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Abstract—We present a systematic stability analysis of inverter-
connected distributed generation. Our approach is to replace
simulations with much faster and more informative analysis
using transfer functions. The transfer functions characterize the
dynamics of the interconnected feedback loops in the system.
The methodology is applicable to different types of inverters,
including droop inverters. It also may be applied to distribution
systems with arbitrary topology. The analysis allows evaluation
of system stability and performance, subject to frequency, load,
and power set-point disturbances. By means of two examples we
demonstrate how the proposed approach can help in analysis and
engineering of the distribution systems with acceptable frequency
and voltage profile responses to both distributed generation
power and grid frequency disturbances.

Index Terms—Distributed power generation, power distribu-
tion, power system stability, power system control, inverters.

I. INTRODUCTION

THE integration of renewable energy sources is a substan-
tial change to the electricity distribution system and the

control systems in the power grid. This paper describes an
approach for determining whether the resulting interaction of
distributed feedback loops can produce system instability or
sensitivity to disturbances.

The existing electrical grid was designed for centralized
power generation. Bulk power supply and demand are bal-
anced by the rotational energy of multi-ton rotors of syn-
chronous generators. When load suddenly increases, it drains
power through the distribution system, transmission system,
and finally from the rotors. As a result, the frequency of the
grid decreases. This effect is called frequency droop. On the
distribution side, the unidirectional power flow from feeder to
end customers defines the voltage profile over a line.

Distribution systems with distributed renewable energy
sources change this paradigm. Solar, wind, and other sources
are connected through inverters that transform direct current
(DC) to alternating current (AC). Inverters can use droop
control logic to emulate the stabilizing effect of rotational
inertia. Such droop inverters interact through line frequency
changes, and can provide some amount of balancing of the
distributed power generation.

This paper analyzes dynamics of the interconnected feed-
back loops that result when using droop inverters. The question
of how exogenous disturbances propagate is addressed. In
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particular a question is whether frequency disturbances in the
bulk power system can amplify and trip the protections of
the distribution system. The paper also considers how voltage
profiles might be affected by environment condition changes
to solar panel or wind turbine power production.

The analysis of bulk generation and transmission of elec-
trical power has been developed over several decades. The
established approaches include small-signal linear perturbation
models of such systems [1] and nonlinear model simulations.

The corresponding analysis for distribution systems with
inverter connected generation is less developed. Most of the
prior work is on simulating specific systems, e.g., see [2].
The related analytical studies consider distribution systems
with a single inverter or two parallel connected inverters in a
microgrid. The inverters are modeled as ideal voltage sources,
possibly coupled to the grid through an output impedance, see
[3]–[8]. These idealized models ignore the transient dynamics,
which often dominate the inverter systems.

The small signal analysis of the transient dynamics for
microgrids with multiple inverters includes [9]–[14]. These
papers model inverter dynamics including voltage/current acu-
ation control logic as well as the inverter output filter circuit.
In [9], [10], the objective is to tune droop controller gain.
Dynamic stability and load sharing for droop control are
analyzed in [11]–[13]. An enhancement of droop control by
introducing communications between inverters is considered
in [14]. All of these papers consider stability of transient
dynamics of parallel inverters in a microgrid.

There is little prior work in small signal analysis of the
transient dynamics for grid-connected distribution systems
with inverter connected generation. The existing papers [3],
[6], [9], [11], [12] analyze power sharing, but not the resulting
effect on voltage profile. Frequency stability and voltage
profile are simulated in [2] without further analysis. Frequency
and voltage are analyzed in [3] using simplified inverter model.
The only detailed analysis known to the authors is [15], where
a single grid-tie inverter is considered as a lumped model of
the distributed generation.

The contribution of this paper is in the methodology of
small-signal modeling and transient dynamics analysis for
grid-connected distribution systems with multiple inverter-
connected generators. We use more comprehensive models
than those in the prior literature, including inverter measure-
ments, actuation, and exogenous disturbances. We construct
system transfer functions and show examples of their use
for engineering analysis. This paper details results for droop
inverters in a linear topology circuit. However, the analysis



methodology can be extended to other types of inverters and
distribution circuit topologies.

We consider example problems in single and multiple
inverter tuning and in voltage profile analysis. Our analysis
approach can also be useful for distribution management sys-
tems [16], voltage profile management, Volt-Var optimization,
load balancing, and contingency analysis.

The paper is organized as follows. The system model is
introduced in Section II and then detailed for droop inverters.
Models of a single inverter system are formulated in Section III
and of multiple inverter systems in Section IV. The models
are used to characterize system performance in terms of dis-
turbance rejection. Finally, Section V presents two examples
that use small signal transfer functions in engineering analysis
of distribution systems.

II. DROOP CONTROL

This section introduces the notation, the circuit model, and
the droop inverter logic. The inverter models are considered
in the following sections.

A. Dynamic Phasors

Throughout this paper, we describe grid voltage VG, grid
current IG, inverter voltage VN , inverter current IN , and
load current IL by root-mean-square (RMS) phasors, complex
variables. The phasors describe amplitudes and phases of the
underlying AC signals with baseline frequency f0 (60Hz in
US). A phasor can be represented in two different ways. For
example, the voltage VN may be represented by
• a single complex variable VN = <VN + i=VN where <

and = denote the real and imaginary part and i =
√
−1;

• amplitude |VN | and phase angle φN in VN = |VN |∠φN ;
The dynamic phasors are functions of time. The analysis uses
linearized models of the phasor dynamics in the vicinity of
the steady-state.

In the steady-state, the frequency of VN is fN = f0. The
time-varying frequency fN is modeled through time-varying
phase φN in the phasor VN . The same representations apply
to the phasor VG.

d

dt
φN = 2π(fN − f0),

d

dt
φG = 2π(fG − f0), (1)

The dynamics of phasors will be described using the Laplace
operator s. For example, the first equation in (1) is φN =
2π
s fN . The time varying frequency fG is an external distur-

bance in the distribution system. Finally, note that all phases in
the circuits are relative. This allows one to choose a reference
phase. For example, we can assume φN = 0 or φG = 0.

B. Model of Distribution Circuit

Figure 1 shows a simplified single-phase model of an AC
distribution circuit. This is an equivalent circuit model as
seen from the low voltage circuit; there is no transformer.
Section IV extends this model to multiple inverters.

The modeled distribution system is connected to the grid
and to a single customer. The power distribution line has

Distribution
Circuit

InverterVG

ZG
VN

ZL

IG IN

IL

Pset, Qset

Fig. 1: Model of distribution circuit.

impedance ZG ∈ C. The grid is modeled as an ideal voltage
source VG. The customer is modeled by an aggregated load
ZL ∈ C and an inverter. Most prior work considers models
similar to Figure 1, except that there is no load.

The circuit in Figure 1 follows Kirchhoff’s current law
(KCL), Kirchhoff’s voltage law (KVL), and Ohm’s law equa-
tions:

IL = IN + IG, (2)
VG = VN + IGZG. (3)
VN = ILZL (4)

The active inverter output power PN ∈ R and reactive
power QN ∈ R are given by

PN + iQN = VNI
∗
N . (5)

Similarly, the active and reactive grid power PG and QG are

PG + iQG = VNI
∗
G. (6)

Finally, the active and reactive load power PL and QL

PL + iQL = VNI
∗
L. (7)

In accordance with (7), (5), (6), and (2), we also have

PL + iQL = (PN + iQN ) + (PG + iQG). (8)

C. Inverter Types

This paper considers inverter control logic implementing
two types of droop behavior [8].

1) Conventional Droop Inverters: These systems emulate
the frequency droop seen in bulk generation and transmission.
The power is balanced by adjusting the output voltage ampli-
tude and frequency.

Suppose that ZG is inductive, i.e. ZG = iXG for some
XG ∈ R and set ZL to infinity. Then according to (2), (3),
and (5),

PN =
|VN ||VG|
XG

(φN − φG)

QN =
|VN |
XG

(|VN | − |VG|)
(9)

In deriving (9), we approximate ∠(φN−φG) ≈ 1+i(φN−φG).
This holds since φN − φG must be small for small power
dissipation in the transmission line.

The conventional droop inverters regulate the output fre-
quency and amplitude of VN according to

fD = f0 −Kf (PN − Pset),
VD = VN,0 −KV (QN −Qset),

(10)
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where fD ∈ R and VD ∈ R are the demand value of
the frequency and amplitude of VN , respectively, and VN,0
is typically set to 120V. Note that (9), (10), and (1) form
two separate closed-loop transfer functions: one regulates PN
through fN and the other QN through |VN |.

2) Opposite Droop Inverters: They emulate the droop
effects taking into account inherent difference between high
voltage (HV) and low voltage (LV) grids. The transmission
line impedance of HV grid is mostly inductive while that of
LV grid is mostly resistive. Taking ZG ≈ RG ∈ R, equations
in (9) are replaced by

PN =
|VN |
RG

(|VN | − |VG|)

QN =
|VN ||VG|
RG

(φG − φN )

(11)

To reflect the resistive impedance of the LV transmission line,
the opposite droop inverters follow

fD = f0 −Kf (QN −Qset),
VD = VN,0 −KV (PN − Pset).

(12)

Along with (1), this forms two separate feedback loops: one
regulates PN through |VN | and the other QN through fN .
The opposite droop inverters are better suited for distributed
generation connected to a distribution system.

D. Droop Controller Gain

An established approach to setting droop controller gains
Kf and KV is described in [17]. The approach sets largest pos-
sible gains Kf and KV in the absolute value. The gains are de-
fined by the frequency range [fN,min, fN,max], the active power
rating [PN,min, PN,max], the voltage range [|VN |min, |VN |max],
and the reactive power rating [QN,min, QN,max]. In this paper,
we choose the droop controller gain as follows:

Kf = min

(
fN,max − f0
Pset − PN,min

,
f0 − fN,min

PN,max − Pset

)
,

KV = min

( |VN |max − VN,0
Qset −QN,min

,
VN,0 − |VN |min

QN,max −Qset

)
.

For the opposite droop, we take

Kf = −min

(
fN,max − f0
QN,max −Qset

,
f0 − fN,min

Qset −QN,min

)
,

KV = min

( |VN |max − VN,0
Pset − PN,min

,
VN,0 − |VN |min

PN,max − Pset

)
,

where Pset and Qset are given and the sign of Kf and KV

can be determined as shown in the example in Section V-B.
Taking min(·) here guarantees that the voltage and frequency
are in their ranges under all load settings.

III. MODEL OF SINGLE INVERTER

In an idealized model, the inner-loop voltage control is
replaced by an ideal voltage source [3]–[8]. This replacement
is justified when the inner-loop voltage control has faster
response than the outer-loop droop control. Our analysis shows
this is not the case. Figure 2 shows the model of the inverter
with the droop control, the inverter voltage control, and the
inverter circuit. We follow the design in [18].

A. Inverter System Overview

In Figure 2, the droop controller takes set-points Pset and
Qset as inputs and regulates output power PN and QN by con-
trolling output voltage VN . The droop controller implements
droop equations in Section II-C. The inverter voltage control
takes the demand signals VD and fD from the droop controller
and actuates VN to follow these demands. It uses frequency
and amplitude estimated by a phase-locked loop (PLL). The
demand values fD and VD from the droop controller are
compared to the frequency fM and amplitude VM of VN
estimated by the PLL. The discrepancies in frequencies and
amplitudes are then fed into two proportional-integral (PI)
controllers. The phase converter transforms the PI controller
outputs r and θ, along with the phase of VN measured by PLL,
to a control signal VP drives the switching of the insulated-gate
bipolar transistor (IGBT) gates of the inverter. The inverter
circuit is composed of IGBT switching gates followed by a
lowpass LCL filter and a ∆-Y transformer.

B. System Linearization

The power distribution system normally operates close to
a steady-state. Computation of steady-state for the model in
Figure 2 is described in Appendix A. We consider changes of
the system parameters, such as load changes, to be exogenous
disturbances. The main purpose of our analysis is to see how
the system responds to those disturbances.

In what follows, we form a perturbation model of the system
in the vicinity of the steady-state. We first linearize each
individual block shown in Figure 2, then connect the linearized
blocks together to form a closed-loop transfer function. In
linearizing system dynamics, the perturbations of the steady-
state are denoted by δ, for example, δVN for the transient of
VN . The perturbations, such as δVN , are dynamic phasors, e.g.
see [17]. Below we discuss the model structure. The transfer
function of the linearized blocks are described in Appendix B.

C. Droop Controller

The droop controller computes PN and QN from the
inverter outputs VN and IN and generates the demand signals
fD and VD according to the droop equations (10) or (12).

The appendix derives the measurement model

[
δPN
δQN

]
= Tmsr




<δVN
=δVN
<δIN
=δIN


 . (13)

and the droop controller model
[
δVD
δfD

]
= Tdroop

([
δPN
δQN

]
−
[
δPset
δQset

])
. (14)

D. PLL

The PLL block receives the voltage input VN and generates
unit amplitude output V ′N , the measured frequency fM , and
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Fig. 2: Detailed model of inverter system.

the measured amplitude VM . The transient model given in
Appendix B is

[
δVM
δfM

]
= Tpll

[
<δVN
=δVN

]
, (15)

[
<δV ′N
=δV ′N

]
= Targ

[
<δVN
=δVN

]
. (16)

E. PI Controller

The discrepancies between the measurements fM , VM and
the desired values fD, VD are fed into two PI controllers for
the longitudinal, r, and radial, θ, control signals. Appendix B
gives the model of the form

[
δr
δθ

]
= TPI

([
δVD
δfD

]
−
[
δVM
δfM

])
(17)

In the numerical examples, we assume zero P gain of the
controllers, which are therefore I controllers.

F. Phase Converter

The phase converter transforms the control signals r and θ
(see Appendix B-D) to phasor VP (in Cartesian coordinates).
Input V ′N from the PLL is used to align VP with the instan-
taneous phase of the voltage VN . Appendix B has

[
<δVP
=δVP

]
= Tph1

[
<δV ′N
=δV ′N

]
+ Tph2

[
δr
δθ

]
, (18)

where δθ and δr come from in (17).

G. Inverter Gain

Appendix B discusses the constant gain model

δVC = KinvδVP , (19)

where δVP is the phasor from (18).

H. Inverter Circuit and Grid Circuit

The inverter circuit has two voltage sources VC and VG. As
an additional input, the load impedance ZL is used to model
load power changes. Appendix B derives the model as



δ<VN
δ=VN
δ<IN
δ=IN


 = Tckt1

[
δ<VC
δ=VC

]
+ Tckt2

[
δ<VG
δ=VG

]
+ Tckt3

[
δ<ZL
δ=ZL

]
.

(20)

I. Exogenous Disturbances

This paper considers three examples of disturbances:
load power disturbance, power set-point disturbance, and
grid frequency disturbance. Inverter load power disturbance
(δPL, δQL) is modeled through a change in the load
impedance δZL, which is coupled to the system through (20).
The model of the power set-point disturbance is given by (14).

Appendix B models grid frequency disturbance through
phasor VG as

δVG = |VG|eiφGiδφG = VGiδφG. (21)

This and the transient counterpart of (1) yields the disturbance
input phasor δVG

[
<δVG
=δVG

]
=

2π

s

[
−=VG
<VG

]
δfG = Tfrq δfG.

J. Closed-loop Transfer Function

Subsections Appendix B-B through Appendix B-G describe
perturbation transfer function of each block in Figure 2. By
connecting these transfer functions, we can form a closed-
loop transfer function. We can also include the disturbances
according to Section III-I.

The left side of the system diagram in Figure 2 is a physical
circuit, whereas the right side is the control logic. The control
signal VC and the measurements (VN , IN ) connect the two
sides. The transient model of circuit in the left side has δVC
as input and (δVN , δIN ) as output. Furthermore, it has δVG as
a grid frequency disturbance input and δZL as a load power
disturbance input. The overall circuit model has the form




<δVN
=δVN
<δIN
=δIN


 = Gckt

[
<δVC
=δVC

]
+Hckt




<δVG
=δVG
δ<ZL
δ=ZL


 (22)

Similarly, the model of the control logic on the right side
has (δVN , δIN ) as input and δVC as output. It also has
(δPset, δQset) as power set-point disturbance input.

[
<δVC
=δVC

]
= Glogic




<δVN
=δVN
<δIN
=δIN


+Hlogic

[
δPset
δQset

]
. (23)

Equations (22) and (23) describe the closed-loop transfer
function model of a single inverter transfer function matrices
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δfN (s)

δfG(s)
= TfN

(
I − Tckt1Kinv

(
Tph2TPI

(
TdroopTmsr −

[
Tpll 0

])
+ Tph1

[
Tag 0

]))−1
Tckt2Tfrq (24)

in accordance with (13), (14), (15), (16), (17), (18), (19), and
(20), where δPset, δQset, δVG, and δZL are exogenous inputs,

Glogic = Kinv
(
Tph2TPI

(
TdroopTmsr −

[
Tpll 0

])

+Tph1
[
Tag 0

])
,

Hlogic = KinvTph12TPITdroop,

Gckt = Tckt1,

Hckt =
[
Tckt2 Tckt3

]
.

The closed-loop transfer function for the grid frequency
disturbance follows from (22) and (23) with δZL = 0 and
δPset = 0, and δQset = 0. This yields (24), see the page top.
We take δfN = TfN δVN , where TfN is derived similar to (21).
One can similarly derive the closed-loop transfer functions for
power set-point disturbances and load power disturbances.

IV. MULTIPLE INVERTERS

A model of a distribution system with multiple inverters
is illustrated in Figure 3. This model is an extension of that
of Figure 1. The feeder is shown as the voltage source VG
with infinite capacity. The shaded box showing the distribu-
tion circuit combines medium voltage (MV) and LV power
distribution circuits. The distribution circuit is connected to
m customers, each is modeled by an aggregated load and an
inverter-connected distributed generation (DG) resource. The
analysis in this section is applicable to distribution circuits
with any topology.

Distribution CircuitVG

VNm

ZLm

Inverter m

INm

IGm

Psetm , Qsetm

VN2

ZL2

Inverter 2

IN2

IG2

Pset2 , Qset2

VN1

ZL1

Inverter 1

IN1

IG1

Pset1 , Qset1

Fig. 3: Multiple inverter circuits.

A. Notations

In our model, the distribution system serves m customers.
Customer k is modeled by an aggregated load shown as an
impedance ZLk

∈ C. Customer k is modeled by an ideal
controlled voltage source VCk

and an inverter circuit. The
voltage VCk

is dependent on the control logic, the power set-
points Psetk , Qsetk , and the measurements VNk

and INk
, as

shown in the inverter block in Figure 2. Inverter k generates

output active and reactive power PNk
and QNk

. Customer k
draws current IGk

from the distribution circuit.
We use notation similar to the single inverter problem and

add subscripts k for the customers k = 1, 2, . . . ,m. Denote
V̄C =

[
VC1

VC2
. . . VCm

]T
. We use similar notations for

δV̄C . We denote
[
VN
IN

]
=
[
VN1

IN1
VN2

IN2
. . . VNm

INm

]T
,

and use similar notations for
[
VN
IG

]
, and

[
δVN
δIN

]
.

The inverter system model in this section is the same as
that shown in Figure 2 and described in Section III, except
that the variables now carry the index k corresponding to the
customer/inverter.

B. Linear Circuit Model

In what follows, we develop a systematic approach to
determine the transfer function Ḡckt that is analogous to Gckt
in (22). The distribution circuit, which is assumed to be linear,
can be represented by

ĪG = XV̄N + Y VG (25)

for some (complex) matrices X ∈ Cm×m and Y ∈ Cm×1.
The inverter circuit model generalizes single inverter ex-

pression (58). For multiple inverters, the open-loop relation
between VC and VN and IN becomes

VCk
= Tinv,k

[
VNk

INk

]
, (26)

where Tinv,k is derived from applying KVL, KCL, and Ohm’s
law to the inverter circuit. From (26), we get

V̄C = W

[
VN
IN

]
= WP

[
V̄N
ĪN

]
, (27)

where P is a permutation matrix such that
[
VN
IN

]
= P

[
V̄N
ĪN

]

and W is the diagonal matrix

W =



Tinv,1

. . .
Tinv,m


 .

At each load, we have two port network
[
VNk

IGk

]
= Tload,k

[
VNk

INk

]
, (28)

We aggregate the load transfer function as

M =



Tload,1

. . .
Tload,m



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We then have
[
VN
IG

]
= M

[
VN
IN

]
, and

[
V̄N
ĪG

]
= P−1MP

[
V̄N
ĪN

]
.

By substituting this into (27) and solving for V̄N , we get

V̄N =

(
WM−1P

[
I
X

])−1(
V̄C −WM−1P

[
0
Y

]
VG

)
.

(29)
Substituting (29) into (27) we can solve for ĪN .

C. Closed-loop Transfer Function

Our analysis approach requires finding the steady-state so-
lution first. Similar to the single inverter problem, the circuits
and most of the control logic are linear, however, the power
measurement and coordinate transforms are nonlinear. Finding
the steady-state requires solution of nonlinear equations. For
some specific topologies, a closed-form steady-state solution
can be found, for example, see Appendix A. In a general case,
the solution has to be computed numerically. In what follows
we assume that such a solution is available.

The control logic for each of the inverters is described in
Section III and summarized by the transfer functions Glogic and
Hlogic (23). In this section, each of the m inverters is described
by the transfer functions of the same form

δVCk
= Glogic,k

[
δVNk

δINk

]
+Hlogic,k

[
δPset,k
δQset,k

]
(30)

The distribution circuit, all inverter circuits, and all loads are
linear circuits. The only voltage sources in Figure 3 model are
VC1 , . . . , VCm and VG. Thus, we can find the linear map from
VC1 , . . . , VCm and VG to VN1 , . . . , VNm and IN1 , . . . , INm as
described in Section IV-B. For the linearized model, we get

[
δVN
δIN

]
= ḠcktδV̄C + H̄ckt

[
δVG
δZ̄L

]
. (31)

This is multiple-inverter version of (22) and (23). Combining
(30) and (31), we can form a closed-loop transfer function.
The exogenous disturbances of the closed-loop system include
δPset,k, δQset,k for the power set-point disturbances, δZLk

for the load power disturbances, and δVG for grid frequency
disturbances, as described in Section III-I. This completes the
analysis for the distribution system with multiple inverters.

V. SINGLE INVERTER ANALYSIS

To illustrate the engineering use of the proposed analysis
approach, this and the next section consider two examples.
This section considers the first example, a lumped single
inverter model introduced in Subsection V-A. It is analyzed
for grid frequency rejection performance in Subsection V-B
and verified against a detailed simulation in Subsection V-C.

A. Single Inverter Model

This example considers a lumped single inverter model in a
distribution system. The model aggregates multiple inverter-
connected DG resources and follows a related example in
[18]. Figure 4 shows a feeder that serves a distribution system
with 150 customers, each has a constant 2kVA load. The
power is delivered through a long distance MV grid (2.4kV

2kVA

DG

2kVA

DG

2kVA

DG

×5

120V

×3

277V, 60m
Grid

2.4kV, 2km

×10

Fig. 4: Distribution system schematics before aggregation.

carried by a 2km line with American wire gauge (AWG)3/0)
and shorter distance LV grid (277V, AWG1/0, 60m). The
power is delivered from the pole to the customers with LV
(120V, AWG3) with line distance ranging from 10m to 100m.
We consider only the LV/MV line impedance here, since
the equivalent impedance of the HV lines beyond feeder are
comparatively small in the LV equivalent model.

The lumped model aggregates the multiple inverter system
into a single inverter model by assuming that all voltage
branches have the same voltage. The line impedances of the
corresponding branches are then connected in parallel. The
combined circuit nodes are marked as ×3, ×5, and ×10 in
Figure 4, specifying the respective numbers of aggregated
branches. This lumped model is not exact, yet it is a good
approximation for initial analysis.

We use the term installation rate to mean the ratio of
customers with inverter-connected DG to the total customer
number. We will also introduce the term utilization rate as
the ratio of the DG output power to the DG power rating, for
example, due to insolation.

The lumped model parameters can be derived from param-
eters of the individual branches before the aggregation. The
lumped impedance of the 277V line is 10 times smaller. For
the 120V line, it is 150 = 10×3×5 smaller. Let the installation
rate be rins and the total number of inverters m. Compared
to an individual inverter, the lumped power is mrins times
larger. In accordance with Subsection II-D, the lumped model
droop gains are mrins times smaller than that for an individual
inverter. Other lumped inverter parameters, such as the PI
controller gains, are the same as for an individual inverter.
The utilization rate rutz affects the individual DG output power
according to PN,max = rutzPrating, where Prating is power rating
of DG. We take Prating = 2kW here.

B. Single Inverter Disturbance Rejection Analysis

Consider grid frequency disturbance amplification in the
distribution system of Section V-A. As a performance metric,
we compute the H∞ norm of the transfer function from the
grid frequency variation δfG to the inverter frequency variation
δfN . The H∞ norm measures the worst case amplification
over all frequencies of the input disturbance.

Copies of the same inverter might work in different distri-
bution systems. From this perspective, it is of interest if there
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TABLE I: Parameter sweep.

Parameters Minimum Value Maximum Value

Installation Rate 0.23 0.95

Utilization Rate 0.23 0.95

Power Factor 0.9 1.00

Line Distance 20m 100m

is a set of inverter tuning parameters that works for a variety
of distribution systems scenarios and operating conditions.

We considered the following fixed inverter parameters. For
the PLL model (53), we took ζp = 0.65 and wp = 57. For
the LCL filter, we used Rf = 2Ω, Lf = 1 · 10−3H, and Cf =
500µF. The LCL filter resonance frequency was LfCf = 5 ·
10−7, as in [19]. The bandpass filter in (48) takes Kb = 1500.
The transformer model described in Appendix B-G has R1 =
0.026Ω, R2 = 8.7 · 10−3Ω, L1 = 2.75 · 10−3H, L2 = 9.2 ·
10−4H, Rm = 25958Ω, and Lm = 68.857H.

The PI controller gains were designed to provide (i) step
responses for the power set-point that settle in less than 0.5
sec for medium line distance (100 m) and medium inverter
output power (several kW) and (ii) stability for all parameters
in Table I. For each point on a coarse grid of KθI and KrI , we
simulated the middle and the eight corner cases for Table I.
The gains KθI = 0.132 and KrI = 18.85 were selected.

The opposite droop controller gain was determined as
described in Subsection II-D. To comply with IEEE 1547, we
must have fN ∈ [59.8, 60.5] and |VN | ∈ [120 · 88%, 120 ·
110%]. These requirements define fN,max, fN,min, |VN |max,
and |VN |min when setting the droop gains in accordance with
Subsection II-D. IEEE 1547 required the power factor to be
least 85%. We take

Pset = PN,max ·
12

12 + 14.4
, PN,min = 0 (32)

QN,max = PN,max · tan(cos−1 0.85), QN,min = −QN,max (33)

We studied variations of inverter operating conditions in
a distribution system as described by four parameters in the
lumped model of Subsection V-A. These parameters are instal-
lation rate, utilization rate, load power factor, and distribution
line distance. Their ranges are shown in Table I. To analyze the
inverter performance, the range of each parameter is sampled
at 5 points. The sweep over the grid of the parameter values
considers the total of 54 = 625 parameter combinations.

Using line impedance data for from [20] and [18], we
compute the line impedances as 0.2627 + i0.1378Ω/km for
the AWG 3/0 lines, 0.3863 + i0.0944Ω/km for the AWG 1/0
lines, and 0.7972+i0.1056Ω/km for the AWG 3 lines. The line
impedance is linear in distance, for example, the LV (120V,
AWG3) grid impedance ZLV = (0.7972+i0.1056)·(D/1000)
where D is the LV line distance in meters.

The results of the parameter sweep are shown in Figure 5.
The subplots in Figure 5 show the projections of the 625
computed H∞ norms on the four parameter axes. For each
sample value of the parameter, the markers show the the H∞
norms for all analyzed combinations of other parameters.
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Fig. 5: Transient analysis of the grid frequency disturbances.
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Fig. 6: Magnitude Bode plot with high H∞ norm.

The results demonstrate that the H∞ norm is less than
2.5 for most sample points considered. However, when the
installation rate and utilization rate are both small, the load
is capacitive (the negative power factor), and the distribution
line is short, the H∞ norm can be high, indicating oscillatory
behavior at the resonance frequency, see Figure 6. When
utilization rate is smaller than 0.2 (outside of the displayed
range) the system might even go unstable. The instability is
caused by large droop gains caused by the design described in
Subsection II-D. In accordance with (32) and (33), the droop
gains can be arbitrary large for a small utilization rate Pset
because the denominators in the droop gain expression are
small. This problem can be avoided by limiting the droop
gains. Note that even when the droop gains are large, the H∞
norm is relatively small for a longer distribution line, as shown
in Figure 5. In fact, large line impedance is assumed in [5],
[7] so the described problem was not noticed there.

C. Single Inverter Detailed Simulation

The analysis model described in Section III and Subsec-
tions V-A and V-B was verified against a very detailed 3-
phase simulation of the distribution system with a single droop
inverter. The simulation was developed in MATLAB/Simulink
using the SimPowerSystems toolbox and its component model
templates for electric power generation, transmission, distribu-
tion, and control [21].

The detailed inverter model in Simulink was based on a
modified three bridge 3-phase DC-AC gridtie inverter model
in SimPowerSystems [21]. The inverter control logic pro-
vide detailed implementation of these in Figure 2. The grid
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frequency, phase, and amplitude measurement are obtained
using the PLL logic block from the SimPowerSystems. The
instantaneous values of PN and QN are measured through
a SimPowerSystems discrete power measurement block every
millisecond. The PLL and power measurements go through a
band-pass filter with a 30Hz-wide band centered at 60Hz.

The droop controller is implemented as an algebraic expres-
sion, and the PI controllers are implemented using Simulink
discrete integral controller blocks. The phase converter block,
which generates a 3-phase signal that controls the switching
pulses for the IGBT gates of the inverter, is implemented
through the dq0 7→ abc and polar-to-Cartesian transformation
blocks from the SimPowerSystems. The simulation included
pulse-width modulated voltage that goes through an LCL filter
to remove higher order harmonics. The LCL filter includes an
RC snubber circuit to dampen out the transients.

The utility grid, as seen from the distribution grid, is
simulated as a constant voltage source that may have vary-
ing frequency. This is built into the model by using the
Three-Phase Programmable Voltage Source from the SimPow-
erSystems toolbox that allows for step and ramp changes
in frequency and phase. The utility grid voltage source is
connected to the load through a realistic 3-phase distribution
line model. SimPowerSystems contains models of loads where
active power (PN ) and reactive power (QN ) can be explicitly
specified. This load is then connected to ground.

The detailed simulations were used to verify the transfer
functions in the small-signal analysis model of this paper. The
two models yield very close results. This can be seen from the
differences in their responses to unit steps plotted in Figure 7.
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Fig. 7: Difference of the Power Set-point Disturbance Step
Between Detailed Simulation and Analysis Model

For a selected set of the parameters in Table I, computing
the transfer functions and the H∞ norm takes approximately 1
second. This is much faster than the total run time of around 10
minutes when computing disturbance amplification for given
model parameters using the detailed simulation model.

VI. MULTIPLE INVERTER ANALYSIS

This section considers the second example, a multiple
inverter system. The model is introduces in Section VI-A. It

is used in Section VI-B to analyze voltage power setpoint
disturbance and in Section VI-C for controller tuning. We
considers the opposite droop inverter in this section.

A. Multiple Inverter Model

We demonstrate analysis for a distribution system with
many inverters, that is beyond the reach of most existing de-
tailed simulation packages. We consider a distribution system
with 40 customers, connected in a linear topology.
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VGm
VG2

VG1

Fig. 8: Distribution circuit.

The distribution circuit is illustrated in Figure 8. The
impedances ZMVk

model the overhead power line and include
the equivalent MV grid impedance as seen from the LV grid.
The connection impedances ZLVk

, model the lines connecting
the houses to the pole-mounted transformers. For simplicity,
all inverters are assumed identical, apart from their operating
set-points. The model of each inverter and the line impedance
models are the same as described in Section V-B.

We assume 20m long LV line and 7km long MV line with
evenly spaced LV/MV transformers. All loads are identical,
each has rating 10kVA and power factor 0.98. The installation
rate is 100%, and each opposite droop inverter has power set-
point of 4kW.

The methodology of Section IV requires to build a linear
map (25) for the distribution circuit in Figure 8. A model of
the distribution circuit can be written as

(
VNk+1

+ ZLVk+1
IGk+1

)
− (VNk

+ ZLVk
IGk

)

= ZMVk

k∑

j=1

IGj
,

(34)

for k = 1, 2, . . . ,m− 1, with the boundary condition

VG − (VNm
+ IGm

ZLVm
) = ZMVm

m∑

j=1

IGj
. (35)

Equations (34) and (35) correspond to (25) with X =
−R̄−1L−T and Y = R̄−1em, with

R̄ = diag(Z̄MV )L+ (I −DT ) diag(Z̄LV ), (36)

where I is the identity matrix, D is the unit shift matrix (1 in
the subdiagonal entries and 0 elsewhere), em is the m-th unit
vector, and L is a lower triangular matrix of ones. Note that
L−1 = I −D. With X and Y given, the circuit equations in
Section IV follow.
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B. Multiple Inverter Power Disturbance Response
The formulated model allows evaluation of how distur-

bances affect line voltage profile. Figure 9 shows a scenario
where a cloud drifts through the area of the distribution system
with linear topology. Suppose the 20 inverters furthest from
the feeder suddenly reduce their power output as the solar
panels are shaded. The voltage profile impact can be modeled
by applying an appropriate power set-point inputs to the power
→ voltage transfer function derived in Section VI-A.

40 39 38 2 1

Fig. 9: Multiple inverters. Power set-point disturbance.

Figure 10 shows the voltage profile deviation over time
when {δPset,k}k=0,...,20 all decrease by 4kW at t = 0. We
change the sign of the z-axis for illustration. For customers 1
to 20, PN and VN change in accordance with (12). The net
loads for these customers start drawing current from the grid,
resulting a significant voltage drop for VG,0 through VG,20.
A 0.42V transient peak appears in δVG,1 in the first 0.4s, in
addition to the 1.79V steady-state change.
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Fig. 10: Voltage profile. Power set-point disturbance.

The described methodology allows evaluation of the voltage
profile deviations and voltage transients for other more com-
plicated scenarios. This could help to evaluate the compliance
with IEEE 1547 for high penetration of DG.

C. Controller Gain Tuning
The multiple-inverter model of Section VI-A can be used

to generate design information for inverter controller. Specifi-
cally, we are interested in controller tuning that ensures closed

loop performance for varying problem parameters. We assume
that the distribution system model in Figure 8 has m = 5
inverters. The rest of the system parameter, unless specially
noted below, take the same values as in Section VI-A.

We vary two key problem parameters, controller gain and
line distance. The varying gain relates to the PI Controller in
Figure 8. The droop controller gain is specified as described
in Section II-D and is defined by the power setpoint. The PI
Controller (17) is assumed to have I-gains for the magnitude
channel, KθI = 0.132 · c, and for the phase channel, KrI =
18.85·c, where c is a (positive) gain parameter we wish to vary
and tune. The line distance D is assumed to be the same for
each inverter. The distances D define load impedances ZLV,k,
shown Figure 8, as described in Section V-B.
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Fig. 11: Step response (top) and Bode plot (bottom) for gain
c = 2.67 and line distance D = 105m.

For given problem parameters, closed loop performance is
described by two parameters illustrated in Figure 11. First,
the disturbance rejection is described by H∞(Tf ) where Tf
is transfer function from the grid frequency variation δfG to
the vector of the inverter frequency variations δf̄N . The H∞
norm is the peak of the magnitude Bode plot, the lower subplot
in Figure 11. Large H∞ norm means the system amplifies
grid frequency variation. It implies the poles are close to the
stability boundary. Second, the closed-loop step response, the
upper subplot in Figure 11, is described by the rise time, the
time it takes to get into ±10% bounds of the step.

Figure 12 summarizes the controller design information in
the space of the problem parameters c and D. For larger
controller gain c, the rise time is smaller. At the same time, the
H∞ norm increases and the response becomes very oscillatory.
When frequency disturbance are amplified by more than 80%,
the H∞ norm increases with the gain c quickly and then the
system becomes unstable. We consider such large H∞ norm or
unstable system unacceptable. This is indicated by empty bars
in Figure 12. For the considered range of the line distances
in Figure 12, the gains between c = 1.94 and c = 2.75
appear to give the best design: the rise time is small while
disturbance amplification and stability characterized by H∞
norm are acceptable.
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VII. CONCLUSION

This paper develops a methodology for analysis of inverter-
connected distributed generations using linearized models. It
addresses the gap between the well established methodology
for analysis of bulk generation and transmission systems and
much less developed analysis of inverter-connected distributed
generation. The formulated analysis approach takes into ac-
count the closed-loop system dynamics introduced by multiple
inverters and is applicable to different types of inverters and
distribution topologies. The examples show applicability to
frequency stability analysis, gain tuning for inverter con-
trollers, and analysis of voltage profile response to distributed
power generation disturbances.
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APPENDIX A
STEADY-STATE SOLUTION

To find the steady-state of the distribution circuit model in
Figure 2, we assume that the following parameters are given:

• distributed generation penetration: a = PN/PL, (the
fraction of the active power produced by inverters)

• power factor of the load: cos(ψ) with ψ = ∠(PL+ iQL),
• magnitude of the load power: |PL + iQL|,
• transmission line impedance: ZG = |ZG|∠γ,
• utility grid voltage: VG = 120V ∠0,
• inverter parameters: Kf and KV

• inverter power set-points: Pset and Qset = 0

In the steady-state,

fN = fD, |VN | = VD, (37)

and PN and QN follow the droop equations. The steady-state
for variables inside an inverter can then be calculated from
circuit equations and control logics. The steady-state solves
(3), (4), (5), (6), (8), (10), and (37). There are 14 (real)
equations and 14 unknowns: PN , QN , PG, QG, |VN |, φN ,
|IN |, ∠IN , IG, ∠IG, fD, VD, <ZL, =ZL.

In accordance with (10), (37), and the made assumptions

PN = Pset, (38)
|VN | = VN,0 −KVQN , (39)
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Let IN = |IN |∠(φN +ϕ) and IG = |IG|∠(φN +θ). After we
express IG in (6) from (3), (5) and (6) become

PN + iQN = |VN ||IN |∠−ϕ, (40)

PG + iQG =
|VN ||VG|∠φN
|ZG|∠−γ

− |VN |2
|ZG|∠−γ

, (41)

According to (38) and (39), (8) becomes

PG + iQG = (PL + iQL)−
(
Pset + i

VN,0 − |VN |
KV

)
. (42)

This, along with (41), yields two (real) equations

|VN ||VG|
|ZG|

cos(φN + γ) = PL − Pset +
|VN |2
|ZG|

cos γ,

|VN ||VG|
|ZG|

sin(φN + γ) = QL −
VN,0 − |VN |

KV
+
|VN |2
|ZG|

sin γ.

Taking squares of both equations and adding them yields a
fourth order equation in |VN |. We choose |VN | to be the real
root closest to 120V. Note that for certain sets of parameters,
there may be no steady-state (no real roots).

Having solved for |VN |, we can calculate the steady-state
|IN | and ϕ from (40), where PN and QN are given in (38)
and (39); φN can be calculated using (41), where PG and QG
are given in (42). Finally, according to (4) and (8),

PL + iQL = |VN |2/Z∗L, (43)

yields the load impedance ZL.
From VN and IN , the inverter internal variables can be com-

puted. For example, VC and VP follow from linear equations,
fD and VD by droop equations, V ′N from the phase of VN ,
and (r, θ) from (18) as described in III-F.

A similar calculation applies for opposite droop inverter
(12). Equations (38) and (39) now become

QN = Qset, (44)
|VN | = VN,0 −KV (PN − Pset). (45)

Along with (40), (41), and (8), we get a fourth order equation
in |VN | that can be solved for the steady-state variables.

APPENDIX B
TRANSIENT MODELS

A. Coordinate Transform

We use two representations of dynamic phasors. The Carte-
sian coordinates and polar coordinates are related as

VN = |VN |∠φN = |VN |(cosφN + i sinφN ),

Taking differential of both sides yields
[
<δVN
=δVN

]
=

[
cosφN −|VN | sinφN
sinφN |VN | cosφN

] [
δ|VN |
δφN

]
. (46)

The linearized inverse transform is given by
[
δ|VN |
δφN

]
=

1

|VN |2
[
|VN |<VN |VN |=VN
−=VN <VN

] [
<δVN
=δVN

]
. (47)

B. Droop Controller

Droop controller inputs VN and IN first pass through
bandpass filters, see [18], with the transfer function,

Tbpf(s) =

(
Kbs

s2 +Kbs+ (2πf0)2

)2

,

VM (s) = Tbpf(s+ iw0)VN (s),

IM (s) = Tbpf(s+ iw0)IN (s).

(48)

where w0 = 2πf0. Transfer functions in s for time signals
change the argument to s + iw0 for dynamic phasors [17].
Similar filtering is done for the transient signals from δVN to
δVM and from δIN to δIM . In steady state, we have VN = VM
and IN = IM .

We assume that the power measurement is instantaneous.
For the transient model, we linearize the nonlinear relationship
(5) around the steady-state values VN and IN , resulting in a
static 2× 4 model of the form

[
δPN
δQN

]
=

[
<IM =IM <VM =VM
−=IM <IM =VM −<VM

]



<δVM
=δVM
<δIM
=δIM


 .

(49)
Tmsr is obtained by combining (48) and (49).

Linearizing conventional droop equations in (10) yields the
transient dynamics

[
δVD
δfD

]
= Tdroop

([
δPN
δQN

]
−
[
δPset
δQset

])
, (50)

Tdroop =

[
0 −KV

−Kf 0

]
. (51)

For opposite droop (12), the linearization has form (50) with

Tdroop =

[
−KV 0

0 −Kf

]
. (52)

C. PLL

PLL input is VN = |VN |∠θN ; the outputs are phasing
signal V ′N = 1∠θN ′ , frequency fM , and amplitude VM . In
the steady-state, the input amplitude is |VN |, the output phase
θN ′ = θN , and the output frequency is f0.

The PLL uses PI feedback of the tracking error. Let the
transfer function of the PI controller be 2ζpwp +w2

p/s. Then,
according to [22],

δθN ′ =
2ζpwps+ w2

p

s2 + 2ζpwps+ w2
p

δθN . (53)

Linearized model (47) of the PLL gives the amplitude
measurement δVM = δ|VN |, where δ|VN | follows (47). The
transient frequency and phase relation is similar to (1), i.e.
δfM = 1

2π
d
dtδθN ′ . Combining this with (53) yields

δfM =
s

2π|VN |2
2ζpwps+ w2

p

s2 + 2ζpwps+ w2
p

[
−=VN <VN

] [<δVN
=δVN

]
.

(54)
The linearized transfer function from δVN to δV ′N can be
found in a similar way using the transformation of the form
(46) proceeded by a bandpass filter Tbpf in (48) [18].
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D. PI Controller
The PLL outputs fM , VM and the desired values fD, VD

from the droop controller are fed into two PI controllers to
produce control signals r and θ. In the steady-state, fM = fD
and VM = VD. The linearized controller model has the form

δθ =
KθI

s
(δfD − δfM ), (55)

δr =
KrI

s
(δVD − δVM ), (56)

where KθI and KrI are I controller gains.

E. Phase Converter
The phase converter transforms the control signals r and θ

(in polar coordinates) from the PI controllers to phasor VP (in
Cartesian coordinates) that drives the IGBT switching gates.
PLL output V ′N is used to align VP with the instantaneous
phase of the voltage VN . This can be expressed as

VP =
1√
2

(r∠θ)V ′N , (57)

where the scale 1√
2

ensures that VP is a RMS measurement.
Linearizing (18) around the steady-state, we get
[
<δVP
=δVP

]
=

1√
2

[
r cos θ −r sin θ
r sin θ r cos θ

] [
<δV ′N
=δV ′N

]

+
1√
2

[
<(1∠θ · V ′N ) −=(r∠θ · V ′N )
=(1∠θ · V ′N ) <(r∠θ · V ′N )

] [
δr
δθ

]
,

where δθ and δr are the PI controller outputs in (55) and (56).

F. Inverter Gain
The PWM frequency is much higher than the grid frequency

f0. With a proper design of a lowpass filter, only the effect on
the grid frequency is important. The model for the variation
of δVP is (Kinv is a constant gain).

δVC = KinvδVP ,

G. Inverter Circuit and Grid Circuit

Rm/3

L2R2

Lm/3

L1/3

Cf

LfR1/3

Rf

Cf

Lf

INe−iπ/6 IC

VNe−iπ/6

−

+

VC

−

+

Fig. 13: Inverter circuit.

The inverter circuit includes a lowpass LCL filter and ∆-Y
transformer as shown in Figure 13. The filter is composed of
two inductances Lf and capacitances Cf in T configuration.
The filter follows the design described in [19] and has a shunt
resistor in series with a capacitor to suppress high frequencies.

The connection of the inverter circuit and the grid circuit is
shown in Figure 2. The grid circuit follows (2), (3), and (4),
and the inverter circuit is modeled as a two-port network
[
VC
IC

]
=

[
Tickt,11(s+ jw0) Tickt,12(s+ jw0)
Tickt,21(s+ jw0) Tickt,22(s+ jw0)

] [
VN
IN

]
,

To obtain two-port network transfer functions Tickt,ij , where
i, j ∈ {1, 2}, the transfer functions of R, C, and L elements
in Figure 13 are combined following KCL and KVL. The
dynamic phasor model has transfer function argument changed
to s+ jw0, where w0 = 2πf0, see [17].

The transient dynamics of the small-signals δVG(t), δVC(t),
δVN (t), δIN (t), and δIG(t) becomes

δVC = Tickt,11(s+ jw0)δVN + Tickt,12(s+ jw0)δIN , (58)
(IN + IG)δZL = δVN − (δIN + δIG)ZL, (59)
δVG = δVN + δIGZG, (60)

where we assume that ZG is a constant. Parameter ZL may
change, for example, due to a change in the load power.

Solving linear equations (58), (59), and (60), we get a linear
transfer function from (δ<VC , δ=VC , δ<VG, δ=VG, δ<ZL,
δ=ZL) to (δ<VN , δ=VN , δ<IN , δ=IN ).
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