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Abstract—Cloud computing applications must be allocated sufficient resources to comply with Service Level Agreements
(SLAs). This paper considers data-driven probabilistic modeling of application resource demand for resource allocation.
The modeling method is focused on peak demand and SLA violations and relies on a branch of statistics known as
extreme value theory (EVT). Rigorous statistical validation of the proposed model shows that it generalizes better than the
alternative. The paper presents a resource allocation algorithm using the model to ensure a given small SLA violation rate.
For resource allocation in Yahoo data center, over 50% savings are demonstrated using the proposed approach.
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1 INTRODUCTION

TODAY’S data centers improve hardware utilization
by using virtualization. Hosting multiple Virtual

Machines (VMs) on the same system allows for better
resource management. The data center utilization is
constrained by tenant requirements, such as Service
Level Agreements (SLAs), which are considered in this
paper. Violating the SLAs leads to penalties. (This is
not the case if Service Level Objective (SLO) contract
is used instead of the SLA).

Data centers employ multiple levels of capacity al-
location and VM placement, e.g., see [1]. First, resource
requirements are encoded by SLA constraints for each
software application. Second, the resource allocation
problem is solved to select the number and type of
VMs that are allocated for the application. The last
step is placement of VMs in the physical machines to
make use of their capacity. This paper focuses at the
resource allocation problem.

The work described in this paper was motivated
by Yahoo’s effort in consolidating multiple bare metal
(BM) systems into VMs running in the cloud. The
BM to VM migration required forecasting resources
needed to meet the SLA requirements. Automating the
resource allocation helps to avoid over-provisioning.

The contributions of this paper are as follows.
First, the paper develops a data-driven approach to
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modeling of the resource demand for an application
running on one or several VMs. The proposed model
generalizes better than the alternatives. Second, the
paper shows how the model can be used to determine
VM resource allocation taking into account the SLA.
Third, the modeling approach and the model-based
resource allocation are applied to Yahoo data center
data demonstrating over 50% savings.

2 RELATED WORK

Most prior work on capacity allocation assumes that
VMs require deterministic and fixed resources. Exam-
ples include optimization of VM allocation for data
center energy consumption [2], [3], [4], [5].

The resource demand is highly variable; its ran-
domly appearing peaks might violate the SLA. This
creates the need for modeling and analysis of the SLA
violation, see [6] for survey of work in this area.

Prior work on probabilistic models for resource
allocation is limited. Load forecasting models for re-
source allocation are considered in [7], [8], [9]. More
relevant are probabilistic models of demand distri-
bution tail that describe the over-provisioning costs
and SLA violation risk. Most earlier papers consider
normal distribution models, see [10], [11], [12]. One
exception is log-normal model in [13].

This paper considers a different model that is
based on a branch of statistics known as extreme
value theory (EVT). It accurately models the tail of
the distribution that is involved in the SLA violations.
The probability distribution is estimated from the his-
torical utilization data and used to trade between the
long-term SLA violations and over-provisioning.



3 MODELING

The proposed resource allocation approach is model-
based. Its first step is to build probabilistic model of
the resource demand. This section develops proba-
bilistic modeling approach based on historical data.

3.1 Yahoo Dataset

The initial motivation for this research came from Ya-
hoo data center applications. The presentation below
is illustrated by the Yahoo data.

The data set used for algorithm development and
illustrative examples in this paper included 355 com-
puting applications that were migrated from bare
metal hosts to the VMs by Yahoo in 2015. This work
is focused on CPU data because other channels (e.g.,
memory, disk) had little impact on the SLA violations.
This paper looks at historical CPU resource demand
time series Xt for these Yahoo applications, where t
is the sample number. The data was sampled at one
hour interval and collected over several months. Each
application (host), is supported by several servers with
the total CPU capacity C . Machine types in the dataset
range from 1-core to 64-core production servers and
are used to serve both internal and external customers.
The applications hosted on these machine include
Yahoo! mail, messenger, and various properties (e.g.,
Sports, Finance). The operational profiles of the ma-
chines depended on the application and ranged from
CPU-intensive to network-intensive workloads.
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Fig. 1. Examples of three different dataset types.

The approach was informed by viewing the Yahoo
CPU resource demand data. Three different types of
encountered resource demand time series illustrated
in Figure 1 require different features of the modeling
approach. The top plot in Figure 1 shows what we
call mid range data. The time series consists of several
peaks and allows convenient modeling of the demand.
The middle plot in Figure 1 shows high range data.
This is data for severely under-provisioned applica-
tion that has a large number of SLA violations. The de-
mand exceeds the allocated capacity much of the time.
This complicates demand modeling from the observed
data. The low range data in Figure 1 bottom plot might
have a few peaks, the rest of the data is near zero.
This is a severely over-provisioned application. Such
data might be insufficient for estimating a reasonable
model for making allocation decisions.

The Yahoo data set includes 321 applications with
low range data where the capacity is overallocated, 2
high-range applications where the capacity is under-
allocated, and 32 mid-range applications.

3.2 Empirical Distribution Model
Consider a random variable X that models the re-
source demand for a single application. We denote the
time series for historical demand for the application as

D = {Xt}Tt=1, (1)

where Xt is the demand data, t is the time sample
index, and T is the total number of time samples.

Let X(s) be demand data (1) sorted in the ascend-
ing order of index s. Distribution of random variable
X with realization Xt can be modeled by empirical
survival function Pemp(X ≥ x) defined at nodes X(s),

Pemp
(
X ≥ X(s)

)
=
T − s+ 1

T + 1
. (2)

Between the nodes, Pemp(X ≥ x) can be interpolated.
Full-order empirical model (2) overfits the data.

Such high-order model has low bias but high variance
(poor generalization). The bias-variance trade off is
well known in statistics. To reduce the variance, next
section introduces a low order model.

3.3 Low Order Model
Consider variables y,

y = X − a, (3)

where a is a given threshold. The positive values of y
are known as peaks over threshold (POT) data in Ex-
treme Value Theory (EVT), see [14]. The POT data can
be used to describe the tail of the demand distribution.
Modeling of the tail distribution is discussed below.
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Given a threshold a, the POT data in (1) are

yt = Xt − a, (4)
Y = {yt|yt > 0}, (5)
n = card Y, (6)

where n is the number of POT data points in set Y .
In what follows, the positive values of y are as-

sumed i.i.d.. A low order model assumes that positive
POT exceedances (3) follow an exponential distribu-
tion, which is one of the distributions predicted by the
EVT for the POT data, see [14]. As shown below, this
distribution describes the Yahoo CPU demand data
well. The number n of the positive exceedances yt
is binomially distributed and the survival function of
the exponential distribution is exponential. This model
can be expressed as

p(y|y > 0, θ) = θ · exp (−θ · y) , (7)
P (y > 0) = q, (8)

where tail rate θ and quantile level q are the model
parameters. Conditional probability formula yields

P (y > x) = P (y > a) · P (y > x|y > a), (9)

where the conditional dependence on parameters θ
and q is omitted for brevity. For x > a, the proba-
bilities in (9) can be expanded by using (4)–(8). This
yields the probabilistic exponential model for the tail
distribution of the raw demand variable X .

P (y > x) = q · e−θ(y−a). (10)

Threshold parameter a in the exponential tail
model (10) is assumed to be given and fixed. Model
parameters θ and q can be then obtained from maxi-
mum likelihood estimate (MLE). Computing the log-
likelihood of θ assumes that data (5) are indepen-
dently distributed. The likelihood is then the product
of the likelihoods for individual data points; the log-
likelihood is the sum of the log-likelihoods. From (1),
(4), (5), and (10) the log-likelihood of tail rate θ is

Lθ = log p(Y |θ)
=
∑
yt>0

(log θ − θ · yt)

= n log θ − θ · sum Y. (11)

Log-likelihood of the quantile level parameter q is

Lq = log p(n|q)
=
∑
yt>0

log q +
∑
yt≤0

log(1− q) + Cq

= n log q + (T − n) log (1− q) + Cq, (12)

where Cq is a constant and n is given by (6).

The MLE estimates of θ and q maximize the log-
likelihoods (11) and (12) and are

θ̂ = arg max
θ
Lθ = (mean Y )−1, (13)

q̂ = arg max
q
Lq = n/T, (14)

where T comes from (1), n is given by (6), and Y is
given by (5).

3.4 Censoring
Modeling procedure of Section 3.3 is suitable for the
mid range data. High range data example in Figure 1
illustrates that model estimation must account for data
censoring. The used resource is bounded by capacity
CT , even if the actual demand is higher, exceeds CT .

MLE formulation (11) needs to be updated to
address the censoring. For POT variable y (4), the
capacity bound CT is transformed into

cT = CT − a. (15)

For censored data, equations (5) and (6) take the form

Y (u) = {yt|0 < yt < cT }, (16)

m = card Y (u). (17)

Similar to (11), the log-likelihood for parameter θ
is the sum of the log-likelihoods for n individual POT
points in (6). The sum over m uncensored data points
looks like (11) withm in place of n and Y (u) in place of
Y . For the remaining n−m of the censored data points,
the underlying demand y ≥ cT and the observed data
is yt = cT . For each censored point, the likelihood
P (y > cT |y > 0, θ) can be computed by integrating
the probability density function (7) from cT to infinity.
This yields the likelihood exp(−θ · cT ) and the log-
likelihood−θ·cT for each of the n−m censored points.

With the data censoring, the log-likelihood func-
tion (11) for parameter θ becomes Lθ,C of the form

Lθ,C = log p
(
Y (u)|θ

)
+ (n−m) logP (y > cT )

=
(
m log θ − θ · sum Y (u)

)
− (n−m) · θ · cT .

(18)

The MLE estimate with the data censoring is ob-
tained by maximizing Lθ,C (18) as

θ̂ = m ·
(

sum Y (u) + (n−m) · cT
)−1

. (19)

Formula (19) is still valid if there is no censored
data. In that case, (16) yields Y (u) ≡ Y , (17) yields
m = n, and estimate (19) is exactly the same as (13).

The MLE estimate of q (14) does not change with
the data censoring since the POT threshold a is always
selected lower than the censoring threshold CT .
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3.5 MAP Estimation

The modeling approach must be able to deal with the
low range data sets illustrated by the lower plot in
Figure 1. Such data sets contain little demand data,
sometimes all zero data. When the data is insufficient
for reliable estimation, a standard Bayesian statistics
approach is to include the priors for the estimated
distribution parameters θ in (7) and q in (8).

It is convenient to use conjugate priors. For expo-
nential distribution (7) with parameter θ, the conjugate
is the Gamma distribution

pGamma (θ|α, β) =
βαθα−1e−β·θ

Γ (α)
, (20)

where α, β are the distribution parameters, and Γ(·)
is the standard Gamma function. A conjugate prior
can be be described as using pseudo-observations in
addition to the actual observations in the parameter
estimation. In (20), parameter α has the meaning of
the pseudo-observation number. Parameter β in (20)
characterizes the tail rate that the pseudo-observations
follow. Setting the mode of distribution (20) to θ∗ gives

θ∗ = (α− 1)/β. (21)

The prior mode θ∗ gives the optimal Bayesian estimate
if no data, except the prior, is available.

For the binomial distribution with parameter q (8),
the conjugate is Beta distribution given by

pBeta(q|ν, η) =
Γ(ν + η)

Γ(ν) · Γ(η)
· qη−1 · (1− q)ν−1 , (22)

where ν and η are the distribution parameters. Pa-
rameter ν has the meaning of the number of pseudo-
observations that are below threshold a in (4) and
have y < 0. Parameter η has the meaning of the
number of pseudo-observations that have nonnegative
POT exceedances, y ≥ 0, and belong to the modeled
distribution tail. The total number of the pseudo-
observations is then ν + η. Assume that q∗ provides
the prior knowledge of the tail quantile parameter q.
Setting the mode of distribution (20) to q∗ yields

q∗ = (η − 1)/(η + ν − 2). (23)

The priors are incorporated in the estimation
through Maximum A posteriori Probability (MAP)
Bayesian formulation. The posteriors optimized by the
proposed MAP formulation combine the priors (20)–
(22) and the likelihoods used in the censored MLE in
Section 3.4. The MAP estimation procedure works for
all three types of data shown in Figure (1).

To estimate θ, log-posterior Lθ,MAP is obtained by
adding log-likelihood Lθ,C (18) and log of prior (20).

Keeping only the terms that depend on θ yields

Lθ,MAP = Lθ,C + (α− 1) log θ − β · θ. (24)

MAP estimate of θ is computed from (18), (24) as

θ̂MAP = arg maxLθ,MAP , (25)

θ̂MAP =
m+ α− 1

sum Y (u) + (n−m)cT + β
. (26)

To estimate q, log-posterior Lq,MAP is obtained by
adding log-likelihood Lq (12) and log of the prior (22).
Keeping only the terms that depend on q yields

Lq,MAP = (n+ η − 1) log q

+ (T − n− ν − 1) log(1− q).
(27)

MAP estimate of q is computed from (27) as

q̂MAP = arg maxLq,MAP , (28)

q̂MAP = (n+ η − 1) · (T + η + ν − 2)−1. (29)

In formulas (26), (29), data point number T comes
from (1), n from (6), Y (u) from (16), m from (17), cT
from (15), α and β from (20), ν and η from (22).

3.6 Prior Tuning
Computing MAP estimates (26), (29) requires setting
(tuning) four prior parameters α, β, ν, and η. The
approach to doing so is discussed below.

Parameters α, β in (20) and ν, η in (22) are chosen
to address the following engineering requirements.

R1: Priors shall dominate the estimate when
the data set is smaller than a given minimum size. If
there is more data, the results are less sensitive to the
prior. (The examples below assume that the minimum
data set size is one week worth of data).

R2: In the absence of actual data, the prior shall
predict the distribution tail rate θ∗ that is an average
for a representative historical data set.

R3: In the absence of actual data, the prior shall
predict a given SLA level for the existing capacity
allocation. (In the examples below, the prior predicts
that 85% of the capacity is violated 1% of time).

Engineering requirements R1–R3 can be formu-
lated in terms of prior parameter values. Let T∗ be
the number of samples in the minimal data set. Week
worth of the historical data sampled at one hour
interval yield T∗ = 7 · 24 = 168. Requirement R1
can be satisfied by setting the numbers of pseudo-
observations in the priors (20) and (22) to T∗. In
accordance with the discussion in Section 3.5,

α = T∗, (30)
η + ν = T∗. (31)

Let θ∗ be the average tail rate parameter observed
in historical data across a representative set of the
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applications. Requirement R2 is fulfilled if α and β
in (20) satisfy (21). Substituting (30) into (21) gives

β = (T∗ − 1)/θ∗. (32)

Assume that the SLA specifies probability p∗ for
the demand exceeding the capacity level S∗. Satisfy-
ing R3 requires that (10) holds for the prior model
parameters, x = S∗ and P (X > S∗) = p∗. Assuming
that θ = θ∗, see (21), and q = q∗, see (23) we get

(η − 1)/(η + ν − 2) = p∗ · exp(θ∗(S∗ − a)). (33)

Solving (31) and (33) yields

η = 1 + (T∗ − 2)p∗ · exp(θ∗(S∗ − a)), (34)
ν = T∗ − 1− (T∗ − 2)p∗ · exp(θ∗(S∗ − a)). (35)

Expressions (30), (32) provide the suggested tuning
for parameters α, β in (20), while (34), (35) provide the
tuning for ν, η in (22). Parameters T∗, p∗, S∗, and θ∗ in
these expressions have clear engineering meaning.

3.7 Model Validation

The proposed modeling approach was validated for
data set (1) described in Section 3.1. The CPU utiliza-
tion data were used; these are the percentages of the
allocated CPU capacity for the application.

Tuning parameter in (23) was q∗ = 0.5. The prob-
ability of exceeding S∗ in (33) was p∗ = 0.01 for the
SLA level S∗ at 85% of the capacity. The tail threshold
a was set at 10% of the capacity. The selected thresh-
old a was validated to provide low tail model error;
this error is discussed later in this section. Tail rate
parameter θ∗ in (21) was determined from condition
P (X ≥ S∗) = q∗ exp(−θ∗(S∗ − a)) = p∗.

Figure 2 illustrates the modeling results for one
selected application from the Yahoo dataset. Figure 2a
shows T = 1080 samples of the CPU demand time
series collected for the application over a period of 45
days. Figure 2b compares the survival function (10)
for the MAP-estimated exponential model against the
empirical survival function (2). The model fit is shown
for the tail of the survival function. The vertical line
shows the POT threshold a, where the tail starts. The
estimated exponential model fits quite well for the tail.
A part of the empirical survival function in Figure 2b
below the POT threshold is a flat horizontal line. This
is because about 20% of the data show zero CPU use.

The CPU demand in the Yahoo dataset was logged
over 3 month period. For validation of the proposed
modeling approach the dataset was divided into a
training and test set. The model is estimated using the
training set, which is the first 1.5 months of the data.

The errors of the exponential model fit were com-
puted both for the training and test set for each of
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Fig. 2. Model fit from MAP estimation on empirical data.

the 355 applications. For a given application, the error
is the difference between the theoretical and empirical
quantile. These errors are computed from the quantiles
of the theoretical inverse CDF F−1(·) and empirical
inverse CDF F−1emp(·), respectively.

F (x) = 1− P (X ≥ x), (36)
Femp(x) = 1− Pemp(X ≥ x), (37)

where P (X ≥ x) is the survival function in (10) and
Pemp(X ≥ x) is the survival function in (2).

Positive errors imply that for a given quantile p, the
exponential model predicts lower capacity used than
the empirical CDF shows. Such under-estimation of
the SLA violations is undesirable. The worst relative
error of under-estimating capacity allocation is

εexp = sup
p∈[q∗,Q]

(
F−1emp(p)− F−1(p)

F−1emp(p)

)
, (38)

F−1(p) = a+ θ−1 log(q/p), (39)

where (39) follows from (10) and (38) is computed on
the tail data interval [q∗, Q]. The quantile level q∗ cor-
responds to the POT threshold (quantile) a; the results
below are obtained for Q = 0.99. Function F−1emp(pt)
can be computed from (2) by interpolating X(t) values
on the grid of Femp(X(t)) = 1− Pemp(X ≥ X(t)).

The empirical CDF Femp(·) can be considered as
a high-order model that is estimated along with the
MAP-estimated exponential tail model (10) for the
training set data. Once a model is estimated for the
training set, the maximum absolute relative difference
error of the model can be computed for the training
set. The error of the exponential tail model (38) is
given by (39). For the test set, Femp(·) in (39) should
be replaced by the empirical CDF Femp,test(·) com-
puted based on the test set data. The error of the
empirical CDF Femp(·) model for the test set data is
F−1emp,test(p) − F−1emp(p). The worst case relative error
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of under-estimating capacity allocation is then

εemp = sup
p∈[q∗,Q]

(
F−1emp,test(p)− F−1emp(p)

F−1emp,test(p)

)
, (40)

where interval [q∗, Q] is the same as in (38).
Figures 3 and 4 show the maximum absolute rela-

tive difference errors εexp (38) and εemp (40) computed
for a selected subset of applications in the Yahoo data
set. The scatter plots show the error vs the mean CPU
demand for each application. The results are shown
for mid-range applications, as described in Section 3.1.
The selected mid-range applications have tail rate
parameter θ in the range of 0.1 < θ−1 · log 10 < 0.5.
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Fig. 3. Training set errors for mid-range applications.
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Fig. 4. Test set errors for mid-range applications.

Figure 3 shows the results for the test set data. The
errors εexp (38) are marked by ’x’. The ’o’ markers
show the errors εemp (40) computed for the training
set rather than test set; these errors are all zeros.

Figure 4 shows the results for the training set data.
The exponential tail models errors εexp (38) computed
for the test set are marked by ’x’. These errors are in
the same range as the training set errors(38) in Figure
3: the exponential tail model generalizes well.

The ’o’ markers in Figure 4 show the errors εemp
(40) for the test set data. These errors are large. The re-
sults illustrate the bias/variance trade-off well known

in statistics. The full-order empirical model has zero
errors (variance) for the training set, see Figure 3. Yet,
such model has large errors (bias) for the test set, see
Figure 4. The exponential tail model has much smaller
bias because it has just two parameters: θ (7) and q (8).

4 DECISION LOGIC

A typical product launch cycle involves the following
steps. First, a software application is developed. Next,
the application is tested, benchmarked, and optimized
on representative hardware. Finally, a request for
hardware resources is made based on the predicted
requests/queries per second (RPS/QPS). Often, such
requests make allowances for expected growth and
various buffers. As a result, most of the time, a good
chunk of the hardware remains under-utilized. This
is a fairly common problem in most data centers that
have to deal with large overprovisioning cost. For ex-
ample at Yahoo, a service engineer might periodically
review the hardware utilization and re-balance the
resources manually. The experience shows that this
labor intensive approach requires improvement.

The modeling approach of Section 3 and the deci-
sion logic based on this model, which is described be-
low, allow to automate the resource capacity allocation
for each application. The capacity can be periodically
reallocated as new demand data is accumulated and
becomes available to the model estimation algorithm.
This section presents describes the decision logic for
resource capacity allocation and results of using it for
the 355-application data set described in Section 3.1.

4.1 Optimal Capacity Allocation
For a given risk of SLA violation r, the data-driven
model of the tail distribution described in Section 3 can
be used to compute the minimum capacity allocation
x∗ needed to achieve this risk. The capacity required
to maintain the SLA violation risk r is given by

x∗ = F−1(r), (41)

For the exponential model, F−1(·) is defined in (39) .
The optimal allocation will satisfy the constraint of

not being below the VM capacity x∗. Assuming that
the capacity scales linearly with the number of the
allocated VMs, this number can be computed from an
optimization problem for given SLA violation risk r

minimize
n∈Z

n

subject to n · v ≥ x∗,
(42)

where v is the capacity of one VM. The optimizer
solution to (42) is

n∗ = dx∗/ve, (43)
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where d·e is the ceiling function, the smallest following
integer. The formulation (42) allows different types
of VMs having different capacities. An alternative
version of (42) can be introduced to minimize the cost
given the prices of different VM resources.

4.2 Estimated Savings
The modeling approach of Section 3 and decision
logic of Subsection 4.1 was applied to Yahoo effort
in migration of bare metal (BM) systems into virtual
machines (VM). In the BM to VM migration, the
model was used in decision logic suggesting what VM
resources will be required for the application to meet
the SLA requirements. The model was estimated from
historical usage data for the application BM host.

The suggested allocation can be compared with the
initial (current) allocation. The latter is described by
current number nc of the VMs that would be allocated
based on the current host capacity,

nc = dC/ve, (44)

where C is the current capacity of the host.
Current allocation cost S and savings ∆S are

S = A · nc, (45)
∆S = A ·∆n, (46)
∆n = nc − n∗, (47)

where A is the unit cost of deploying one VM and
n∗ is the optimized capacity allocation (43). The cost
savings come from reducing the capacity for the over-
allocated hosts.

Figure 5 shows current VM allocation nc (marked
by ’x’) and optimized allocation n∗ (’o’ marker) for
r = 5%. Figure 6 shows individual percentage savings
for each dataset host in accordance with Figure 5.

0 0.5 1 1.5 2
1

2

3

4

5

6
CURRENT AND OPTIMIZED ALLOCATION

VM
 A

LL
O

C
AT

IO
N

CPU MEAN (GHz)

 

 

CURRENT ALLOCATION
OPTIMIZED ALLOCATION

Fig. 5. Current and optimized allocation for each host at 5% SLA
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Table 1 summarizes the cost savings for all the
hosts. We chose A =$12 per VM and v = 1 GHz. The
results are shown for three different SLA risk levels r.
The saving are roughly $16,000 over all the machines.
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TABLE 1
Cost Savings

r sum ∆n (sum ∆S)/(sum S)
10% 1351 79.10%
5% 1350 79.04%
1% 1348 78.92%

4.3 Use of Exponential vs Empirical Model
The capacity allocation logic (41), (43) is based on the
low order exponential distribution model described
in Section 3. The logic is based on the model CDF
F (x) (36). An alternative approach could be to use
the full-order empirical distribution model described
in Subsection 3.2. In that case, the CDF F (x) in (41) is
replaced with the empirical CDF Femp(x) (37).

The two capacity allocation algorithms - one based
on the exponential, another based on the empirical dis-
tribution model - were compared using the framework
similar to Subsection 3.7. The models were trained
using the first 1.5 month of the data. Each allocation
algorithm was then backtested using the second 1.5
month of the data for SLA risk r = 0.01. As described
in Subsection 3.7, the empirical model always results
in smaller capacity requirements. This difference is
mostly lost because of the rounding in (43) and only
one or two VMs are allocated in either case. The result
is then the same for most of the 355 applications. How-
ever for five of the applications using the empirical
model causes between 72% and 95% of SLA violations,
and hence large penalties. For two of these applica-
tions, the exponential model correctly allocates three
and four VM’s respectively while the empirical model
allocates only one VM, which is greatly inadequate.

5 ALGORITHM DEPLOYMENT

The described data-driven probabilistic modeling and
model-based optimal allocation approach were imple-
mented as a software tool for initial demonstration
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and test of the concept. The software was used by
Yahoo engineers during the BM to VM migration. The
tool helped to optimize data center costs by converting
historical resource utilization data for BM hardware to
VM allocation requirements.

The developed software tool extracts time-series
data from existing Yahoo monitoring tool for various
resources, specifically the CPU load. It then converts
the raw data to utilization time-series by doing scaling
and data cleanup. The off-line part of the software
fits the models to the time-series for each BM host
and stores them on disk. The on-line part of the
software runs as an Apache server application with
a RESTful API. Given a host, current configuration,
and required SLA, the software consults the model
previously stored on disk and outputs a web page
with suggested configuration.

Fig. 7. The UI of the tool showing the three recommended VM
configurations for three SLA levels. The bottom figure shows both
the SLA and the EXP model fit.

The output web page of the deployed on-line soft-
ware tool is shown in Figure 7. The page includes
the plots of the historical demand time series for the
selected host and two survival functions computed for
the time series: the empirical survival function (2) and
the exponential survival function (10).

The parameters for the exponential model are es-
timated in accordance with (26) and (29) as discussed
in Section 3.5. The exponential model is then used to
compute the optimized VM allocation as discussed in
Section 4.1. The computed VM allocation is shown as
suggestion at the page that provides user interface for
selecting the VM allocation.

Because of how the tool was used in the migration
process, the savings were not documented. Subsec-

tion 4.2 provides an estimate of the achieved savings.

6 CONCLUSIONS

This paper presents an automated and robust ap-
proach to probabilistic modeling of computing re-
source allocation based on historical data for an appli-
cation. The probability distribution model is estimated
from historical utilization data. The model can be
used to trade between the SLA violations and over-
provisioning and enables substantial savings.
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