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Abstract—Consider a training set of multivariate input/output
process data. Given a new observation we ask the following
questions: is the new observation normal or abnormal? is one
of the inputs or outputs abnormal (faulty) and which? For a
linear Gaussian model of the process, the problem is solved by
Bayesian hypothesis testing. The formulation differs from existing
multivariate statistical monitoring methods by taking variance
(uncertainty) of the linear regression model into account. In the
limit case of zero model variance, the proposed method matches
the established methods for anomaly detection and fault isola-
tion. The proposed method might yield an order of magnitude
reduction in fault isolation errors compared to the established
approaches when regression models have large variance. This is
the case for ill-conditioned multivariate regression models even
with large training data sets. The paper also shows that isolating
faults to a small ambiguity group works much better than trying
to isolate a single fault. The proposed method is verified in a
Monte Carlo study and in application to jet engine fault isolation.

I. INTRODUCTION

This paper considers a problem of multivariate statistical
process monitoring using data driven models. This section
introduces the problem informally.

A. Problem

Consider a data set consisting of a series of tuples

DN = {x(t), y(t)}Nt=1, (1)

where t is the time series index, x(t) ∈ <n, and y(t) ∈ <m.
Data (1) is used for regression modeling, where x(t) are the
independent variables (process inputs, regressors, explanatory
variables) and y(t) are dependent variables (process outputs,
response variables, quality variables). The inputs x(t) are
observable or known. The outputs y(t) are generated by a
(nominal) random process with x(t) as inputs. The nominal
random process is stationary and observations {x(t), y(t)},
{x(s), y(s)} are independent for s 6= t.

Given DN and a new observation {x, y} we ask the follow-
ing questions: is the new observation normal or abnormal? is
one of the observed inputs xj or outputs yk biased (faulty)
and which? This paper considers an easy generalization of the
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above questions. We assume that the input and output faults
have signatures defined by the two sets

F = {f1, ..., fn}, (2)
G = {g1, ..., gm} (3)

As a special case, a fault in a single input channel j is
described by fj = ej , where ej ∈ <n is a unit vector. A
fault in an output channel k is described by gk = ek, where
ek ∈ <m is a unit vector. The following statistical hypotheses
are evaluated to answer the questions.
HN : Null hypothesis. Observation {x, y} is generated by

the nominal process.
HA: Anomaly. Observation {x, y} is abnormal, deviates

from the nominal process. This is modeled as observing the
output y + h instead of y, where h is a nuisance vector.
HI,j : Input channel fault. An anomaly, where y is generated

by the nominal process with x. The input x+ zfj is observed
instead of x, where z is a scalar nuisance parameter.
HO,k: Output channel fault. An anomaly where y is gen-

erated by the nominal process with x. The output y + zgk is
observed instead of y; z is a scalar nuisance parameter.

We consider the following anomaly detection and fault
isolation problems

ANO: Determine which of the two complementary hypotheses
holds: HN nominal or HA anomaly.

ISO: If HA holds, find a set of all likely fault hypotheses
HI,j and HO,k (the ambiguity group).

MAP: Find the most likely hypothesis out of the hypotheses:
HN , HA, HI,j , and HO,k.

Problems ANO and MAP have been considered in the prior
work. Problem ISO of finding the fault ambiguity group
appears to be new. If the anomaly is detected but the ambiguity
group is empty, we report “an unknown anomaly”; a related
hypothesis is considered in [2]. The fault ambiguity groups are
considered in the literature on circuit testing and discrete fault
diagnostics from discrete data, but not for the stated problem.

B. Motivation

The proposed data-driven formulation is aimed at isolating
faults that induce bias in one of the raw data channels. The
data {x, y} might be combinations of the raw data channels.

The assumption of x(t) being observable and y(t) a random
variable realization is standard in regression modeling. The
formulation with jointly normally distributed x(t), y(t) is, in
fact, a special case of (1): the input is empty and the output
is a stacked vector of x(t), y(t).



It is implicitly assumed that the anomalies have small prob-
ability. This is often true in monitoring of physical systems
and is the reason for using training data (1) without anomalies.
The statistical hypotheses with one fault only are considered.
Small anomaly probability makes unlikely that two different
faults would occur simultaneously.

C. Baseline approach

An established approach to solving the stated monitoring
problem is to fit a linear regression model to the training
data (1) and then use this model for statistical testing of the
hypotheses. We recite it in this section and later use as a
baseline for introducing the proposed approach. Some of the
baseline method literature is surveyed in Section II below.

In what follows, it is assumed that process output y(t) data
are realizations of independent random variables y that are
normally distributed, conditional on x(t)

y(t) ∼ N(Bx(t), S). (4)

Model matrix B ∈ <m,n and covariance matrix S ∈ <n,n
define the regression model. To estimate B and S, the training
data in DN can be formed into two data matrices

X = [x(1), ..., x(N)] ∈ <n,N , (5)
Y = [y(1), ..., y(N)] ∈ <m,N . (6)

The least squares estimates of the parameters of regression
model (4) are well known to be

BN = Y XT
(
XXT

)−1
, (7)

SN = N−1(Y −BNX)(Y −BNX)T . (8)

For now, we assume that matrices XXT and V V T , where
V = Y − BNX , are invertible. The case of non-invertible
XXT and V V T is discussed in Subsection III-C

Assuming that the estimates (7), (8) are accurate, a fault
with signature h can be monitored through the following
indexes

M1(x, y) = ‖y −BNx‖2S−1
N

, (9)

M2(x, y;h) = min
z
‖y −BNx− zh‖2S−1

N

, (10)

z = (y −BNx)TS−1N h/‖h‖2
S−1
N

, (11)

where notation ‖h‖2
S−1
N

= hTS−1N h is used. Index M1 indi-
cates an anomaly when it exceeds a threshold. Index M2 is
used to perform fault isolation; it allows to detect the fault with
the signature h. The optimal fault amplitude estimate z in (10)
is given by (11). For the input fault in channel j, the assumed
signature is h = BNfj ; for the output fault k, the signature
is h = gk. The fault hypothesis providing the smallest index
M2 is assumed to hold.

D. Model variance in anomaly detection

Anomalies can be detected using (9) assuming that model
(4) is perfectly estimated, B = BN , S = SN . Under
this assumption, index M1 (9) follows the χ2

m distribution.
Accordingly, the threshold in detecting anomaly through M1

can be chosen as the p-value for the χ2
m distribution to provide

an acceptable False Positive (FP) rate.
In fact, the estimates BN , SN obtained from a finite sample

contain an error. The variance of BN , SN has been earlier
taken into in account in the special case of x(t) = 1, n = 1 in
(1). In that case, B is the mean of the normal distribution (4)
and BN is the estimate of the mean. In [15], it was established
that index M1 (9) then follows the Hotelling’s T 2 distribution,
and the p-value for the T 2 should be used instead of the χ2

m.
This paper addresses the impact of the variance of BN , SN

in the general case of the regression model (4). This general
case does not appear to be addressed in the existing literature.
The only related work seems to be detection of an unknown
signal in a noisy channel discussed in [23], which includes
results related to anomaly detection herein.

If XXT is ill-conditioned, the variance of BN can be large
even for large N . As a result, the decisions based on (9)–(10)
may be far from optimal. Issues with accuracy of estimation of
large covariance matrices from the data have recently attracted
attention in the signal processing domain, see [6].

E. Fault isolation with model uncertainty
Most of the fault isolation work assumes the model is either

given or accurately estimated from the data. There are few
exceptions, however, where model variance is considered.

In [31], confidence intervals, which are related to the model
variance, are used to test significance of linear combinations
of regression coefficients. The results of [31] are related to
intermediate steps of the proposed solution.

Optimal Bayesian estimation taking into account gaussian
uncertainty of linear models is considered in [30], [43]. These
are nonconvex problems. The fault isolation problems in this
paper are easier to solve because just a single scalar fault
intensity parameter is estimated for each fault hypothesis.

F. Contributions
The main novelty of this work is that indexes (9), (10) are

modified to explicitly address variance (uncertainty) of the
model trained on finite amount of data.

Subsection I-A states Problem ISO of finding the fault
ambiguity group. This problem appears to be new. The paper
demonstrates that isolating the single channel faults to the
ambiguity group can make the isolation errors uniformly small.

One more contribution of this paper is in establishing the
tuning rules that are based on asymptotic performance of the
algorithms and allow to set up the algorithm parameters.

The simulation results below show that the proposed
Bayesian approach can reduce fault isolation errors signifi-
cantly, in some cases, by an order of magnitude.

G. Outline
The paper outline is as follows. Section II surveys the

related work. Section III introduces the optimal Bayesian
log-posteriors for the hypotheses. Section IV describes the
proposed algorithms based on hypothesis testing. Section V
considers asymptotic performance of the algorithms and tuning
rules based on this performance. Finally, Sections VI and VII
illustrate the proposed method with numerical examples.
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II. RELATED PRIOR WORK

Section I described the main contribution of this paper - im-
proving on the baseline approach by addressing the variation of
the estimated model. There is also substantial literature on the
baseline approach, other methods for anomaly detection and
fault isolation, and their applications. This section surveys such
work, which is less directly related to the paper contribution.

A. Multivariate Statistical Process Control

The formulated problems are related to Multivariate Sta-
tistical Process Control (MSPC) methodology of statistical
process monitoring, developed for process control applications
and surveyed in [1], [24], [29], [34]. The MSPC approaches
generally follow the baseline approach in Section I. The
matrices B and S in the gaussian model (4) are estimated
from the data. The estimates are then used for the anomaly
detection and fault isolation assuming they are accurate.

Early MSPC work on fault isolation was based on geometri-
cal argument of subspace projections, distances, and angles for
the monitored data, e.g., see [34]. More recent paper [1] argues
that an index similar to (10), (11) with added regularization,
the fault reconstruction index, provides the best results. The
closest related work uses Bayesian formulations for testing
fault hypotheses. The tests in [18] are similar to (11), but
restricted to the null space of the covariance matrix. This paper
uses the same fundamental approach as [21], [28]: the fault
isolation is done only after the null hypothesis is rejected.

B. Covariance structure

Decision indexes (9), (10) imply that the empirical co-
variance SN is invertible. Subsection III-C discusses how an
non-invertible covariance SN can be handled by introducing
Bayesian priors (regularization).

The problem of non-invertible SN is well-studied in the
special case of x(t) ∈ ∅ (there are no regressors). In this
case, SN = Y Y T in (8). The Principal Component Analysis
(PCA) approaches decompose the rank-deficient covariance
matrix SN into the null space and the range space operators.
The range space projection of the data can be addressed by
the baseline approach; in this space the covariance operator
is invertible. The decision index (9) for the range space
projection is usually called T 2 statistics (this name might be
not quite precise). The null space projection is described by
Q statistics, a.k.a., the square prediction error (SPE).

The anomaly detection might use both T 2 and Q, such as
in [3]. Alternatively, [18] considers the range space variation
as a nuisance variable and monitors the null space only.

Fault isolation using a single “reconstruction index” com-
bining T 2 and Q and similar to (10), (11) is suggested in [1].
Effectively, [1] replaces the singular values σk of the matrix
SN with σ̂k = max(σk, µ), where µ is a small regularization
parameter. In Subsection III-C below, σk is replaced with
σ̂k = σk+µ. For most singular values, we have either σk � µ
or σk � µ and the two approaches give very close results.

As mentioned in Section I-B, this paper considers x(t) as
a known input and y(t) as a random variable output. One

could consider x(t) as a random variable as well. For example,
Errors-in-Variables regression, see [40], assumes that x(t) is
measured with an random error. In that case, the variable
transformation [x(t)T y(t)T ]T → y(t) and ∅ → x(t), yields
a special case of the problem considered in this paper. The
connection with the Errors-in-Variables results is discussed
in the end of Subsection III-A. Canonical-correlation analysis
(CCA) and Partial Least Squares (PLS) [26] are two other
approaches that consider x(t) as a random vector and analyze
the covariance of [x(t)T y(t)T ]T .

C. Model-based fault diagnostics

The control systems literature includes much work in
model-based fault detection and isolation (FDI), e.g., see [4],
[10]. This work assumes the system model as given; this is
fundamentally different from the data-driven modeling in this
paper. Apart from that, the linear dynamic models used in the
FDI work are equivalent to the static models in this paper.
They can be transformed into form (4) by applying a lifting
transformation and noise whitening, e.g., see [4].

Some of the model-based FDI work considers noiseless
data, assuming known model B in (4) and zero covariance,
S = 0, e.g., see [4], [10]. The robust model-based FDI work
describes model uncertainty as the process noise, see [4].
The robust model-based FDI methods require knowledge of
all model parameters, including the model uncertainty, at the
outset. The approach of this paper computes the uncertainty
(the variation of the estimated model) along with the model,
from the data. Such data-driven approach is easier to apply in
practice.

Some of the model-based fault detection and isolation work
uses Bayesian formulations for testing fault hypotheses. For
example, using filter banks for testing alternative fault hypoth-
esisis is discussed in [22], [36], [38], [45]. These approaches
are, in spirit, related to the hypothesis testing for fault isolation
in this paper, though the exact formulations are different.

D. Limitations of proposed approach

This paper assumes that no more than one fault at a time
can occur. If multiple faults are possible, the fault isolation
problem has combinatorial complexity, e.g., see [21]. This
problem can be handled though `1 relaxation, e.g., see [14].
The `1 relaxation of the problem with the inputs x and outputs
y including a mixture of discrete (binary) and real components
is presented in [46].

The approach in this paper assumes linear Gaussian model
(4). Such models cover a broad range of practical applications.
This paper does not address the use of nonlinear models in
FDI, and non-gaussian noises. One more important extension
not adressed herein is anomaly detection and fault isolation for
a population of systems in a multi-level regression framework,
see [5], [12].

III. BAYESIAN FORMULATION

This section formulates Bayesian framework for testing the
ANO, ISO, and MAP hypotheses of Section I taking into
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account the model uncertainty. The hypothesis likelihoods
are computed assuming that data (5), (6) follow model (4).
These likelihoods are next used in Section IV to solve the
anomaly detection and fault isolation problems introduced in
Section I. Subsection III-A discusses the likelihood for the
null hypothesis. Subsection III-B describes the likelihoods for
the fault hypotheses. Subsection III-C introduces the priors.

A. Log-likelihood index

The probability density for y ∼ N(Bx, S) in (4) yields the
single-point log-likelihood

L(y,B, S|x) = log p(y,B, S|x) + c

= −1

2
(y −Bx)S−1(y −Bx)− 1

2
log det(S), (12)

where c = m
2 log(2π). Since all data samples are independent,

the Maximum Likelihood Estimation (MLE) of B and S from
i.i.d. data DN (1) is obtained by solving the problem

LN = max
B,S

N∑
t=1

L(y(t), B, S|x(t)). (13)

Solution of multivariate linear regression (12), (13) is well
known. It is briefly recapped as a part of the derivation in
Appendix A: optimal B, S are given by (7), (8); the optimal
index (13) is

LN = −N
2

log det

[
Y
[
I −XT (XXT )−1X

]
Y T

N

]
− Nm

2
. (14)

One possible approach would be to compute the uncertainty
(variation) of matrices B, S estimated from the training data
DN . The uncertainty could then be used in the formulation
for the new observation {x, y} (the test set). This paper shows
that it is much more convenient to consider the joint Bayesian
formulation for all observations instead. By considering the
new observation {x, y} to be a part of the training data (1),
we get the extended log-posterior index

L+ = max
B,S

(
L(y,B, S|x) +

N∑
t=1

L(y(t), B, S|x(t))

)
. (15)

Appendix A expresses the solution of (15) through the
solution of (13) in the form

L+(y|x) = cN −
N + 1

2
log

(
1 +

M+(x, y)

N

)
, (16)

M+(x, y) =
‖y −BNx‖2S−1

N

1 +N−1‖x‖2
Q−1

N

, (17)

where SN (8), LN (14) are computed from training data (5),
(6), along with BN , cN , and QN

cN =
(N + 1)m

2
log(1 +N−1)− N + 1

N
LN ,

QN = N−1XXT , BN = N−1Y XTQ−1N . (18)

In (16), L+(y|x) is a monotonically decreasing function of
M+(x, y). The problem of maximizing L+(y|x) thus can be
solved by minimizing M+(x, y). Note, that the denominator in

(17) manifests regression dilution effect, also known as atten-
uation. The effect is well discussed in connection to errors-in-
variables statistical models. The statistical uncertainty within
the errors-in-variable framework could be introduced by con-
sidering predictor variable x normally distributed and QN its
empirical covariance.

B. Hypothesis likelihoods
The posteriors for the hypotheses introduced in Section I

for fault signatures (2), (3) can be expressed using (16)–(18).
We assume that the hypotheses priors are

P (HN) = 1− pA, P (HA) = pA,

P (HI,j) = pF , P (HO,k) = pF , (19)

where HA and HN are complementary hypotheses. All fault
hypotheses are assumed to have the same prior probabilities
pF . The generalization to different fault priors is straightfor-
ward, but would reduce clarity. The posterior log-likelihood
of each hypothesis can be computed as

L(H) = log [P (x, y|H) · P (H)] = L+(y|x,H) + log pH , (20)

where H is one of hypotheses in (19) and pH is the re-
spective probability. We used the Bayes rule: P (H|x, y) =
P (x, y|H)P (H)const, then L+(x, y|H) = logP (x, y|H) −
log const. The additive constant in (20) is ignored. The log
posteriors for different hypotheses H are derived below.

HN : Null hypothesis: It is assumed that the observation
{x, y} is generated by the nominal process. Hence the deriva-
tion of Subsection III-A holds without any modifications. From
(16), (17), (19), and (20), we get

L(HN) = cN −
N + 1

2
log

(
1 +

M+(x, y)

N

)
+ log(1− pA) (21)

HA: Anomaly: The anomaly hypothesis assumes that y+h
is observed instead of y, where h is a nuisance vector. From
(16), (19) and (20) we get

L(HA) = cN −min
h

N + 1

2
log

(
1 +

M+(x, y + h)

N

)
+ log pA = cN + log pA, (22)

In accordance with (17), minhM+(x, y + h) = 0 is achieved
for h = −y +BNx.
HI,j: Input channel fault: The hypothesis of input fault j

assumes that for the process data {x, y}, the observed input is
x+ fjz instead of x. Fault intensity z is unknown and input
fault signature f = fj ∈ F is known.

From (16), (19), and (20) we get

L(HI,j) = cN −
N + 1

2
log

(
1 +

M+(x+ fjzI,j , y)

N

)
+ log pF , (23)

where zI,j is the most likely value of the nuisance parameter
z. In accordance with (17),

zI,j = arg min
z
M+[z], (24)

M+[z] =
(y −BNx−BNfjz)TS−1N (y −BNx−BNfjz)

1 +N−1(x+ fjz)TQ
−1
N (x+ fjz)

.
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The function minimized in (24) is the ratio of two quadratic
polynomials in z, M+[z] = (az2 + bz + c)/(dz2 + ez + f).
The derivative dM+[z]/dz has numerator that is quadratic in
z. The minimum can be found by checking the two roots of
this numerator.

HO,k: Output channel fault: The hypothesis of output fault
k assumes that for the process data {x, y}, the observed output
is y+gkz instead of y. Fault intensity z is unknown and output
fault signature g = fj ∈ G is known.

From (16), (19), and (20), we get

L(HO,k) = cN −
N + 1

2
log

(
1 +

M+(x, y + gkzO,k)

N

)
+ log pF , (25)

where zO,k is the most likely value of the nuisance parameter
z. Using (17) and differentiating to find minimum in z yields

zO,k = arg min
z
M+(x, y + gkz∗)

= (y −BNx)TS−1N gk/‖gk‖2S−1
N

. (26)

C. Priors for model parameters B and S

Non-invertible matrices XXT and V V T , in (7), (8), (17)
can be handled through Bayesian priors that implicitly in-
troduce regularization, shrinkage. Following the Bayesian ap-
proach, the MLE formulation (13) shall be replaced by Max-
imum A posteriori Probability (MAP) formulation including
the priors for the matrices B and S in the distribution (4).

Consider a Normal-Inverse Wishart prior P (B,S) =
P (B|S)P (S), where B|S follows a normal matrix distribution
and S follows an Inverse Wishart distribution [19].

P (S) ∝ (detS)−
1
2 (p+m+1) exp

(
−ρ

2
traceS−1

)
, (27)

P (B|S) ∝ µm
2 (detS)−

1
2m exp

(
−µ

2
trace (BTS−1B)

)
. (28)

The hyper-parameters µ and ρ describe the precisions (inverse
covariances) for B and S respectively and p is a positive
integer (the number of degrees of freedom). One can consider
µ and ρ as small regularization parameters. In what follows, it
is assumed that in the Inverse Wishart distribution p ≥ m+ 1.
In the numerical examples below, p = m+ 1.

The MAP formulation adds a log-prior term L0 =
logP (B,S) = logP (B|S) + logP (S) following (27), (28),
to the loss index in (13). The MLE formulation could be con-
sidered as a MAP with a noninformative prior. The Normal-
Inverse Wishart prior is a conjugate prior of distribution (4)
with unknown mean and covariance. This means the prior can
be described as the posterior obtained with p + 1 pseudo-
observations. The pseudo-observations are the columns of the
matrices X0 and Y0, such that X0X

T
0 = ρI , Y0XT

0 = 0,
Y0Y

T
0 = µI .

With the introduced prior, the derivations presented above
in the paper have the same form with the pseudo-observations
added to the data (5), (6). In particular, matrices BN , QN ,

(18), and SN , (8), in the algorithms are replaced by

QN = (p+N + 1)−1(XXT + ρI), (29)
BN = (p+N + 1)−1Y XTQ−1N , (30)
SN = (p+N + 1)−1 (31)

×[(Y −BNX)(Y −BNX)T + µI + ρBNB
T
N ].

This ensures that the matrices SN and QN are invertible.
Note that the relative weight of the regularization parameters
ρ and µ in (29), (30), (31) compared to the scatter matrix
XXT decreases as the number of the data points N increases
making the regularization less effective. This should not be a
problem if XXT has a full rank asymptotically, which is the
case for independent regressors. If this is not the case, one
could drop the dependent regressors in an initial regressor set.

IV. ANOMALY DETECTION AND FAULT ISOLATION

This section presents the main contribution of the paper:
the algorithms that solve the anomaly detection and fault
isolation problems introduced in Section I. These Bayesian al-
gorithms use the hypothesis posteriors computed in Section III.
The problems are solved by computing and comparing log-
posteriors (21), (22), (23), (25).

A. Monitoring for anomalies and the faults

Three monitors are described below. Each monitor is a
computational function that inputs a data point {x, y} and
produces a list of one or more accepted hypotheses.

Monitor 1 (ANO): Anomaly detection: To determine
if HN nominal or HA anomaly holds, L(HN) is compared
to L(HA). If L(HA) > L(HN), the anomaly hypothesis HA

is accepted, otherwise the null hypothesis if HN is accepted.
There are two possible outputs: {null, anomaly}. Combining
(21) and (22) yields the decision rule for accepting HA

M+(x, y) > N ·
((
p−1A − 1

) 2
N+1 − 1

)
, (32)

where M+(x, y) is given by (17), (29), (30), (31).
Monitor 2 (ISO): Fault isolation: Assume that the

anomaly hypothesis HA holds and L(HA) > L(HN). Then
the fault isolation monitor finds a set J of all input channel
fault hypothesis HI,j such that L(HI,j) > L(HA) and a set K
of output channel fault hypothesis HO,k such that L(HO,k) >
L(HA). The combined set {J , K} (the ambiguity group) is
the fault isolation monitor output. An empty ambiguity group
means the fault is unknown.

The decision rule for accepting input fault hypothesis HI,j

follows from (22) and (23) as

M+(x+ fjzI,j , y) < N ·
(

(pF /pA)
2

N+1 − 1
)
, (33)

where zI,j is given by (24). From (22) and (25), the output
channel fault hypothesis HO,k is accepted if

M+(x, y + gkzO,k) < N ·
(

(pF /pA)
2

N+1 − 1
)
, (34)

where zO,k is given by (26). Computing (33) and (34) requires
computing (17) and (29), (30), (31).
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Monitor 3 (MAP): Most likely hypothesis: Find the
hypothesis that has the largest likelihood. The MAP monitor
relies on decision rule (32) for accepting anomaly hypothesis
HA. If HA is accepted and none of the inequalities (33), (34)
hold, then “unknown fault” is reported. If HA is accepted and
one or more of the inequalities (33), (34) hold then the fault
hypothesis corresponding to the smallest left hand side among
all inequalities (33), (34) is accepted.

The following parameters are used in the decision rules.
• Matrices QN , BN , SN that are computed from (29), (30),

(31), for training data (5), (6).
• Known input fault signatures fj in (2) and output fault

signatures gk in (3).
• Prior probabilities pA, pF , in (19); these are the tuning

parameters and discussed below.
• Regularization parameters p, µ, and ρ in (29), (30), (31)

are discussed below in Subsection V-D. In the examples
below, parameter p in (29), (30), (31), is p = m+ 1.

B. Baseline approach as asymptotics

Consider the proposed algorithm in the asymptotic case of
a very large training data set, N � 1.

First, consider the thresholds in the right hand sides of
the decision rules (32), (33), (34). The expressions for the
thresholds are of the form φ(N ; γ) = N · (γ

2
N+1 − 1). It

can be proven that for N, γ > 0 the function φ(N ; γ) (i)
is monotonically decreasing with N , and (ii) for large N ,
converges to asymptotic value limN→∞ φ(N ; γ) = 2 log γ.
Denote by R the asymptotic value in the right hand side (r.h.s.)
of (32); denote by W the asymptotic value in the r.h.s. of (33)
and (34), then

R = 2 log
(
p−1A − 1

)
, W = 2 log (pF /pA) . (35)

Second, consider the expression (17) for M+(x, y), specif-
ically, its denominator. Assume that for N → ∞, we have
QN → Q and Q is invertible; then N−1‖x‖2

Q−1
N

→ 0. This
means for N � 1 we can drop the denominator in (17) and
M+(x, y) ≈M1(x, y), where M1(x, y) is of the form (10).

Note that the denominator in (17) might be large even for
a large N . This might happen if matrix QN is ill-conditioned
and x has nonzero projection on its small singular vector (the
large singular vector of Q−1N ).

By substituting M1(x, y) for M+(x, y) in the left hand sides
of (32), (33), (34) and the asymptotic decision thresholds (35)
in the right hand sides, we get the asymptotic decision rules to
be used for N � 1. The anomaly hypothesis HA is accepted
if the following asymptotic version of decision rule (32) holds,

‖y −BNx‖2S−1
N

> R, (36)

where R is given by (35).
The input fault isolation condition L(HI,j) > L(HA)

becomes

‖y −BN (x+ zI,jfj)‖2S−1
N

< W, (37)

where zI,j is given by (11) with h = −BNfj and W by (35).

Similarly, the output fault isolation condition L(HO,k) >
L(HA) can be written in the form

‖y −BNx− zO,kgk‖2S−1
N

< W, (38)

where zO,k is given by (11) with h = gk and W , by (35).
Baseline monitors (10)-(11) use decision rules of the form

(36), (37), (38), and are, thus, asymptotically optimal for
appropriate decision thresholds.

C. Computational Performance

The monitors of Subsection IV-A are suitable for on-line
real time implementation. In on-line monitoring, a new data
point {x, y} is first processed by a monitor and then added to
the historical data set DN (1). The computation could be split
into two steps. Step 1 is to compute matrices QN (29), BN
(30), and SN (31) from data (5), (6). The computations can
be carried recursively, as the new data arrives, by propagating
rank-1 updates of the matrices. The computational complexity
of Step 1 update is the same as for the well-known Recursive
Least Squares update. At Step 2 the hypothesis likelihoods
are computed using the results of Step 1 and the new data
point {x, y}. The three monitors of Subsection IV-A rely on
decision rules (32), (33), (34). Their computational complexity
is quadratic in sizes n of x and m of y.

V. ASYMPTOTIC PERFORMANCE AND TUNING

The asymptotic decision rules in Subsection IV-B depend on
two prior probabilities pA, pF . In practice, the knowledge of
Bayesian priors is often unavailable. The priors could be then
considered as tuning parameters. This section described how
pA and pF can be tuned based on asymptotic performance
considerations. A consistent Bayesian formulation uses the
same priors for any N .

A. Bayesian parameter tuning

In a Bayesian formulation, the prior probabilities pA and
pF define the tradeoff between Type I (false positive) and
Type II (false negative) errors. They can be considered as
tuning parameters. The proposed tuning is based on frequentist
performance of the Bayesian decision logic. The use of hybrid
Bayesian-frequentist approaches is argued in [9]. Frequentist
statistics “... gives a route to assessing methods that may have
been suggested on relatively informal grounds” [7].

Tuning the parameters of Bayesian algorithms to achieve
desired false alarm performance is discussed in [18], [21]. In
[18], the tuning optimizes fault isolation subject to constraint
on asymptotic false positive error rates for large faults.

B. Geometric interpretation

Assume that the true covariance S in (4) is a positive
definite (invertible) matrix. In accordance with the well known
properties of the least square estimator, S = limN→∞ SN and
B = limN→∞BN .

The covariance S being invertible allows to introduce the
whitened residuals

r = S−1/2(y −Bx), (39)
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where S−1/2 can be any square root of matrix S. In the
coordinates r, decision rules (36), (37), and (38) have simple
geometry. The anomaly decision (36) can be written as

‖r‖2 > R. (40)

Input fault isolation conditions (37) and output fault isola-
tion conditions (38) have the form∥∥r − (rTh/‖h‖2) · h

∥∥2 < W, (41)

where (rTh)/‖h‖2 ·h is the projection of the residual r on the
fault signature h. This signature is h = S−1/2Bfk for input
fault k and h = S−1/2gj for output fault j.

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15

W

R

Input 

fault 1

Input 

fault 2

Output 

fault 1

Output 

fault 2

Ambiguity:

Input fault 1

Input fault 2

Fig. 1. Geometry of decision rules in a 2× 2 example

Figure 1 illustrates decision rules (40) and (41) for an
example with m = 2. The coordinates are the components of
the whitened residual r. The circle (40) of radius R describes
the anomaly hypothesis decision. The bands (41) of width
W around the fault signature lines describe fault isolation.
Monitor 1 (ANO) accepts anomaly hypothesis if r is outside of
the circle. Monitor 2 (ISO) includes a fault into the ambiguity
group if r is closer than W to the fault signature line. Monitor
3 (MAP) selects the ambiguity group fault with the signature
line closest to r.

C. Asymptotic performance

In accordance with (4), the whitened residual r (39) follows
the standard normal distribution under the null hypothesis.
Therefore, ‖r‖2 ∼ χ2

m.
Decision rules (40) and (41) can be tuned by selecting R

and W . Let α be an acceptable asymptotic false positive rate in
Monitor 1 (ANO) anomaly detection (36). In accordance with
(40), the false positive rate is the probability that ‖r‖2 > R.
The threshold R should be such that the cumulative distribu-
tion function (CDF) for ‖r‖2 has value 1− α,

CDFχ2
m

(R) = 1− α. (42)

For Monitor 2 (ISO), W in fault isolation decisions (37)
and (38) defines the false negative rate (missing the true fault
in the ambiguity group). In accordance with (41), this rate is

the probability that ‖r⊥h‖2 > W , where r⊥h is the projection
of r on the subspace orthogonal to the vector h. Since ‖r‖2 ∼
χ2
m, we have ‖r⊥h‖2 ∼ χ2

m−1. The false negative isolation
probability α requires that

CDFχ2
m−1

(W ) = 1− α. (43)

The described tuning approach has a single tuning parameter
α. The thresholds R and W are selected from α in accordance
with (42) and (43). This tuning can be generalized to having
different target error rates in (42) and (43). A potential
downside of such generalization is reduced clarity.

For given R and W , the prior probabilities pA and pF (19)
can be backed out from (35) as

pA = (1 + eR/2)−1,

pF = eW/2(1 + eR/2)−1. (44)

In accordance with (44), we always have pF > pA.
This might seem counter-intuitive since pA is anomaly prior
probability and the anomaly includes all the faults. However,
the monitors of Section IV-A evaluate fault hypotheses condi-
tionally on the anomaly hypothesis holding. Therefore, pF is
the fault probability conditional on the anomaly occurrence.

D. Finite data performance

Some insights into the algorithm performance for a finite
number of the data points N are presented below. In the special
case of a single regressor, n = 1, x(t) = 1, the m× 1 matrix
B is the mean vector for y. The anomaly decision rule (33)
then corresponds to the well known Hotelling T 2 statistics.

The detection threshold in the right hand side of the anomaly
decision rule (33) is larger for smaller N . This reflects the
larger uncertainty. In the left hand side of (33), the denom-
inator in M+(x, y) (17) accounts for the model uncertainty
contribution and decreases the anomaly detection sensitivity.
The decrease can be substantial if x is in the small singular
value subspace of XXT , i.e., outside of the subspace covered
by the training data DN .

Parameters µ and ρ in (29), (30), (31), do not influence
the asymptotic performance. For a finite data set, increasing
µ decreases the quadratic form with S−1N in the numerator of
M+(x, y) (17) thus decreasing the anomaly detection sensi-
tivity. This decrease is suboptimal and small µ is preferable.
Increasing ρ reduces the model uncertainty attenuation brought
by Q−1N in the denominator of M+(x, y) (17). It could increase
the error of estimating BN (7) and, hence, the residual in the
numerator of M+(x, y). A small value of ρ is preferable. The
parameters µ and ρ could be chosen based on available prior
information or by cross validation.

VI. VERIFICATION STUDY

The developed method was verified through a Monte Carlo
study for random systems of a given size.
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A. Methodology

In the Monte Carlo study, data set (1) was generated using
a ‘ground truth’ model of the form

x(t) = Q
1/2
∗ w(t), (45)

y(t) = B∗x(t) + S
1/2
∗ v(t), (46)

where v(t), w(t) are white noise sequences. Matrices B∗, S∗,
and Q∗ in (45), (46) were randomly generated from matrix
normal distributions B∗ ∼ N(0, I5, I10), S1/2

∗ ∼ N(0, I5, I5),
and Q

1/2
∗ ∼ N(0, I10, 4I10). The fault signatures in (2) and

(3) were aligned with the coordinate vectors in the input
and output spaces. The signatures were scaled such that
‖B∗fj‖S−1

∗
= 1 and ‖gj‖S−1

∗
= 1.

The study used training data sets (1), (45), (46) with N =
1000 points each. For each training set (1), the matrices QN ,
BN , and SN in (29), (30), and (31) were computed using the
parameters p = m+ 1 = 6, ρ = 10−4, and µ = 10−4. These
matrices define the Bayesian decision rules (32), (33), (34)
and the Baseline decision rules (36), (37), (38).

For each training data set (1), the decision rules were applied
to 16,000 test data samples {x, y}. These included 1000
samples from the nominal linear Gaussian distribution, 1000
samples for each of the 10 input faults, and 1000 samples for
each of the 5 output faults. Faults with six different amplitudes
5.5 ≤ z∗ ≤ 55.4 were seeded. Bayesian Monitors 1 (ANO),
2 (ISO), and 3 (MAP) of Subsection IV-A were compared
against the Baseline monitors of Subsection IV-B. Figures 2,
3, 4, and 5 show the results averaged over the Monte Carlo
runs.
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Fig. 2. ROC curve for Monitor 2 (ISO) in the Monte Carlo study

B. Anomaly detection

For fault amplitudes z∗ > 9 and target error rates α >
0.001, the false negative (FN) rate of the anomaly detection
was less than 0.01% for both Bayesian and Baseline Monitor
1 (ANO). The observed false positive (FP) rate closely fol-
lows the tuning parameter α in (42). For Bayesian Monitor

1 (ANO), FP rate it is just a few percent higher than α
because of the finite training set size N . The Baseline ANO
monitor has a slightly higher FP rate. For both ANO monitors,
the performance is very good. The main practical difference
between the Bayesian and Baseline monitors was in the fault
isolation performance.

C. Fault Isolation
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Fig. 3. False negative rates for Monitor 2 (ISO) in the Monte Carlo study

Monitor 2 (ISO) is the main contribution of this paper.
Figure 2 shows Receiver Operating Characteristics (ROC)
curves for Bayesian and Baseline Monitor 2 (ISO) obtained
by varying α in the range [10−12, 0.95]. For each of the
15 values of α in the range, the thresholds R and W were
set in accordance with (42) and (43) and the priors (19) in
accordance with (44).

Each point in Figure 2 plots corresponds to the largest FP
and FN rates across all channel faults, averaged over the 1000
Monte Carlo runs. The true positive (TP) rate in the ROC is
complementary to the FN rate. FN means that an anomaly
was detected, but the ISO monitor did not include the seeded
fault into the ambiguity group. FP counts faults that were not
seeded yet do appear in the ambiguity group.

Smaller α means larger decision threshold (43) and higher
TP and FP rates. Fault magnitudes z∗ for the ROC curves
are labeled in the plot. As expected, the ROC performance is
better for larger z∗. For the same FP rate, the FN rate of the
Baseline ISO can exceed the Bayesian ISO FN rate by an order
of magnitude or more. For ill-conditioned matrix XXT , the
Bayesian monitor performs well while the Baseline monitor
has high error rate.
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The FN rates for the Baseline and Bayesian ISO are shown
in Figure 3. These FN rates were averaged over all channel
faults and the Monte Carlo runs. They are plotted vs the
fault magnitude z for a few values of the tuning parameter
α. With W selected in accordance with (43), the FN rate for
the Bayesian ISO monitor closely follows α. The FN rate for
the Baseline ISO monitor is substantially higher than that and
grows with the fault magnitude. This is because the Baseline
ISO monitor is affected by the error in BN . This error is
amplified for large input faults. For α = 1%, the mean FN
rate of the Bayesian ISO monitor is an order of magnitude
better. For α = 0.1%, it is two orders of magnitude better.

D. Ambiguity group

The average size of the ambiguity group for Bayesian
Monitor 2 (ISO) and for Baseline Monitor 2 (ISO) is shown
in Figure 4. The averaging is done over all channel faults
and the Monte Carlo runs. The plots show the results for a
few labelled values of α. As expected, the ambiguity group is
larger for smaller z when signal to noise ratio is smaller. The
Bayesian ISO has slightly larger ambiguity group compared
to the Baseline ISO. This is the price paid for the better
performance.

E. MAP Isolation
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Fig. 5. ROC curves for the Monitor 3 (MAP) in the Monte Carlo study

The ROC curves for Monitor 3 (MAP) fault isolation are
shown in Figure 5. These curves show the FP and TP rates
averaged across all channel faults and Monte Carlo runs. The
ROC curves for Bayesian ISO are included for reference.
Where defined, the ROC curves for the MAP monitors are to
the left of the Bayesian ISO monitor curves. The results for the
Bayesian MAP and the Baseline MAP monitors do not differ
much. The mean TP rates for the monitors are below 92% for
any α and z∗. For z∗ = 5.5, the TP rates do not exceed 54%.
The TP rates are limited by two factors. (i) As the threshold
W increases, the seeded faults are missed less often, but the

likelihood of a wrong fault being included increases. (ii) For
very small α, the anomaly detection threshold R is so large
that the seeded faults do not trigger the anomaly detection.
This disables the ISO monitor.

To summarize, the main advantage of the ISO monitor is
that it allows to achieve extremely small FN rates (TP rates
close to 100%). As discussed above, this is impossible with
the MAP monitors. The price for this improvement is higher
FP rate related to larger ambiguity group size. The trade-off
is described by the ROC curves in Figure 2.

VII. JET ENGINE MONITORING

The proposed approach was applied to the problem of
detecting and diagnosing the faults in a jet engine. These safety
critical and expensive machines require maintenance action
every few thousand hours of usage. Anomaly detection and
fault diagnostics are very important for jet engines.

A. Jet engine monitoring problem
Most practical monitoring solutions for the jet engines are

based on static models. The industry practice is to collect
data samples when engine is in quasi-steady regime during the
aircraft takeoff (max power) or cruise. The static performance
models are adequate for this. Dynamic models of jet engines
are rarely used in practice. The exceptions, such as [41], [42],
rely on nonlinear models proprietary to engine manufacturers.
A non-proprietary modular nonlinear engine simulation called
CMAPSS has been recently developed by NASA, see [27],
to support control technology development. It is similar in
complexity to the proprietary models. The model in this
example is based on CMAPSS-related work [37].

The established approach is to observe the (small) deviations
from the nonlinear performance model. The fault isolation
algorithms then use the linearization of the nonlinear model for
interpreting the deviations. Such linearized model is imperfect.
The robust FDI approaches take the modeling error into
account, e.g., see [32], but requires to characterize the model
uncertainty. This is hard to do in practice.

The proposed approach, which is applied in the example
below, is much easier to use. The linearized model is recovered
directly from the training data collected in normal operation
conditions. The uncertainty of the model estimation is auto-
matically taken into account as described in Section III.

B. Simulated data
Jet engine data are subject to proprietary and other publica-

tion restrictions. This paper uses simulated data. To ensure that
the results of this paper are reproducible, the simulation model
is detailed below. The linearized model of jet engine was based
on [37]. This paper assumes that engine deterioration is zero
and faults occur at systems inputs and outputs only.

For each data point collected, the engine is assumed to be
in the steady state. This assumption holds for engine data
sampled in a steady regime. The steady-state deviations of
the engine dynamic state from the linearizion point satisfy

0 = Āx+ B̄u+ w, (47)
y = C̄x+ v, (48)
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where w is the disturbance and v is the measurement noise.
The noises are independent from sample to sample. In (47),
(48), the state variables x, the control inputs u, and the obser-
vations y describe the deviations from the engine performance
model. The components of x and y are explained in Table I.
Model parameter matrices Ā, B̄, C̄ have appropriate sizes.
The input vectors u, v, and w are independently normally
distributed with the standard deviations described by vectors
su, sw, and sv .

Fault Channel Name Scale Units
Inputs (regressor variables) x

I1 Main burner fuel flow 0.62 lbm/hr
I2 Variable nozzle area 1.76 in2

I3 Rear bypass door variable area 4.14 in2

Observations (dependent variables) y
O1 LPT exit pressure 2.96 psia
O2 LPT exit temperature 13.95 F
O3 Percent LP spool speed 0.42 %
O4 HPC inlet temperature 5.81 F
O5 HPC exit temperature 4.82 F
O6 Bypass duct pressure 0.21 psia
O7 Fan exit pressure 0.09 psia
O8 Booster inlet pressure 0.10 psia
O9 HPC exit pressure 0.93 psia

O10 Core rotor speed 81.01 RPM
O11 LPT blade temperature 16.83 F

TABLE I
MEANING AND SCALES OF THE VARIABLES IN THE ENGINE MODEL

The model parameters taken from [37] are

Ā =

[
0.9029 0.0411 0.0381

−0.0069 0.9088 0.0432
−0.0001 −0.0004 0.9924

]
, sw =

[
0.3632
0.6076
0.0767

]
(49)

B̄ =

[
0.0805 0.4928 −0.1557
1.0910 0.1678 0.0341
0.0018 −0.0003 −0.0001

]
, su =

[
0

−0.0069
−0.0001

]
(50)

C̄ =



−0.0034 1 0.0237
0.0087 0.0002 0.0002
0.0016 −0.0006 0.0001
0.0022 −0.0005 0.0001
0.0181 −0.0024 0.0008
0.0148 0.0493 0.0094
0.0018 0.0000 0.0002
0.0030 0.0127 0.0048

−0.0012 −0.0302 0.0656
−0.0172 −0.1098 0.1218
0.0010 0.0007 0.0004


, sv =



0.1933
13.9400
0.4231
5.8080
4.8255
0.2066
0.0889
0.1010
0.8506

81.0133
16.8429


(51)

The simulations in this paper used a closed-loop version of
the model (47)–(51). For steady flight, the feedback control
adjusts the main fuel flow. The first component u1 of vector
u is such that the fan speed is at the setpoint, y3 = 0. This
means u1 can be computed from K3C̄ = 0, where K3 is the
selection matrix for the 3-rd component of y. Then,

u1 = −K3C̄(I − Ā)−1(B̄23u23 + w) +K1v

K1C̄(I − Ā)−1B̄1
, (52)

where B̄1 is the first column of matrix B̄, and matrix B̄23 is
made of the last two columns of B̄. The variable nozzle area
and the rear bypass door variable area (components of u23)
are kept near fixed setpoints. The last two components u23 of
vector u are independent normal with covariances (50). Fuel
flow u1 controls fan speed y3 as described by (52).

The described model can be represented by (45), (46).

C. Fault detection and isolation results

Each simulation run produced data {x(t), y(t)} in the data
set (4). The data driven algorithms of Sections III and IV
used matrices X (5) and Y (6) as the training data. Matrices
QN , BN , SN were estimated from the training data. These
estimates differ from the ground truth matrices given by (47)–
(52). For each training set, the algorithms were tested using
multiple data points x(N + 1), y(N + 1), which included
the faults. The simulation, data driven algorithm design, and
test data generation were repeated many times to accumulate
statistics on the algorithm performance. The algorithm perfor-
mance evaluation used the ground truth data; the algorithms
themselves did not have access to the ground truth.

To verify the obtained decision rules, 1000 test data points
{x, y} were generated for each training set. Each of 3 faults in
input channels and 5 output channel faults were scaled at three
magnitudes z∗. The fault signature scales shown in Table I are
such that ‖h‖S−1

∗
= 1. For each of the (11 + 3) · 3 = 42 fault

types, 100 different training data sets were used. For additional
100 training data sets, the test data had no fault. The total was
4,300 training sets with N = 200 data points each.

Table II summarizes the results for two monitoring al-
gorithms: Bayesian ISO (Monitor 2) described in Subsec-
tion IV-A and Baseline ISO described in Subsection IV-B.
Regularization parameters in (29), (30), (31) were p = m+1 =
12, ρ = 10−4, and µ = 10−4. Bayesian ISO decision rules
(32), (33), (34) and Baseline ISO (36), (37), (38) used priors
(19) tuned following (44). The decision thresholds R = 21.3
and W = 19.92 were based on α = 0.03 in (42), (43).

Fault Bayesian ISO
False Negative Rate %

Baseline ISO
False Negative Rate %

z = 5 z = 8 z = 15 z = 5 z = 8 z = 15

FP-A 5.8 5.8 6.0 7.9 7.9 8.1
FN-A 6.0 0.0 0.0 4.4 0.0 0.0

I1 11.7 5.6 5.6 12.0 7.6 8.2
I2 11.3 4.7 4.5 25.4 40.9 89.0
I3 11.6 5.1 4.5 18.8 24.6 66.7

O1 11.5 5.6 5.6 11.8 7.5 7.4
O2 11.6 5.6 5.6 11.9 7.5 7.5
O3 12.0 5.7 5.6 12.2 7.7 7.4
O4 11.6 5.6 5.7 11.9 7.5 7.6
O5 11.4 5.6 5.6 11.7 7.6 7.5
O6 11.4 5.6 5.6 11.7 7.4 7.5
O7 11.5 5.6 5.7 11.7 7.5 7.6
O8 11.6 5.7 5.6 12.0 7.5 7.6
O9 11.4 5.5 5.5 11.8 7.3 7.4

O10 11.4 5.5 5.7 11.7 7.4 7.6
O11 11.4 5.6 5.5 11.7 7.5 7.4

TABLE II
FAULT ISOLATION ERRORS FOR THE ENGINE SIMULATION

The upper section of Table II shows FP-A, false positives for
Monitor 1 (ANO) described in Subsections IV-A and IV-B, and
FN-A, false negatives for the same anomaly monitors. There
are zero false negatives FN-A for z∗ = 8 and z∗ = 15 with
either Bayesian or Baseline anomaly monitor.

The rest of Table II shows Bayesian ISO error rates for
fault magnitudes z∗ = 5, z∗ = 8, and z∗ = 15. The lower
two sections of Table II show false negative (FN) rates for the
input and output channels described in Table I. The Bayesian
algorithm performs well at detecting and identifying all input
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and output faults. For faults with z∗ = 8 and z∗ = 15, the
Bayesian ISO has FN rate around 0.059. This is higher than
α = 0.03 used in the asymptotic performance tuning in (44),
(42), (43), because the training set size is relatively small,
N = 200. For N = 10, 000 (the results are not shown), the
FN rate of the Bayesian ISO gets close to 0.03. The biggest
Bayesian ISO improvement over Baseline ISO is for the input
faults I2 “Variable nozzle area” and I3 “Variable bypass door”.
For larger z∗, an order of magnitude improvement is achieved.
The error in the model BN is amplified for large input faults.
The Bayesian algorithm deals with this error. The Baseline
algorithm ignores the error, which leads to the error rates in
excess of 50% observed for z = 15.

For large faults with z∗ = 15 in inputs I2 and I3, the
ambiguity group only occasionally includes more than a single
fault. For most other faults with z∗ = 15, there is no ambiguity
for either Bayesian ISO or Baseline ISO algorithms.

VIII. CONCLUSIONS

This paper proposed a data-driven method for anomaly de-
tection and fault isolation in linear Gaussian systems. It relies
on models estimated from normal training data. The proposed
Bayesian formulation takes into account the uncertainty of the
estimated models. Currently used anomaly detection and fault
isolation methods are limit cases of the proposed formulation
for very large training set. The numerical examples show that
the proposed method, which includes isolation to an ambiguity
group, yields significant improvement of the fault isolation
errors. In many cases, the improvement exceeds an order of
magnitude. This improvement might come at the price of
spurious faults being included in the ambiguity group. The
proposed monitoring method can be implemented recursively
with the computational cost comparable with the recursive
least squares update.
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APPENDIX A: POSTERIORS FOR LINEAR REGRESSION

Using the notation (5), (6), MLE problem (12), (13) can be
written in the form

LN = max
B,S

[
−1

2
trace

(
(Y −BX)TS−1(Y −BX)

)
−N

2
log det(S)

]
. (53)

One can verify that B = BN (7) and S = SN (8) solve the
normal equations for (53)

S−1[Y XT −BXXT ] = 0, (54)
1

2
NS−1 − 1

2
S−1(Y −BX)(Y −BX)TS−1 = 0. (55)

From (55) and trace properties one can see that

LN (BN , SN ) = −N
2

log det(SN )− Nm

2
. (56)

Substituting SN (8) and B = BN (7) into (56) yields (14).
The solution of the extended problem (15) can be expressed

through (13) by substituting

X ← X+ = [X x], X ← Y+ = [Y y], N ← N + 1.

From (8) and (7) the covariance S+ in the extended problem
satisfies

(N + 1)S+ = Y+Y
T
+ − Y+XT

+(X+X
T
+)−1X+Y

T
+ , (57)

where Y+Y
T
+ = Y Y T + yyT , Y+XT

+ = Y XT + yxT , and
X+X

T
+ = XXT + xxT . From Inverse Matrix Lemma

(X+X
T
+)−1 = (XXT )−1 − (XXT )−1xxT (XXT )−1

1 + xT (XXT )−1x
.

Using the notation rx = xT (XXT )−1x, u =
Y XT (XXT )−1x = BNx and grouping terms we get

(N + 1)S+ = Y Y T + yyT − Y XT (XXT )−1XY T

−
(
− uuT

1 + rx
+

yuT

1 + rx
+

uyT

1 + rx
+
yyT rx
1 + rx

)
. (58)

This can be expressed as

S+ =
N

N + 1
SN +

1

N + 1
· (u− y)(u− y)T

1 + rx
. (59)

Applying Matrix Determinant Lemma to (59) yields

det(S+) =

[
1 +
‖u− y‖2

S−1
N

N(1 + rx)

]
det(SN )

[
N

N + 1

]m
, (60)

where the notation ‖q‖2
S−1
N

= qTS−1N q is used.
The version of (56) for the extended problem (15) is

L+ =
N + 1

2
log det(S+) +

(N + 1)m

2
.

Substituting (60) into the formula for L+ results in the log
posterior distribution for y|x, Y,X , a direct precursor of (16),
(17)

L+ = −N + 1

2
log

(
1 +

‖y −BNx‖2S−1
N

N(1 + xT (XXT )−1x)

)

−N + 1

2
log det(SN )− (N + 1)m

2
log

N

N + 1
− (N + 1)m

2
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