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Dimitry Gorinevsky,Senior Member, IEEE,and Stephen Boyd,Fellow, IEEE,

Abstract— This paper considers multi-dimensional infinite im-
pulse response (IIR) filters that are iteratively implemented. The
focus is on zero-phase filters with symmetric polynomials in
the numerator and denominator of the multivariable transfer
function. A rigorous optimization-based design of the filter is
considered. Transfer function magnitude specifications, conver-
gence speed requirements for the iterative implementation, and
spatial decay of the filter impulse response (which defines the
boundary condition influence in the spatial domain of the filtered
signal) are all formulated as optimization constraints. When the
denominator of the zero-phase IIR filter is strictly positive, these
frequency domain specifications can be cast as a linear program
(LP) and then efficiently solved. The method is illustrated with
two two-dimensional (2-D) IIR filter design examples.

Index Terms— multi-dimensional systems, iterative methods,
IIR filters, digital filters, design automation, optimization.

I. I NTRODUCTION

F ILTERING of multi-dimensional signals is required in
many diverse areas. Signal processing applications in-

clude image processing, video signal filtering, computational
tomography, and more. Multi-dimensional filter mathematics
can be also used in grid methods for solving partial differential
equations, distributed control, and iterative learning control.

Usual (time-domain, one-dimensional) filtering is causal;
there is a preferred direction in the one dimension. For
most multi-dimensional signals, however, there is no preferred
direction for the coordinates, which often represent spatial
coordinates, and not time. Thus, non-causal filters are of-
ten employed in multi-dimensional signal processing. Multi-
dimensional finite impulse response (FIR) filters are well un-
derstood, since FIR filtering, causal or noncausal, is simply a
convolution of the signal with the FIR kernel. Infinite impulse
response (IIR) filtering for causal (time-domain) signals is a
staple of signal processing. For one-dimensional (1-D) signals,
the theory of noncausal IIR filter design and implementation
is less basic than the theory of FIR filter design, but still well
understood; see, e.g., [20]. Multi-dimensional noncausal IIR
filters, the subject of this paper, are less well understood.

The contribution of this paper is to present a consistent engi-
neering approach to implementation and formal specification-
driven optimal design of multi-dimensional noncausal IIR
filters. The implementation is based on iterative (as com-
pared to recursive) computations. We focus on zero-phase
filters, which are the most commonly used noncausal filters.
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In our proposed filter design approach, the design problem
is formulated as a linear program (LP), which incorporates
both the implementation requirements and the filter design
specifications. This problem can be efficiently solved; see, e.g.,
[2].

A. Multi-dimensional filter implementation

We first give some background and context on the various
known approaches to implementation of multi-dimensional
filters [8], [11], [14]. Reviewing these approaches will also
help to recap some of the main technical ideas utilized in this
work. The two longest used and most common approaches to
multi-dimensional filtering are Fourier transform (frequency
domain) implementation and FIR filters.

Fourier transform methods can be applied to multi-
dimensional filtering in a rectangular noncausal coordinate
domain. The filter implementation involves transforming the
signal into the frequency domain, using a fast Fourier trans-
form (FFT), applying the filter as a frequency-wise multipli-
cation, and computing an inverse Fourier transform to obtain
the filtered signal. One advantage of these methods is that
essentially any transfer function can be implemented. The
main drawback with Fourier transform methods is that they
require centralized processing of the entire multi-dimensional
signal data array at once.

Another widely used approach in multi-dimensional filtering
relies on FIR filters, i.e., convolution with a kernel that
has finite support. Multi-dimensional FIR filters have several
advantages. They are simple, and involve only localized com-
putations, and so are amenable to a parallel computing imple-
mentation. They are always stable, and there is no conceptual
difference between causal and noncausal FIR filters. The main
drawback is that a large FIR filter order is often required to
satisfy performance requirements.

It is well known in 1-D signal processing that IIR filters
can have dramatically lower order than FIR filters with similar
performance. This holds as well for multi-dimensional filters.
The most often used multi-dimensional IIR filters are causal
first quad filters. A 2-D causal quad filter has the form

y =
M∑

m=0

N∑
n=0

bmnz−m
1 z−n

2 y +
M∑

m=0

N∑
n=0

amnz−m
1 z−n

2 x, (1)

where x = x(j, k) is a 2-D input signal,y = y(j, k) is an
output signal, andz−1

1 andz−1
2 are unit shift (delay) operators

in the two coordinates. The variablesz1 and z2 can be also
interpreted as complex indeterminants in the discrete Laplace
transform (z-transform). The convolution kernelsamn andbmn



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I, 2005 2

can be interpreted as the IIR filter numerator and denominator
coefficients, respectively. We usually assume thatb00 = 0, so
with initial conditions properly defined, the recursive update
(1) can propagate in the two positive coordinate directions
starting from the corner of the rectangular domain with the
two smallest coordinates. Causal recursive systems of the form
(1) have a well developed theory. The main drawback is that
causal first quad IIR filters (1) have suboptimal performance
for noncausal 2-D signals, which limits their utility.

We consider now various approaches to noncausal IIR filter
implementation. In the simplest 1-D case, an IIR filter with
an inputx = x(j) and the outputy = y(j) can be presented
in the form

M∑

m=−M

bmz−my =
N∑

n=−N

anz−nx, (2)

wherez−1 is the unit shift (delay) operator. The formal transfer
functions in (2) can be introduced as

y =
A(z)
B(z)

x,

B(z) =
M∑

m=−M

bmz−m, A(z) =
N∑

n=−N

anz−n. (3)

In the general case, there is no simple recursive update
for computing y from x in accordance with (2). A stable
BIBO (Bounded Input Bounded Output) mapx → y can be
computed from (2) provided that the denominator polynomial
B(z) has no zeros on the unit circle, i.e.,B(z)||z|=1 6= 0.
This is a sufficient condition for BIBO stability and necessary
condition for asymptotic stability. In that case,B(z) can be
factorized as

B(z) = B+(z)B−(z−1)zd, (4)

where the polynomialB+(z) includes the zeros ofB(z) inside
the unit circle with the removed coordinate origin, the factor
B−(z−1) has the zeros ofB(z) outside the unit circle, andd
is an appropriate integer. Now, the outputy can be represented
in an easily computable form as a cascade of three operators

y =
1

B−(z−1)
· 1
B+(z)

· [z−dA(z)
]
x. (5)

The first operator
[
z−dA(z)

]
x performs a noncausal FIR

filtering (convolution). The second operator is a causal stable
IIR filter with transfer function1/B+(z). The third operator
is an anti-causal anti-stable IIR filter1/B−(z−1) that can be
applied by running a recursive update in the negative direction
starting from the final condition. Since none of the poles (zeros
of the denominatorB(z)) is on the unit circle|z| = 1, both IIR
updates have asymptotically converging impulse responses.

Let r < 1 be such that all the zeros ofB+(z) are inside
the circle|z| ≤ r and all the zeros ofB−(z−1) are such that
|z−1| ≤ r (outside of the circle|z| = r−1). Then, an impulse
response of the filter (2) asymptotically decays at least as fast
as r|j|, wherej is the distance from the center. Suppose that
the filtering is performed on a large but finite interval. The
influence of the boundary conditions (initial condition and final
condition) inside the interval decays asr|l|, where l is the

distance from the left or right boundary respectively. In other
words, outside of the boundary layer with the characteristic
width 1/ log(1/r), the result of the filtering on a finite interval
does not depend on the boundary conditions.

Consider now a noncausal 2-D IIR filter

B(z1, z2)y = A(z1, z2)x, (6)

A(z1, z2) =
N∑

m=−N

N∑

n=−N

amnz−m
1 z−n

2 , (7)

B(z1, z2) =
M∑

m=−M

M∑

n=−M

bmnz−m
1 z−n

2 (8)

Unfortunately, the above described approach of factorizing a
univariate filter denominator polynomial cannot be generalized
to 2-D noncausal filters, much less to higher-dimensional
filters. There are fundamental reasons why a general bivariate
polynomial B(z1, z2) cannot be decomposed into a ‘causal’
stable and anti-causal anti-stable polynomial factors [1].

A common approach is to limit consideration toseparable
2-D filters, where the denominator can be factorized as

B(z1, z2) = B1(z1) ·B2(z2). (9)

Each of the two univariate denominator ‘polynomials’B1(z1)
and B2(z2) can be factorized similar to (4). This yields the
filter implementation as a sequence of a 2-D FIR numerator
filter, two causal filters for each of the two coordinates,
and two anti-causal filters. Filters of the form (9) are well
understood but represent a limited subset of all 2-D IIR filters.

Only two approaches to realizing general noncausal 2-D
filters are known to the authors. The approach of [3] is to
represent (6)–(8) as a sparse system of linear equations and
solve it inside a bounded domain of the signals for given
boundary conditions. The solution involves manipulating ma-
trices of a large size (a multiple of the number of points in the
domain) and involves matrix transformations to reformulate
the problem as a sequence of solvable sparse matrix arithmetic
subproblems.

Another approach to implementing general noncausal 2-D
filters, the one which this paper follows, is based on iterative
computation of the filtered signaly in (6)–(8). This approach
appears to be first suggested in [6], [7]. The equations (6)–(8)
are iteratively solved by computing an update

y(n + 1) = y(n)−B(z1, z2)y(n) + A(z1, z2)x, (10)

wheren is the iteration number. The steady state solution of
the update (10) obviously satisfies (6). In (6), the numerator
A(z1, z2) and denominatorB(z1, z2) can be scaled by the
same factor without changing the filter transfer function.
Provided thatB(z1, z2)||z1|=1,|z2|=1 6= 0 (a BIBO stability
condition), this scaling factor can always be chosen such that
the update (10) converges. Each step of the update involves
two 2-D FIR filtering operations with the kernelsA(z1, z2)
and B(z1, z2). These use localized information and can be
implemented using parallel processing. The update (10) can
be stopped when the solution change brought by the itertaion
becomes sufficiently small.
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In additon to already cited work [6], [7], the iterative update
filters (though not known under such name) are used in the
processing of static images, where performance requirements
are relaxed but conceptual clarity is important. Examples
of linear or nonlinear filtering operations achieved through
iterative update include such deblurring methods as Landweber
Method (based on gradient descent), Van Cittered update
(least mean square update), and the nonlinear Lucy-Richardson
update. These methods are well described in the textbooks
[11], [14].

The iterative implementation (10) of 2-D IIR filters has been
known for two decades. Despite its conceptual simplicity, it
is not broadly used. One possible reason is that 2-D FIR
filters are simpler to understand and implement than 2-D
IIR filters. A rigorous justification of the advantages of 2-
D IIR filters seems to be unavailable. This paper attempts
to rectify that. Another reason is that until recently iterative
implementation of 2-D IIR filters was feasible only for off-
line signal processing, where computational performance is not
that critical, but conceptual complexity might be. The recently
evolved ability to build systolic array processors implementing
the filtering iterations makes on-line 2-D IIR filtering feasible.
The third reason might be the absense of filter design meth-
ods comprehensively addressing all the important engineering
issues. Such design approaches are proposed in this paper.

B. Multi-dimensional IIR filter design

The main engineering issues with design of iteratively
implemented 2-D IIR filters are as follows.

1) The convergence of the update is not completely clear.
The update (10) can be proved to converge to a steady
state [6], [7]. However, its engineering use would re-
quire accurate estimates of the convergence rate. To
be practical, an iterative IIR filter should require fewer
computations, counting all iterations to achieve an ac-
ceptable error, compared to an FIR filter achieving the
same objective.

2) There is a need for quantifying impact of the boundary
conditions. In the course of the iterations (10), the
boundary condition influence might theoretically propa-
gate into the filtering domain and critically influence the
solution.

3) The design methods for noncausal multi-dimensional IIR
filters are not well developed. There are no established
methods for designing such filters against formal specifi-
cation requirements including the above mentioned con-
vergence and boundary conditions requirements along
with filter performance. There could also be a need to ac-
commodate additional requirements such as robustness
to round-off error in digital implementation.

This paper addresses the three above listed issues in a
constructive way. The first two issues (iteration converegence
and boundary conditions) have not been integrated into a filter
design procedure before. Doing so is one of the contributions
of this paper. Let us discuss the third issue, filter design
method, in more detail.

In the usual time-domain (1-D) digital filtering, the most
basic and common approach is to use fixed form IIR filters
such as Butterworth, Chebyshev, or elliptic. Given a pass or
stop band these filters have a small number (one to four)
of parameters, such as filter order, that can be chosen as a
part of the design. The main advantage is the ease of use.
A greater flexibility in accommodating custom specifications
is offered by optimization-based design approaches, such as
McClellan-Parks FIR filter design (remez , see [23]) and Yule-
Walker IIR filter design (yulewalk ; see [10]) functions in
the Matlab Signal Processing Toolbox. These approaches find
an optimal (in some sense) filter satisfying flexible design
specifications. A key to practical usefulness of these methods
is that they provide a solution quickly, enabling interactive
design iterations for accommodating engineering trade-offs.

In 2-D filtering (image processing) there is a greater variety
of specifications than in 1-D. The most common approaches
use FIR filters; 2-D IIR filter technology is not yet considered
mature. The standard 2-D FIR filter design methods imple-
mented in the Matlab Imaging Toolbox include:
• Applying a 2-D window to a 2-D inverse Fourier trans-

form of the desired frequency response;
• Designing a separable 2-D filter as a direct product of

1-D FIR filters in each coordinate;
• Using the McClellan transform to design approximately

circularly symmetric 2-D filter, based on a 1-D design
template.

There is also work on developing more general transforms
for designing 2-D filters based on 1-D prototypes [21]. The
approach can be also extended towards design of 2-D IIR
filters, e.g., see [24] and the references there.

A greater flexibility in accommodating custom specifica-
tions, filter structures, and better performance for a lower
filter order can be achieved using optimization-based design
of 2-D filters. This is the approach we describe. For a se-
lected filter structure, optimization-based approaches find filter
weights that satisfy formal engineering specifications (design
constraints) and optimize one of the filter characteristics. Once
again, a key to practical usefulness of these methods is fast
solution and filter structure flexibility.

There is substantial research literature on optimization-
based design of filters in general and 2-D filters in particular,
even if the applications seem to lag behind. We will briefly
survey only the most relevant work. The optimization-based
design involves frequency gridding and for 2-D filters leads
to large scale problems. Reliable and fast solution is possible
if a convex problem is posed [2]. Very efficient convex opti-
mization methods, such as interior-point methods, have been
developed in the last decade. These methods are scalable to
large problems and can be efficiently used for filter design. In
particular, modern solvers and fast hardware enables solution
of very large linear programming (LP) problems. Some LP-
based filter design methods were first proposed more than two
decades ago, but did not find very broad use earlier apparently
because of the long computational times. At present time, LP
solvers provide fast solution (or a certificate proving there is
no solution, if the problem is infeasible). This paper formulates
an LP-based multi-dimensional IIR filter design.
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Some of the early work on using LP for design of linear-
phase 1-D FIR filters can be found in [22]. Related FIR
filters design approaches, leading to LP and other convex
optimization problems were studied in [27]. Optimization-
based design of 2-D FIR filters has been studied in many
papers. One of the ideas carried through from 1-D case is
that for linear-phase FIR filters frequency response is real and
linear in the design parameters, i.e., the filter weights. For
example, equiripple filter design leads to an LP problem; see,
e.g., [15].

A range of convex optimization formulations for 2-D filter
design focused on FIR filters and IIR filters with separable
denominator has been proposed and explored in [18], [17].
These require custom convex solvers, unlike an off-the-shelf
LP solver used in this work. Requiring that denominator is
separable limits design degrees of freedom. At the same time,
a vast majority of noncausal 2-D IIR filter applications require
zero-phase or linear phase filters. This includes all the design
examples in [17], [18]. A very important observation is that
for a symmetric zero-phase or linear-phase 2-D IIR filter, the
denominator has a real positive frequency response. We will
see that because of this, the filter design can be formulated as
an LP problem.

It appears that an LP formulation of 2-D IIR filter design
problem was first proposed almost 30 years ago in [5] (also
see [8]), where an LP problem was solved at each step of
the iterative design process. There was relatively little work
in this area since then, despite the tremendous advancements
in computational performance and LP algorithms. This paper
extends the LP-based design of 2-D IIR filters from opti-
mization of basic filter performance (ripple) to a complete
engineering approach that yields practically acceptable opti-
mized designs and is easy to use. We incorporate the filter
transfer function magnitude requirements as design constraints
along with the update convergence speed and boundary effect
requirements. We also show how the robustness, e.g., to finite
wordlength implementation, can be easily incorporated into
our formulation. For two realistic 2-D IIR examples in this
paper the solutions are computed in a few seconds using an
off-the-shelf LP solver. The approach of this paper is closely
related to distributed array control design methods in [12],
[25], where similar LP problems are formulated for design of
multi-dimensional IIR filters in a control feedback loop.

The paper outline is as follows. To establish the technical
background needed for understanding of the proposed ap-
proach, §2 considers issues 2 and 3: boundary effects and
formal design methods for zero-phase IIR filters. These are
discussed for a better understood case of 1-D noncausal IIR
filtering. In §3, the proposed methods are extended to design of
an iteratively implemented 2-D zero-phase IIR filter including
issue 1, update convergence. In§4, we discuss practical appli-
cability and extensions of the presented approaches and spec-
ifications. The developed design methods are demonstrated in
two design examples detailed in§5.

II. ONE-DIMENSIONAL NONCAUSAL IIR FILTERS

This section considers a problem of designing 1-D non-
causal IIR filter. The problem is used to introduce design and

analysis approach ideas. Multidimensional IIR filter design is
discussed in the next section.

Consider a 1-D noncausal zero phase IIR filter. Both numer-
ator and denominator of the filter are symmetric with respect
to the zero tap delay and have the form

y =
A(z)
B(z)

(11)

A(z) = a0 +
N∑

n=1

an(z−n + zn), (12)

B(z) = b0 +
M∑

m=1

bm(z−m + zm). (13)

In the design, the numerator orderN and denominator order
M are assumed to be fixed. The weightsbj andaj are the de-
sign parameters that are chosen to achieve filter performance,
specified as

∣∣∣∣D(w)−W (w)
A(eiw)
B(eiw)

∣∣∣∣ ≤ R(w), w ∈ Ω, (14)

whereD(w), W (w), andR(w) are given frequency weighting
functions andΩ is a given frequency domain. Specification
requirements of the form (14) are common for many types
of filters including band-pass (low-pass, high-pass, and notch
filters) and deconvolution filters (deblurring in 2-D filters).

The gain of a band-pass filter is required to be close to unity
in a pass band and small, close to zero, in a stop band. For
an equiripple design,W (w) = 1 and

D(w) = 1, R(w) = rp, w ∈ Ωp, (15)

D(w) = 0, R(w) = rs, w ∈ Ωs, (16)

where Ωp ∩ Ωs ≡ Ω is the frequency domain in (14),
Ωp is the pass band domain,rp is the pass band ripple
bound,Ωs is the stop band domain, andrs is the stop band
ripple bound. A possible additonal specification is that the
filter frequency response magnitude is bounded on transition
frequencies outside of the pass and stop band.

Specifications of the form (14), (15), (16) can be used to de-
scribe the four common filter design problems (all frequencies
are in the[0, 2π] range)

Low pass filter:Ωp ≡ {w ≤ wp}, Ωs ≡ {w ≥ ws},
ws > wp.
High pass filter:Ωp ≡ {w ≥ wp}, Ωs ≡ {w ≤ ws},
ws < wp.
Band pass filter:Ωp ≡ {wp,1 ≤ w ≤ wp,2}, Ωs ≡ {w ≤
ws,1;w ≥ ws,2}, ws,1 < wp,1 < wp,2 < ws,2.
Notch filter: Ωp ≡ {w ≤ wp,1; w ≥ wp,2}, Ωs ≡ ws,1 ≤
w ≤ ws,2}, wp,1 < ws,1 < ws,2 < wp,2.

In a deconvolution/deblurring problem, the filter should
invert the blur operatorHb(eiw) in the pass band and the filter
gain should be bounded in the stop band (where|Hb(eiw)| ¿
1) to limit the noise amplification. The specifications (14) take
the form

D(w) = 1, W (w) = Hb(eiw), R(w) = rp, w ∈ Ωp, (17)

D(w) = 0, W (w) = 1, R(w) = rs, w ∈ Ωs. (18)
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Note that for a zero-phase filter (11)–(13) the frequency
responsesA(eiw) and B(eiw) are real. In accordance with
(12) , (13), these frequency responses can be expanded as

A(eiw) = cT
a (w)pa, B(eiw) = cT

b (w)pb, (19)

ca(w) = [1 2 cos w . . . 2 cos Nw]T , (20)

cb(w) = [1 2 cos w . . . 2 cos Mw]T , (21)

pa = [a0 a1 . . . aN ]T , pb = [b0 b1 . . . bM ]T , (22)

where pa and pb are the design parameter vectors. The
difference between the vectorsca(w) and cb(w) is in their
size, i.e., the number of terms in the expansion.

We assume thatA(z) andB(z) are mutually prime, i.e., do
not share any roots. The frequency response of the zero-phase
filter B(eiw) is real and i.e., cannot change sign (cross zero)
without the filter transfer function being unbounded (design
constraint violation). As discussed above,A(z) andB(z) are
defined up to a scaling factor, which can be always chosen
such thatB(eiw) > 0 for w ∈ [0, 2π]. The design constraints
(15), (16) can be multiplied through by real positiveB(eiw).
By substituting (19), this yields constraints linear in the design
parameter vectorspa andpb at each frequency. These convex
constraints can be handled in a computationally efficient way.

Consider now an additional design requirement related to
the 2-sided decay of the filter impulse response and boundary
condition influence. The requirement is that the impulse re-
sponse decays at least as fast asr|n|, wheren is the distance
from the impulse andr is a design parameter,0 < r < 1. The
response decay ensures that boundary condition influence is
limited to a boundary layer with a characteristic width

nb = 1/ log(1/r). (23)

The decay of impulse response requires that the transfer
function A(z)/B(z) is analytical in the annulus

r ≤ |z| ≤ r−1, r < 1 (24)

Technical background on 2-sided z-transform leading to
(24) can be bound in [20]. The transfer function analyticity
means thatB(z) should not have zeros in the annulus (24).
Unfortunately this is a nonconvex constraint and it cannot be
handled in a computationally efficient way. Instead, consider
a convex constraint that conveniently enforces the spatial
converegence and will be further shown to be a relaxation
of B(z) not having zeros in the annulus (24). This constraint
has the form

|1−B(eiw)| ≤ t < 1 (25)

Recall thatB(z) is positive and can be scaled along with
A(z). Choosing the scaling such thatt in (25) is minimized
yields

t =
1− c

1 + c
, c =

infw∈[0,2π] B(eiw)
supw∈[0,2π] B(eiw)

. (26)

As discussed in [20],B(eiw) > 0 is a necessary condition
for filter BIBO stability. Thus,c > 0 and (25) always holds for
some0 ≤ t < 1. If t = 0, thenB(z) ≡ 1 and we got an FIR
filter with the transfer functionA(z). The impulse response

of the FIR filter is identically zero outside of the FIR filter
support. Consider a general case of0 ≤ t < 1. One can show
that smallert in (25) guarantees faster 2-sided decay of the
filter impulse response. The following proposition holds

Proposition 1: Consider an IIR filterA(z)
B(z) (11), where a

±M -tap delay symmetric denominatorB(z) (13) satisfies
(25). Then the impulse responseh(k) of the IIR filter decays
as

|h(k)| ≤ β · r|k|, r = t1/M , (27)

whereβ is a constant;r = t1/M < 1 is the same as in (24); and
the boundary layer width estimate (23) isnb = M/ log(1/t).

Proof: It is sufficient to prove (27) for the filter1/B(z),
since a cascade FIR filterA(z) would not change the response
decay rate. We will prove the following inequality equivalent
to (27)

|h(k)| ≤ tn

1− t
, for |k| ≥ n ·M (28)

DenoteC(z) = 1−B(z). For anyn > 1

1
B(z)

=
[
1 + C(z) + . . . + Cn−1(z)

]
+

Cn(z)
1− C(z)

(29)

The first n terms in the square brackets in the r.h.s. (29)
describe an FIR filter with±(n−1)M delay taps. The impulse
response of this FIR filter is zero for|k| > (n− 1)M . Using
inverse Fourier transform to evaluate the impulse response
h(k) for |k| ≥ nM yields

h(k) =
1
2π

∫ 2π

0

1
B(eiw)

e−ikwdw

=
1
2π

∫ 2π

0

Cn(eiw)
1− C(eiw)

e−ikwdw. (30)

Recall that in accordance with (25),|C(eiw)| ≤ t < 1.

Hence
∣∣∣ Cn(eiw)
1−C(eiw)

∣∣∣ ≤ tn

1−t and (28) follows immediately.
Q.E.D.

The linear design constraints (19)–(22) and (25) can be used
for posing the filter design problem as an LP problem. In
the LP problem, the linear constraints are complemented by a
linear performance index. By addingt to the design variables
we optimizet → min, which can be considered a requirement
of the fastest possible decay of the filter impulse response.
The scaling degree of freedom forA(z) and B(z) has been
already mentioned. This scaling will come out automatically
from minimizing t in (25).

The design constraints (19)–(22), (25) are frequency depen-
dent and require frequency gridding to be included in the LP
problem formulation. The formulation of the LP problem on
the frequency grid can be summarized as follows:

(1− rp)cT
b (w)pb ≤ cT

a (w)pa ≤ (1 + rp)cT
b (w)pb, (31)

for w ∈ Ωp

−rsc
T
b (w)pb ≤ cT

a (w)pa ≤ rsc
T
b (w)pb, w ∈ Ωs(32)

1− t ≤ cT
b (w)pb ≤ 1 + t, w ∈ [0, 2π],(33)

0 ≤ t ≤ 1, (34)

t → min (35)
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This LP problem should be solved for the design parameter
vector

p =




pa

pb

t


 (36)

The designed filter (11)–(13) can be implemented in the
factorized form (5) as a sequence of a noncausal FIR, causal
IIR, and anti-causal IIR filters.

The described approach appears to be new and is useful
for designing 1-D noncausal IIR filters. However, the main
meaning of this section was to prepare a background for multi-
dimensional filter design in the next section.

III. D ESIGN OF ITERATIVELY IMPLEMENTED

MULTI -DIMENSIONAL IIR FILTERS

This section presents the main contribution of this paper
in design of iteratively implemented multi-dimensional IIR
filters. For notation simplicity, 2-D filters are considered
throughout the rest of this paper. A majority of the existing ap-
plications of multi-dimensional filtering are in 2-D image and
video processing problems (e.g., see [16]). Some 3-D and 4-D
applications exist, such as computational tomography or time-
space filtering. The design and implementation approaches
presented herein are directly applicable to higher-dimensional
IIR filters. The only difference in the formulation is in the
number of the independent coordinate arguments. The only
difference in the computational design and implementation
methods is in the potentially larger number of the points in a
multi-dimensional frequency grid.

The multi-dimensional IIR filter design approach in this
section is an extension of the LP optimization-based design in
§2. The design is performed in the frequency domain. After
frequency gridding, the design requirements are formulated
as convex (linear) constraints and a linear optmimization
criterion. One additional concern for iteratively implemented
IIR filters is the iteration convergence.

Consider a 2-D IIR filter (6)–(8). In a zero-phase filter,
the numerator and denominator should have symmetry prop-
erties. To avoid excessively complex notation, let us discuss
the denominator symmetry; the numerator follows the same
pattern. The types of symmetry usually considered for 2-D
filters include (see [14])

• 2-fold symmetry:bm,n = b−m,−n

• 4-fold symmetry:bm,n = b−m,−n = b−m,n = bm,−n

• 8-fold symmetry:bm,n = b−m,−n = b−m,n = bm,−n =
bn,m = b−n,−m = b−n,m = bn,−m

In all of the above symmetry cases the IIR filter denominator
can be expanded similar to (13)

B(z1, z2) =
Mb∑

m=0

bmPM
m (z1, z2), (37)

where PM
m (z1, z2) are the elementary polynomials defining

the symmetry. The expansion (37) explicitly showsMb + 1
independent filter design parametersbm for the assumed
symmetry type.

For 2-fold symmetry, the symmetric expansion polynomials
can be expressed in the form

PM
0 (z1, z2) = 1, (38)

PM
j (z1, z2) = zj

2 + z−j
2 , (j = 1, . . . , M), (39)

PM
M+k(z1, z2) = zlk

1 zmk
2 + z−lk

1 z−mk
2 , (40)

(1 ≤ lk ≤ M, −M ≤ mk ≤ M),

where in (40)k = 1, . . . , M(2M + 1). The expansion size is
Mb = 1 + M + M(2M + 1).

For 4-fold symmetry

PM
0 (z1, z2) = 1, (41)

PM
j (z1, z2) = zj

1 + z−j
1 + zj

2 + z−j
2 , (42)

(j = 1, . . . , M),
PM

M+k(z1, z2) = zlk
1 zmk

2 + zlk
1 z−mk

2

+z−lk
1 zmk

2 + z−mk
1 z−lk

2 , (43)

(1 ≤ lk ≤ M, 1 ≤ mk ≤ M),

where in (43)k = 1, . . . ,M2. The expansion size isMb+1 =
1 + M + M2.

For 8-fold symmetry

PM
0 (z1, z2) = 1, (44)

PM
j (z1, z2) = zj

1 + z−j
1 + zj

2 + z−j
2 , (45)

(j = 1, . . . , M),
PM

M+j(z1, z2) = zj
1z

j
2 + z−j

1 zj
2 + zj

1z
−j
2 + z−j

1 z−j
2 ,

(j = 1, . . . ,M), (46)

PM
2M+k(z1, z2) = zlk

1 zmk
2 + zlk

1 z−mk
2 + z−lk

1 zmk
2

+z−lk
1 z−mk

2 + zmk
1 zlk

2 + zmk
1 z−lk

2

+z−mk
1 zlk

2 + z−mk
1 z−lk

2 , (47)

(1 ≤ lk ≤ mk − 1, 2 ≤ mk ≤ M),

where in (47)k = 1, . . . , M(M − 1)/2. The expansion size
is Mb + 1 = 1 + 2M + M(M − 1)/2.

Choosing a higher type of symmetry reduces the number of
filter design parameters and is desirable where the symmetry
of the requirements exists. To obtain frequency responses in
(37)–(47), substitutez1 = eiw1 andz2 = eiw2 . Because of the
symmetry, the imaginary parts cancel and the real expansion
functionsPM

m (eiw1 , eiw2) are combinations of the frequency
cosines. In all of the considered symmetry cases, the frequency
responses for the numerator and denominator in (37) can be
expressed in the same general form

A(eiw1 , eiw2) = cT
a (eiw1 , eiw2) pa, (48)

ca(z1, z2) = [PN
0 (z1, z2) . . . PN

Na
(z1, z2)]T , (49)

pa = [a0 a1 . . . aNa ]T , (50)

B(eiw1 , eiw2) = cT
b (eiw1 , eiw2) pb, (51)

cb(z1, z2) = [PM
0 (z1, z2) . . . PM

Mb
(z1, z2)]T , (52)

pb = [b0 b1 . . . bMb
]T , (53)

Several typical filter design specifications can be expressed
as linear frequency dependent inequalities in the design pa-
rameter vectorspa and pb. 2-D specifications similar to (14)
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take the form∣∣∣∣W (w1, w2) · A(eiw1 , eiw2)
B(eiw1 , eiw2)

−D(w1, w2)
∣∣∣∣ ≤ R(w1, w2), (54)

Equiripple magnitude specifications for bandpass filters can be
expressed similar to (15), (16)

W (w1, w2) = 1, D(w1, w2) = 1, R(w1, w2) = rp,

for {w1, w2} ∈ Ωp, (55)

W (w1, w2) = 1, D(w1, w2) = 0, R(w1, w2) = rs,

for {w1, w2} ∈ Ωs, (56)

whereΩp is the pass band domain,rp is the pass band ripple
bound,Ωs is the stop band domain, andrs is the stop band
ripple bound. In 1-D case, the stop band and the pass band
are combinations of frequency intervals. In 2-D filters,Ωp and
Ωs are two-dimensional (2-D) domains that can be defined in
many different ways (e.g., band, rectangular, circle, annulus,
diamond, combinations of these, etc). Some specific examples
are presented in the next section.

Another type of common 2-D filter design problem is a
multi-dimensional deconvolution problem (image deblurring).
Since the filter is zero-phase, it is assumed that the frequency
responseHb(eiw1 , ew2) of the blur operator is a real function.
The deblurring problem can be encoded by settingW (w1, w2),
D(w1, w2), andR(w1, w2) in (54) similar to (17), (18)

D(w1, w2) = 1, W (w1, w2) = Hb(eiw1 , ew2),
R(w1, w2) = rp, for {w1, w2} ∈ Ωp, (57)

D(w1, w2) = 0, W (w1, w2) = 1, R(w1, w2) = rs,

for {w1, w2} ∈ Ωs, (58)

SinceB(eiw1 , eiw2) is real positive, the rational inequality
(54) can be multiplied through byB(eiw1 , eiw2) to yield
frequency dependent inequalities that are linear inpa andpb.
For an iteratively implemented 2-D IIR filter, a key design
requirement is convergence of the update (10). By computing
a 2-D discrete Fourier transform of (10), the iterative imple-
mentation update can be presented in the form

ỹ(n + 1) = ỹ(n)−B(eiw1 , eiw2)ỹ(n) + A(eiw1 , eiw2)x̃, (59)

where x̃ = x̃(w1, w2) and ỹ(n) = ỹ(w1, w2; n) are the 2-D
Fourier transforms of the filter input and the iterated estimate
of the output respectively,n is the iteration number.

SinceB(eiw1 , eiw2) andA(eiw1 , eiw2) in (59) are real, each
frequency harmonic̃y(w1, w2; n) follows a first-order recur-
sive difference equation. A necessary and sufficient condition
for asymptotic convergence of the update for all frequencies
w1, w2 has the form

∣∣1−B(eiw1 , eiw2)
∣∣ ≤ t < 1, (60)

where0 ≤ t < 1 is the exponential convergence factor.
Assuming that ỹ(w1, w2; 0) = 0 and summing up the

difference equation (59) yields afterk steps

ỹ(w1, w2; k) = Hk(eiw1 , eiw2)x̃(w1, w2) (61)

Hk(z1, z2) =
A(z1, z2)
B(z1, z2)

· (1−Dk(z1, z2)) (62)

Dk(z1, z2) = (1−B(z1, z2))
k (63)

Given (60), the output estimate (61) converges to the filter
output y = A

B x as k → ∞. The mutiplicative residual error
Dk at stepk can be evaluated as

|Dk(eiw1 , eiw2)| ≤ tk (64)

This error should be included in the transfer function ripple
specifications. Since iterative implementation convergence re-
quirest < 1, in accordance with (62) and (64) the stop band
ripple of the transfer function (56) only improves because of
the finite iteration number.

Let di be an allotment (in dB) of the pass-band ripple error
budget for the finite number of the update iterations. The
number of the iterations required to achieve that error can
be estimated as

k =
di

20 log10 t
(65)

Finally, consider the requirement of the spatial decay for the
impulse response of the designed IIR filter. The spatial decay
limits the influence of the boundary conditon. The 2-D filter
analysis of the spatial decay is very similar to the 1-D analysis
of §2 (Proposition 1). It turns out that the iteration convergence
condition (60) has a dual role. Reducingt improves the spatial
decay of the impulse response and reduces the boundary layer
simultaneousely with speeding up the iteration convergence.

The following extension of Proposition 1 holds for a 2-D
system

Proposition 2: Consider a 2-D filterA(z1,z2)
B(z1,z2)

(6)–(8), where
a ±M -tap delay symmetric denominatorB(z1, z2) (37) sat-
isfies (60). Then the filter impulse responseh(k1, k2) decays
as

|h(k1, k2)| ≤ β · rmax(|k1|,|k2|), r = t1/M , (66)

where β is a constant. The boundary layer width in each
coordinate direction can be estimated asnb = M/ log(1/t).

Proof: The proof follows Proposition 1 proof almost exactly
and is based on the fact that

1
B(z1, z2)

≡ 1
1− C(z1, z2)

=
[
1 + C(z1, z2) + . . . + Cn−1(z1, z2)

]

+
Cn(z1, z2)

1− C(z1, z2)
, (67)

where C(z1, z2) = 1 − B(z1, z2). The n-term sum in the
square brackets in the r.h.s. (67) describes an FIR filter with
±(n − 1)M delay taps along each coordinate. The impulse
response of this FIR filter is zero if|k1| > (n − 1) · M
or |k2| > (n − 1) · M . For max(|k1|, |k2| > (n − 1) · M ,
the impulse responseh(k1, k2) can be evaluated through
a 2-D inverse Fourier transform of the frequency response
corresponding to the last term in the r.h.s. (67). Using the
inequality |C(eiw1 , eiw2)| ≤ t < 1 yields

|h(k1, k2)| ≤ β · tn, for max(|k1|, |k2|) ≥ n ·M, (68)

whereβ is a constant. This immediately leads to (66). Q.E.D.
The multi-dimensional IIR filter can be designed by solving

an LP problem. Gridding the frequenciesw1 andw2 makes the
design requirements (54), (60) into a seres of linear constraints
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on the filter design parameterspa and pb in (48)–(53). The
LP filter design can be formulated by complementing these
constraints with the optimization criterion

t → min, (69)

and additional constraints0 ≤ t ≤ 1. The LP problem should
be solved for the design parameter vectorp = [pT

a pT
b t]T .

The design yields a zero-phase IIR filter with fastest possible
convergence of the iterative implementation and optimized
bounds on boundary effects satisfying the transfer function
specifications (54).

IV. D ISCUSSION

Practical suitability of the iteratively implemented multi-
dimensional IIR filters should be compared against more
established multi-dimensional FIR filters. Typically, an IIR
filter requires much smaller number of the delay taps to
achieve the same performance specifications as a matching FIR
filter. For a 2-D filter, the number of floating point operations
is proportional to the squared number of the delays. For a
3-D filter, the number of operations increases cubically. This
makes multi-dimensional IIR filters potentially attractive.

This advantage is enhanced for a systolic array implementa-
tion of the filter with a separate simple processor performing
computations for each pixel, e.g., see [26]. Each processing
block in a systolic array would be connected to immediate
neighbors and computations using data from the remote neigh-
bors would require several data exchange cycles. For a 2-
D array, on the order ofM3 data transfers are needed to
broadcast each pixel toM -th remote neighbor through nearest
neighbor communication. For a 3-D IIR filter, the number of
data transfers increases asM4 and savings due to smaller filter
size are even more substantial.

A downside of an iteratively implemented IIR filter is that
multiple iterations are required to obtain the filter output,
as compared to one-shot FIR convolution computations. The
number of iterations is a multiplier for the above discussed IIR
filter computation count. Note that the number of iterations
does not have to be very large. It can be estimated from (65).
In Example 1 of§4, the convergence exponentt = 0.76 and
the iteration-related ripple budget of the filter isdi = −22
dB requiring k ≈ 11 iterations. At the same time, an IIR
filter is often smaller than a comparable FIR filter by a factor
of 3 or more, yielding an order of magnitude improvement
in computational requirements. Thus, iteratively implemented
IIR filters can still be attractive even with several iterations
required. A systolic array implementation would have an
additional utility gain.

One more note on the utility of the IIR design is that a
special case ofM = 0 in (59) yields an FIR filter and the
iterative update is reduced to a single step. Considering IIR
filter designs withM ≥ 1 provides additional degrees of
freedom in the design space. Improvements of a baseline FIR
design can be achieved through these degrees of freedom.

Let us now discuss the LP-based filter design approach
considered in the previous section. The formulated basic filter
design problem can be extended to accommodate additional

design requirements. One important extension is designing a
filter for finite-word implementation. It is well known that even
a small implementation error might result in a significant filter
performance deterioration. The finite-word roundoff error can
be handled as uncertainty. Consider a robust design of the filter
explicitly taking this uncertainty into account and guarding
against the possible undesirable effects of the roundoff error.
Assume that the filter numerator and denominator opera-
tors respectively have the formA(z1, z2) + ∆A(z1, z2) and
B(z1, z2) + ∆B(z1, z2), where the uncertainty operators∆A
and∆B are zero phase because the round off implementation
errors preserve the symmetry. These operators are bounded as

|∆A(eiw1 , eiw2)| ≤ δA, |∆B(eiw1 , eiw2)| ≤ δB , (70)

whereδA = 2−KN2/2 andδB = 2−KM2/2, assumingK-bit
precision of implementation. With the uncertainty, the design
specifications (54) take the form

∣∣∣∣W (w1, w2) · A + ∆A(eiw1 , eiw2)
B + ∆B(eiw1 , eiw2)

−D(w1, w2)
∣∣∣∣

≤ R(w1, w2), (71)

Given (70), the design specifications (71) can be formulated
as two linear inequalities

W (w1, w2) (A + δA)
≤ (R(w1, w2) + D(w1, w2)) (B − δB) , (72)

−(R(w1, w2) + D(w1, w2)) (B − δB)
≤ W (w1, w2) (A− δA) , (73)

Gridding the frequenciesw1 and w2 in (72), (73), (60), and
including (69) yields an LP problem for the filter design
parameterspa andpb in (48)–(53).

In the proposed design approach, the ripple bound
R(w1, w2) in (54) or (72), (73) must be given in advance.
If the filter orderM , N and boundR(w1, w2) are both very
small, the LP problem can become infeasible. The infeasibility
is reported by the standard LP solvers. Depending on the hier-
archy of the design priorities, the constraints on ripple bounds
and the prescribed filter order can be manipulated to yield an
acceptable engineering trade-off (if one exists). This can be
done in logarithmic time through simple dichotomy iterations
or could be a part of interactive parameter manipulation by a
filter designer.

Though the proposed approach is fundamentally focused on
zero-phase IIR filters, some extensions to more general filter
types are possible. For instance, a linear phase IIR filter can
be designed by maintaining a zero-phase denominator (with
positive real frequncy response) and a linear-phase numerator.
Of course, in that case the expression inside the absolute value
in (54) has to be pre-multiplied by the conjugate phase to make
it real. In a similar way, the design could be extended towards
zero-phase denominator filters that should match an arbitrary
transfer functionD(w1, w2). In that case a modification of
(54) with ripple conditions written separately for the real
and imaginary parts of the transfer function leads to an LP
problem. This is related to the approach of [4].
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Fig. 1. NumeratorA and denominatorB operators for the designed circular
low-pass IIR filter

V. DESIGN EXAMPLES

In this section, the IIR filter design approach of§3 is
applied to two examples of 2-D IIR low-pass filter design.
The examples are borrowed from [17].

Example 1: Circularly-symmetric low pass filter:The first
example is designing a zero-phase 2-D IIR filter with circulary
symmetric low-pass magnitude response. The design specifi-
cations are of the form (55)–(56) with the low-frequency pass
bandΩp and high-frequency stop bandΩs defined as

Ωp =
{
{w1, w2} ∈ Ωp :

(√
w2

1 + w2
2 ≤ 0.425π

)}
(74)

Ωs =
{
{w1, w2} ∈ Ωs :

(√
w2

1 + w2
2 ≥ 0.575π

)}
(75)

As a baseline, we consider a 2-D FIR filter designed in
[17] for the specifications (74)–(75). In the notation of this
paper, the filter from [17] hasN = 9 two-sided tap delays
in the numerator andM = 0 tap delays in the denominator.
The 2-D FIR convolution window is of the size(2N + 1) ×
(2N + 1) = 19× 19. With such 2-D FIR filter, the pass-band
ripple of rp = 0.0549 and the stop-band ripplers = 0.0830
are achieved in [17].

We designed a comparable 2-D IIR filter for iterative
implementation by solving an LP problem as described in
§3. The filter of the form (6)–(8) hadM = N = 3 two-
sided tap delays in the numerator and denominator. Since
the specifications (74)–(75) are circulary symmetric, an 8-fold
symmetry was assumed in the filter design. In accordance with
(43), this leavesNa = Mb = 1 + 2M + M(M − 1)/2 = 10
weights for each of the two FIR filtersA andB to be chosen
as the result of the design. The problem statement included
the iteration convergence/spatial decay condition (60) and the
optimality criterion (69).

In the design, a32 × 32 grid was used for the frequency-
dependent functions. The grid includes 145 pass band points
and 763 stop band points. This is much more than 50 pass band
points and 279 stop band points reported in [17, Table 1]. The
ripple constraints in (55)–(56) were chosen asrp = 0.0296
(pass band ripple of 0.5 dB), andrs = 0.0794 (stop band

Fig. 2. Amplitude response in dB for the designed circular low-pass IIR
filter

ripple of -22 dB). This provides ripple performance superior
to [17] (rp = 0.0549 andrs = 0.0830) as long as the iterative
implementation error (63) is within the alloted budget

di = 20 log10

(
1 + 0.0549
1 + 0.0296

− 1
)

= −32dB (76)

The filter operatorsA(z1, z2) and B(z1, z2) obtained by
solving the LP design problem are illustrated in Figure 1. The
amplitude response of the designed filter is shown in Figure 2.
The CPU time for the solution using a current Wintel PC is
about2.7 sec when using the medium-scale LINPROG solver
in the Matlab Optimization Toolbox. In [17], the solution time
for the 19 × 19 FIR filter with comparable performance is
given as 20 sec. Based on the paper submission date, at least
2.5 year older and hence probably 3-4 times slower computer
should be assumed in [17]. Note that the LP solver used in
this work was the Matlab medium-size problem solver; for
an optimized sparse solver written in ‘C’, a 1-2 orders of
magnitude computation time improvement can be expected or,
alternatively, an 1-2 orders of magnitude larger problem can
be solved. The main result of our implementation is that a
simple Matlab code with standard solver was demonstrated to
be sufficient for achieving good results.

The optimal solution yields the convergence ratet in (60)
as t = 0.7206. With the ripple budgetdi (76) for the finite
iteration error, the necessary number of iterations in (10) can
be estimated ask = di

20 log10 t ≈ 11.
Consider now the spatial decay of the impulse response

for the designed filter. The decay rate bound (66) tells that
a characteristic width of response decay is no more than
−M/ log(t) ≈ 9 steps. An actual impulse response decay
is shown in Figure 3. This impulse response was com-
puted through inverse 2-D FFT of the frequency response
A(eiw1 ,eiw2 )
B(eiw1 ,eiw2 )

for the designed filter. The displayed response
provides a practical idea about the boundary layer effects one
can expect by applying the designed 2-D IIR filter in a finite
domain. The response decays off in about 4 steps away from
the center. This is somewhat faster than the obtained bound
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Fig. 3. Impulse response for the designed circular low-pass IIR filter

on the asymptotic decay.
An accurate numerical estimate of whether the spatial decay

specs are satisfied for givenr can be done by 2-D frequency
gridding and checkingH

(
ρ1e

iv1 , ρ2e
iv2

)
, for eachρj = r

andρj = r−1, j = 1, 2. More detail and theory can be found
in [13]. The condition the estimate (66) was only given to
justify why minimizing t in (60) increases the decay rate of
the impulse response. The actual width of the impulse response
can be evaluated by computing this response explicitly. This
can be quickly done as a part of the frequency-domain design
by computing the impulse response as an inverse Fourier
transform of the filter frequency response, such as in Figure 3.

The designed circular 2-D filter was compared against a
2-D FIR filter designed using McClellan transformation. The
prototype 1-D filter was designed as minimum-ripple 19-tap
zero-phase FIR usingremez function in the Matlab Signal
Processing Toolbox and had ripple of0.0273 in both pass band
and stop band. The 19 x 19 2-D FIR filter was designed from
this prototype by using McClellan transformation (function
ftrans2 in the Matlab Image Processing Toolbox). This
design yields the pass-band ripplerp = 0.0272 and the stop
band ripplers = 0.1068. The stop-band ripple performance
is inferior to optimization-based design in [17] (rp = 0.0549
andrs = 0.0830) and to our design.

Example 2: Diamond-shaped low pass filter:The second
example is designing a zero-phase 2-D IIR filter with a
diamond-shaped low-pass band. The design specifications have
the form (55)–(56) with the pass bandΩp and stop bandΩs

defined as

Ωp = {{w1, w2} ∈ Ωp : (|w1|+ |w2| ≤ 0.8π)} (77)

Ωs = {{w1, w2} ∈ Ωs : (|w1|+ |w2| ≥ π)} (78)

As a baseline, we again consider a 2-D FIR filter designed
in [17] for the specifications (77)–(78).The filter in [17, Table
II] is a FIR convolution window of the size19 × 19. When
presented in the form (6)–(8) this corresponds toN = 9 two-
sided tap delays in the numerator andM = 0 tap delays in
the denominator. This filter in [17] achieved the ripplerp =
0.0496 in the pass-band andrs = 0.0487 in the stop-band.

We designed a comparable 2-D IIR filter as described in
§3. The IIR hadM = N = 3 two-sided tap delays in both
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Fig. 4. NumeratorA and denominatorB operators for the designed diamond-
shaped low-pass IIR filter

numerator and denominator. The specifications (74)–(75) have
8-fold symmety and the same 8-fold symmetry was assumed
in the filter design. The design parameters included1+2M +
M(M − 1)/2 = 10 filter weightspa, 10 filter weightspb, and
the iteration convergence/spatial decay parametert in (60),
(69).

The design used a16× 16 frequency grid, which included
85 pass band points and 143 stop band points. This compares
with 50 pass band points and 121 stop band points reported in
[17, Table II]. The ripple constraints in (55)–(56) were chosen
asrp = 0.0296 (pass band ripple of 0.25 dB), andrs = 0.0501
(stop band ripple of -26 dB). This is comparable to the baseline
FIR design from [17]. The remaining budget of the iterative
implementation error (63) was

di = 20 log10

(
1 + 0.0496
1 + 0.0296

− 1
)

= −34 dB (79)

The designed 2-D zero-phase IIR filter operatorsA and
B are illustrated in Figure 4. The amplitude response of the
designed filter is shown in Figure 5. The CPU time for the
design problem solution using a state of the art Wintel PC
is 0.7 sec with LINPROG solver from Matlab Optimization
Toolbox. In [17], the solution time of 7.13 sec is quoted for
design of a19 × 19 FIR filter with comparable performance
for a computer which was likely 3-4 times slower.

The optimial solution yields the convergence ratet in (60)
as t = 0.8688. To satisfy the ripple error budgetdi (79),
k = di

20 log10 t ≈ 34 iterations are required.
The impulse response for the designed filter is shown

in Figure 6. This impulse response was computed through
inverse 2-D FFT of the 2-D IIR filter frequency response. The
response decays off in about 4 steps away from the center.
The decay rate estimate (66) gives a larger characeristic legth
of response decay of about−M/ log(t) ≈ 21 steps, but then
the asymptotic decay rate in Figure 6 appears to be slower
than the initial decay in the middle of the response.

VI. CONCLUSIONS

We have proposed a new approach to non-causal multi-
dimensional IIR filters. The approach combines optimization-
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Fig. 5. Amplitude response in dB for the designed diamond-shaped low-pass
IIR filter
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Fig. 6. Impulse response for the designed diamond-shaped low-pass IIR
filter

based design with iterative implementation of the filters. It
is an efficient alternative to existing designs of zero-phase
multi-dimensional IIR filters. The optimization-based design
formally includes various filter transfer function magnitude
specifiations as optimization constraints in LP problem. We
have demonstrated fast filter design using off-the-shelf LP
solver. Iteratively implemented multi-dimensional IIR filters
do not need to be causal (first quad) or have a separable
denominator as in other related work. We have also consid-
ered and explicitly included into the design requirements the
impulse response decay that characterizes the width of the
boundary effect layer in the filtered signal domain. We have
demonstrated two design examples for low-pass 2-D filters
with design specifications borrowed from earler work. Even
taking into account the computational expense of the iterations,
the designed filters perform better or the same as the filters
based on existing approaches.
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