) follows immediately.

Technical background on 2-sided z-transform leading Q'E'D'. ) .
(24) can be bound in [20]. The transfer function analyticity 1n€ linear design constraints (19)~(22) and (25) can be used

means that3(z) should not have zeros in the annulus (24J°" POsing the filter design problem as an LP problem. In
LP problem, the linear constraints are complemented by a

Unfortunately this is a honconvex constraint and it cannot ls_lée _ i . )
handled in a computationally efficient way. Instead, considipear performance index. By addirigo the design variables

a convex constraint that conveniently enforces the spatf§f OPtimizet — min, which can be considered a requirement

converegence and will be further shown to be a relaxati@l the fastest possible decay of the filter impulse response.
he scaling degree of freedom fet(z) and B(z) has been

of B(z) not having zeros in the annulus (24). This constraint ; i : A :
has the form already mentioned. This scaling will come out automatically
_ from minimizing ¢ in (25).
|1 -B(e™)|<t<1 (25) The design constraints (19)—(22), (25) are frequency depen-
ent and require frequency gridding to be included in the LP
roblem formulation. The formulation of the LP problem on

the frequency grid can be summarized as follows:
1—c info,eo,00) Ble™) (26) (L—rp)ci (w)py < cL(w)pa < (L+1p)cf (w)py, (31)
= s C = - .
1+c¢ SUD,,e(0,24] B(€™) for we,
, , . _ y —rech (Wpy < el (w)pa < roch (w)py, w € Q2Y32)
As discussed in [20]B(e**) > 0 is a necessary condition

_ T
for filter BIBO stability. Thus¢ > 0 and (25) always holds for L=t qwp <1+t wel0, 2n(33)
some0 <t < 1. If t = 0, thenB(z) = 1 and we got an FIR 0< t <1 (34)
filter with the transfer functionA(z). The impulse response t — min (35)

Recall thatB(z) is positive and can be scaled along Witrﬂ
A(z). Choosing the scaling such thain (25) is minimized
yields

t
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This LP problem should be solved for the design parameterFor 2-fold symmetry, the symmetric expansion polynomials

vector can be expressed in the form
Pa Pl(z1,2) = 1, (38)
p=1 P (36) PM(z = A4z, (G=1,...,M), (39)
t 7 1722) = Zj 29"y (.7_ yeeey )7
Man(z,z2) = g e ™ (40)

The designed filter (11)-(13) can be implemented in the
factorized form (5) as a sequence of a noncausal FIR, causal
IR, and anti-causal IIR filters. where in (40)k = 1,..., M (2M + 1). The expansion size is

The described approach appears to be new and is usefgl — 1 + A7 4 A2 + 1)
for designing 1-D noncausal IIR filters. However, the main por 4-fold symmetry
meaning of this section was to prepare a background for multi-

(1§lk‘SM7 _Mgmk‘SM)a

dimensional filter design in the next section. Pd”(zl, z9) = 1, (41)
PjM(zl,zz) = z{—l—zfj—i—zg —i—z;j, (42)
IIl. DESIGN OF ITERATIVELY IMPLEMENTED (j=1,...,M),
MULTI-DIMENSIONAL IIR FILTERS PM (21,2) = P
This section presents the main contribution of this paper +Z1—lkZ;nk +Zl—mk22—lk7 (43)

in design of iteratively implemented multi-dimensional IIR
filters. For notation simplicity, 2-D filters are considered
throughout the rest of this paper. A majority of the existing agvhere in (43)k = 1,..., M?2. The expansion size &, +1 =
plications of multi-dimensional filtering are in 2-D image and + A7 + M2,

video processing problems (e.qg., see [16]). Some 3-D and 4-Dror 8-fold symmetry

applications exist, such as computational tomography or time-

(1§lk§M,1§mk§M),

space filtering. The design and implementation approaches Py (z1,22) = 1, (44)

presented herein are directly applicable to higher-dimensional  PM (2, z,) = 20 4 277 + 20 4+ 257 (45)
. . . . .. J ’ 1 1 2 2 >

lIR filters. The only difference in the formulation is in the G=1,...,M)

number of the independent coordinate arguments. The only

M _ J . —J,J J.—J —J,—J
difference in the computational design and implementation LM+;(#1:22) = #2123+ 2172t 21207 21727,
methods is in the potentially larger number of the points in a (G=1...,M), (46)
multi-dimensional frequency grid. P e(zi,22) = 2zl gl ™ g

The multi-dimensional IR filter design approach in this
section is an extension of the LP optimization-based design in o ot
) ext : , oy MR 4 My (47)
§2. The design is performed in the frequency domain. After 1 2 1 2
frequency gridding, the design requirements are formulated (1<l <mp—1,2<m < M),
as convex (linear) constraints and a linear optmimization . . .
criterion. One additional concern for iteratively impIemente}Q’here in (47)k = 1,..., M(M —1)/2. The expansion size

lIR filters is the iteration convergence. IS M, + 1 =1 +.2M + MM —1)/2.
Consider a 2-D IIR filter (6)—(8). In a zero-phase filte Choosing a higher type of symmetry reduces the number of

r, . i i
the numerator and denominator should have symmetry prcﬁ t—?rr] de5|gq paran:eter; ?nd_l_'s dt()at3|_rat])(le where the symmetry
erties. To avoid excessively complex notation, let us discu € requirements exists. 10 obtain Ireéquency responses in

. H _ Llw _ pilw
the denominator symmetry; the numerator follows the sa )-(47), SUbS.t'tUIe.l = e andz = ™. Because of the .
pattern. The types of symmetry usually considered for 2- mmetry, the imaginary parts cancel and the real expansion

unctions PM (eiv1 ¢?w2) are combinations of the frequency

—lk —my mi lk mp —lk
+21 T2y T2y T2y 2 2

filters include (see [14]) - m .
_ cosines. In all of the considered symmetry cases, the frequency
« 2-fold symmetry:by, o = b, —n responses for the numerator and denominator in (37) can be

o 4-fold symmetry:b,, , =b_p,—n =b_mn = b —n

expressed in the same general form
o 8-fold symmetry:b,, , =b_p—p =b_yp =bpm,—pn =

bn,m — bfn,fm = bfn,m = bn,fm A(eiwl 5 eiwg) - CZ(eiwl 5 ein) Pa, (48)
In all of the above symmetry cases the IIR filter denominator ca(z1,22) = [Py (21,22) ... PN, (21,22)]", (49)
can be expanded similar to (13) Pa = lao ar ... an,|T (50)
M, B(e™r e™2) = (e eiv2) py, (51)

B = meM y ) 37
(2172'2) mzz:o m (21 2’2) ( ) Cb(zl722) _ [P()I\/I(Zl,ZQ) P]%(Z]_,ZQ)]T, (52)
Py = [bo b1 b]y[b]T, (53)

where PM(z,,z,) are the elementary polynomials defining

the symmetry. The expansion (37) explicitly showg + 1 Several typical filter design specifications can be expressed
independent filter design parametels, for the assumed as linear frequency dependent inequalities in the design pa-
symmetry type. rameter vectorp, andp,. 2-D specifications similar to (14)
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take the form Given (60), the output estimate (61) converges to the filter
Aler | giwz) outputy = %.r ask — oo. The mutiplicative residual error
W (wi, w2) - Bleiwn, o) D(wr,w2)| < R(wi,w2), (54) D, at stepk can be evaluated as

Equiripple magnitude specifications for bandpass filters can be Dy, e™2)| < t* (64)

expressed similar to (15), (16) This error should be included in the transfer function ripple

W(wr,we) =1, D(wi,we) =1, R(wi,ws) =1y, specifications. Since iterative implementation convergence re-
for {wy,w.} €, (55) Aquirest <1, in accordance with (62) and (64) the stop band
W(wi,ws) = 1, D(wy,ws) =0, R(wy,ws) = r ripple of the transfer function (56) only improves because of
’ ’ ’ ’ ’ s the finite iteration number.
for {wi,wa} € s, (56) Let d; be an allotment (in dB) of the pass-band ripple error

bound, Q, is the stop band domain, and is the stop band number of the iterations required to achieve that error can
ripple bound. In 1-D case, the stop band and the pass bdifiestimated as

are combinations of frequency intervals. In 2-D filteis, and k= d;

Q, are two-dimensional (2-D) domains that can be defined in 20logot

many different ways (e.g., band, rectangular, circle, annulus,ginajly, consider the requirement of the spatial decay for the
diamond, combinations of these, etc). Some specific exampiies, ise response of the designed IIR filter. The spatial decay
are presented in the next section. _ _limits the influence of the boundary conditon. The 2-D filter

Another type of common 2-D filter design problem is &, \ysis of the spatial decay is very similar to the 1-D analysis
multi-dimensional deconvolution problem (image deblurring)y ¢> (proposition 1). It turns out that the iteration convergence
Since the fllte‘r is zero-phase, it is assume_d that the frequer&%dition (60) has a dual role. Reducihgnproves the spatial
responsef, (e, ¢*) of the blur operator is a real function. ye 4y of the impulse response and reduces the boundary layer
The deblurring problem can be encoded by settiigus, w2),  gimyitaneousely with speeding up the iteration convergence.
D(wi,w2), and R(wy, w2) in (54) similar to (17), (18) The following extension of Proposition 1 holds for a 2-D

D(’U.)l, ’LUQ) = 1, W(’Ujl, ’LUQ) = Hb(eiwl,ewz), SyStem
R( _ Proposition 2: Consider a 2-D filtepalzL:22) (6)—(8), where
wy,we) =71y, for {wi,we} €y, (57) | "B(z1,22)
B B B a +M-tap delay symmetric denominatd(zy, z2) (37) sat-

D(wy, w2) =0, W(wy,wz) =1, R(wy,wa) =rs, isfies (60). Then the filter impulse resporisg:, k;) decays

for {wy, w2} € Qs, (58) as

Since B(e"1, ¢*2) is real positive, the rational inequality k1, ko)| < B pmex(kabikal) - — 41/ (66)
(54) can be multiplied through byB(e'*:,e**2) to yield
frequency dependent inequalities that are linegp jrandp,. Where 3 is a constant. The boundary layer width in each
For an iteratively implemented 2-D IIR filter, a key desigifoordinate direction can be estimatedrgs= A/ log(1/t).
requirement is convergence of the update (10). By computingpr00f3 The proof follows Proposition 1 proof almost exactly
a 2-D discrete Fourier transform of (10), the iterative impleand is based on the fact that

(65)

mentation update can be presented in the form 1 _ 1
~ ~ i i ~ 1 i ~ B(Zl ZQ) - 1-— C(Zl ZQ)
g(n+1) =g(n) — B(e™,e"™)g(n) + A(e'™, ")z, (59) ’ ’
(n+1) =g(n) - B( )y(n) + A( ) = L4 C(nz) 4+ OV (2, 20)]
wherez = Z(wy,ws) and g(n) = g(wy,wq;n) are the 2-D O™ (21, 22)
Fourier transforms of the filter input and the iterated estimate + : (67)

of the output respectively; is the iteration number. 1-C(a,2)
SinceB(e™1, e'2) and A(e™, e'2) in (59) are real, each Where C'(21,22) = 1 — B(z1,22). The n-term sum in the
frequency harmonigj(w,ws;n) follows a first-order recur- square brackets in the r.h.s. (67) describes an FIR filter with
sive difference equation. A necessary and sufficient conditigrin — 1)M delay taps along each coordinate. The impulse
for asymptotic convergence of the update for all frequenciégsponse of this FIR filter is zero ife1| > (n — 1) - M
w1, wy has the form or [kg| > (n —1)- M. For max(|ki|,|k2| > (n —1)- M,
w0y iws the impulse responsé(k;,k;) can be evaluated through
‘1 — B(e™,e )’ <t<l, (60) a 2-D inverse Fourier transform of the frequency response
where0 < t < 1 is the exponential convergence factor. corresponding. to the last term in the r.h.s. (67). Using the
Assuming thatj(w;,w2;0) = 0 and summing up the inequality |C(e™,e"™?)| <t < 1 yields
difference equation (59) yields aftérsteps Wkt k)| < B-17, for max(|kr, ko) > n- M, (68)

Glwnwoik) = ik(e L), ws) (61) whereg is a constant. This immediately leads to (66). Q.E.D.
Hy(z1,20) = % (1 = Di(z1,22))  (62) The multi-dimen_sio_nal lIR filter can _be designed by solving
(21, 22) an LP problem. Gridding the frequencies andws; makes the

Dy(z1,22) = (1-— B(zl,zz))k (63) design requirements (54), (60) into a seres of linear constraints



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I, 2005 8

on the filter design parametegg and p, in (48)-(53). The design requirements. One important extension is designing a
LP filter design can be formulated by complementing thes$éer for finite-word implementation. It is well known that even
constraints with the optimization criterion a small implementation error might result in a significant filter
) performance deterioration. The finite-word roundoff error can

¢ — min, (69)  be handled as uncertainty. Consider a robust design of the filter
and additional constraints < ¢ < 1. The LP problem should €xPlicitly taking this uncertainty into account and guarding
be solved for the design parameter vegtor= [pT pI 7. 2against the possible undesirable effects of the roundoff error.
The design yields a zero-phase IIR filter with fastest possipf$Sume that the filter numerator and denominator opera-
convergence of the iterative implementation and optimizd@rS respectively have the form(z, z) + AA(z1, 22) and

bounds on boundary effects satisfying the transfer functidf(?1,22) + AB(z1, z2), where the uncertainty operatofsd
specifications (54). and A B are zero phase because the round off implementation

errors preserve the symmetry. These operators are bounded as

IV. DIScUsSION |AA(e™1 e™2)| <54, |AB(e™,e™?)| < 6, (70)

Practical suitability of the iteratively implemented multi- ) )
dimensional IIR filters should be compared against moWereds =2~ N?/2 andip = 2~ M? /2, assumingi-bit
established multi-dimensional FIR filters. Typically, an IIRPrecision of implementation. With the uncertainty, the design
filter requires much smaller number of the delay taps &Pecifications (54) take the form
achieve the same performance specifications as a matching Fl A iwy iws
. . . . . + AA(e"™1, e"™2)
filter. For a 2-D filter, the number of floating point operations R)‘W(whwz) B AB(oiwr i
is proportional to the squared number of the delays. For a T (et enez)
3-D filter, the number of operations increases cubically. This
m"fll_khe.s mult|—d|mer_13|onal IIR filters potent!ally attrgcuve. Given (70), the design specifications (71) can be formulated

is advantage is enhanced for a systolic array implementa- . : L
. . . . . as two linear inequalities
tion of the filter with a separate simple processor performing
compu_tatlons for_each pixel, e.g., see [26]. Each_proces_,smg W (w1, ws) (A + 54)
block in a systolic array would be connected to immediate
neighbors and computations using data from the remote neigh- < (R(wi,ws) + D(ws,w2)) (B = d5),  (72)
bors would require several data exchange cycles. For a 2=(R(w1,wz2) + D(w1,wz)) (B — dp)
D array, on the order of\/® data transfers are needed to < W(wy,wz) (A—34), (73)
broadcast each pixel th/-th remote neighbor through nearest
neighbor communication. For a 3-D IIR filter, the number oBridding the frequencies); andw; in (72), (73), (60), and
data transfers increases &' and savings due to smaller filterincluding (69) yields an LP problem for the filter design
size are even more substantial. parameterg, andp, in (48)—(53).

A downside of an iteratively implemented IIR filter is that In the proposed design approach, the ripple bound
multiple iterations are required to obtain the filter outputR(ws,w2) in (54) or (72), (73) must be given in advance.
as compared to one-shot FIR convolution computations. THehe filter order M/, N and boundR(w;,w2) are both very
number of iterations is a multiplier for the above discussed II&mall, the LP problem can become infeasible. The infeasibility
filter computation count. Note that the number of iteratioris reported by the standard LP solvers. Depending on the hier-
does not have to be very large. It can be estimated from (68)chy of the design priorities, the constraints on ripple bounds
In Example 1 of$4, the convergence exponent= 0.76 and and the prescribed filter order can be manipulated to yield an
the iteration-related ripple budget of the filterds = —22 acceptable engineering trade-off (if one exists). This can be
dB requiring k =~ 11 iterations. At the same time, an lIRdone in logarithmic time through simple dichotomy iterations
filter is often smaller than a comparable FIR filter by a factarr could be a part of interactive parameter manipulation by a
of 3 or more, yielding an order of magnitude improvemerititer designer.
in computational requirements. Thus, iteratively implemented Though the proposed approach is fundamentally focused on
lIR filters can still be attractive even with several iterationsero-phase IIR filters, some extensions to more general filter
required. A systolic array implementation would have atypes are possible. For instance, a linear phase IIR filter can
additional utility gain. be designed by maintaining a zero-phase denominator (with

One more note on the utility of the IIR design is that @ositive real frequncy response) and a linear-phase numerator.
special case of\/ = 0 in (59) yields an FIR filter and the Of course, in that case the expression inside the absolute value
iterative update is reduced to a single step. Considering liR(54) has to be pre-multiplied by the conjugate phase to make
filter designs withM > 1 provides additional degrees ofit real. In a similar way, the design could be extended towards
freedom in the design space. Improvements of a baseline Fi&o-phase denominator filters that should match an arbitrary
design can be achieved through these degrees of freedomtransfer functionD(w;,ws). In that case a modification of

Let us now discuss the LP-based filter design approa(®d) with ripple conditions written separately for the real
considered in the previous section. The formulated basic filtend imaginary parts of the transfer function leads to an LP
design problem can be extended to accommodate additiopedblem. This is related to the approach of [4].

— .D(’Ll)l, 'U}Q)
< R(wi,wz), (71)
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Fig. 1. NumeratorA and denominatoB operators for the designed circular

low-pass IR filter
Fig. 2.  Amplitude response in dB for the designed circular low-pass IIR
filter

V. DESIGN EXAMPLES

In this section, the IIR filter design approach §8 is ripple of -22 dB). This provides ripple performance superior
applied to two examples of 2-D IIR low-pass filter designo [17] (r, = 0.0549 andr, = 0.0830) as long as the iterative

The examples are borrowed from [17]. implementation error (63) is within the alloted budget
Example 1: Circularly-symmetric low pass filtefhe first | +0.0549

example is designing a zero-phase 2-D IIR filter with circulary d; = 201og,, ( —
symmetric low-pass magnitude response. The design specifi- 1 +0.0296

cations are of the form (55)—(56) with the low-frequency pass The filter operatorsA(z, zo) and B(z, zo) obtained by

1) — 32dB (76)

band(2, and high-frequency stop barfe, defined as solving the LP design problem are illustrated in Figure 1. The
amplitude response of the designed filter is shown in Figure 2.
Q, = {{w1,w2} €Ny (\/wf + w3 < 0.42577) }(74) The CPU time for the solution using a current Wintel PC is
about2.7 sec when using the medium-scale LINPROG solver
Q, = {{wl,wg} €0, (1 [w? + w2 > 0_5757T) }75) in the Matlab Optimization Toolbox. In [17], the solution time
for the 19 x 19 FIR filter with comparable performance is

As a baseline, we consider a 2-D FIR filter designed #@ven as 20 sec. Based on the paper submission date, at least
[17] for the specifications (74)—(75). In the notation of thi€.5 year older and hence probably 3-4 times slower computer
paper, the filter from [17] hasV = 9 two-sided tap delays should be assumed in [17]. Note that the LP solver used in
in the numerator and/ = 0 tap delays in the denominator.this work was the Matlab medium-size problem solver; for
The 2-D FIR convolution window is of the siz& N + 1) x an optimized sparse solver written in ‘C’, a 1-2 orders of
(2N +1) = 19 x 19. With such 2-D FIR filter, the pass-bandmagnitude computation time improvement can be expected or,
ripple of r, = 0.0549 and the stop-band ripple; = 0.0830 alternatively, an 1-2 orders of magnitude larger problem can
are achieved in [17]. be solved. The main result of our implementation is that a

We designed a comparable 2-D IIR filter for iterativésimple Matlab code with standard solver was demonstrated to
implementation by solving an LP problem as described ke sufficient for achieving good results.

§3. The filter of the form (6)—(8) had/ = N = 3 two- The optimal solution yields the convergence rate (60)
sided tap delays in the numerator and denominator. Sirg®t = 0.7206. With the ripple budget/; (76) for the finite

the specifications (74)—(75) are circulary symmetric, an 8-foiteration error, the necessary number of iterations in (10) can
symmetry was assumed in the filter design. In accordance wit@ estimated as = ﬁ;mt ~ 11.

(43), this leavesV, = M, = 1 +2M + M(M —1)/2 = 10 Consider now the spatial decay of the impulse response
weights for each of the two FIR filterd and B to be chosen for the designed filter. The decay rate bound (66) tells that
as the result of the design. The problem statement includ@dcharacteristic width of response decay is no more than
the iteration convergence/spatial decay condition (60) and thé//log(t) ~ 9 steps. An actual impulse response decay
optimality criterion (69). is shown in Figure 3. This impulse response was com-

In the design, &2 x 32 grid was used for the frequency-puted through inverse 2-D FFT of the frequency response
dependent functions. The grid includes 145 pass band poi ewi Zwig for the designed filter. The displayed response
and 763 stop band points. This is much more than 50 pass banavides a practical idea about the boundary layer effects one
points and 279 stop band points reported in [17, Table 1]. Than expect by applying the designed 2-D IIR filter in a finite
ripple constraints in (55)—(56) were chosenrgs= 0.0296 domain. The response decays off in about 4 steps away from
(pass band ripple of 0.5 dB), antd = 0.0794 (stop band the center. This is somewhat faster than the obtained bound
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Fig. 3. Impulse response for the designed circular low-pass IIR filter

Fig. 4. Numeratord and denominatoB operators for the designed diamond-
shaped low-pass IIR filter

on the asymptotic decay.

An accurate numerical estimate of whether the spatial decag t dd inator. Th ificati 74~(75) h
specs are satisfied for givencan be done by 2-D frequencyn merator and denominator. The specifications (74)~(75) have

Y . o i 8-fold symmety and the same 8-fold symmetry was assumed
gridding and checking (pie™1, poe’*2), for eachp; = r : . . .
andp; — r~1, j = 1,2. More detail and theory can be found” the filter design. The design parameters inclutlgeR M +

in [13]. The condition the estimate (66) was only given t (]‘_f *1t_)/ 2 = 10 filter We/'ghtst_pal* le filter We'ggtfpb* ggd
justify why minimizing ¢ in (60) increases the decay rate o¥ e iteration corwergence/spatial decay parameter (60),

the impulse response. The actual width of the impulse respoﬁg%)r‘]e design used 6 x 16 frequency grid, which included

can be evaluated by computing this response explicitly. T%}Lpass band points and 143 stop band points. This compares
[

can be quickly done as a part of the frequency-domain desi . . .
X i . h 50 pass band points and 121 stop band points reported in
by computing the impulse response as an inverse Four@ , Table Il]. The ripple constraints in (55)—(56) were chosen

transform of the filter frequency response, such as in Figure v, — 0.0296 (pass band ripple of 0.25 dB), angd— 0.0501

The designed circular 2-D filter was compared against X - .
2-D FIR filtgr designed using McClellan transﬁ‘ormatic?n. Th stop band ripple of -26 dB). This is comparable to the baseline

prototype 1-D filter was designed as minimum-ripple 19-ta IR design from [17]. The remaining budget of the iterative

zero-phase FIR usingemez function in the Matlab Signal |?nplementat|on error (63) was
Processing Toolbox and had ripple®6273 in both pass band d; = 201og (1 +0.0496
and stop band. The 19 x 19 2-D FIR filter was designed from 10\ 14 0.0296
this prototype by using McClellan transformation (function The designed 2-D zero-phase IIR filter operatetsand
frans2  in the Matlab Image Processing Toolbox). Thigz gre jllustrated in Figure 4. The amplitude response of the
design yields the pass-band ripplg = 0.0272 and the stop desjgned filter is shown in Figure 5. The CPU time for the
band rippler, = 0.1068. The stop-band ripple performancegesign problem solution using a state of the art Wintel PC
is inferior to optimization-based design in [17},(= 0.0549 s 0.7 sec with LINPROG solver from Matlab Optimization
andr, = 0.0830) and to our design. _ Toolbox. In [17], the solution time of 7.13 sec is quoted for
Example 2: Diamond-shaped low pass filtéfhe second gesign of a19 x 19 FIR filter with comparable performance
example is designing a zero-phase 2-D IIR filter with g computer which was likely 3-4 times slower.
diamond-shaped low-pass band. The design specifications havepe optimial solution yields the convergence rate (60)
the form (55)—(56) with the pass baiit}, and stop band), a5 — .8688. To satisfy the ripple error budget; (79),
defined as k= ﬁét ~ 34 iterations are required.
Q, = {{wi,wo} €y (Jwi| + |wo| <08m)} (77) The irﬁopulse rresponse for the designed filter is shown
Q (wn, wad €y + (Jwn| + |wa| > 7)) (78) in Figure 6. This impulse response was computed through
s ’ s = inverse 2-D FFT of the 2-D IIR filter frequency response. The
As a baseline, we again consider a 2-D FIR filter designegsponse decays off in about 4 steps away from the center.
in [17] for the specifications (77)—(78).The filter in [17, Tablerhe decay rate estimate (66) gives a larger characeristic legth
l] is a FIR convolution window of the siz&9 x 19. When of response decay of about)//log(t) ~ 21 steps, but then
presented in the form (6)—(8) this correspondsMe= 9 two- the asymptotic decay rate in Figure 6 appears to be slower
sided tap delays in the numerator aifl = 0 tap delays in than the initial decay in the middle of the response.
the denominator. This filter in [17] achieved the ripple=
0.0496 in the pass-band ang, = 0.0487 in the stop-band. VI. CONCLUSIONS
We designed a comparable 2-D IIR filter as described inWe have proposed a new approach to non-causal multi-
§3. The IIR hadM = N = 3 two-sided tap delays in both dimensional IIR filters. The approach combines optimization-

1) = -34dB (79)
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Fig. 5. Amplitude response in dB for the designed diamond-shaped low-pass
IIR filter
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Fig. 6.

Impulse response for the designed diamond-shaped low-pass [Iil??]
filter

based design with iterative implementation of the filters. 18]
is an efficient alternative to existing designs of zero-phase
multi-dimensional IIR filters. The optimization-based desigpg)
formally includes various filter transfer function magnitude
specifiations as optimization constraints in LP problem.
have demonstrated fast filter design using off-the-shelf L
solver. lteratively implemented multi-dimensional IIR filterg21]
do not need to be causal (first quad) or have a separable
denominator as in other related work. We have also consid-
ered and explicitly included into the design requirements thz]
impulse response decay that characterizes the width of the
boundary effect layer in the filtered signal domain. We have
demonstrated two design examples for low-pass 2-D filteps]
with design specifications borrowed from earler work. Even
taking into account the computational expense of the iteratior[lzcl,]
the designed filters perform better or the same as the filters
based on existing approaches.

Y
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