“Neural Network System Techniques and Applications”,
International Series on Advances in Control and Dynamic Systems, ed. C.T. Leondes, pp. 353-394, Academic Press,
1998.

Radial Basis Function Network Approximation and
Learning in Task-dependent Feedforward Control of
Nonlinear Dynamical Systems

Dimitry Gorinevsky*
Honeywell-Measurex, North Vancouver, B.C., Canada V7J 354

Contents
1 Introduction 2

2 Problem statement 4
2.1 Control formulation . . . . . . . . .. 4
2.2 Example: Control of two-link flexible arm . . . . . . . . . . . ... 5
2.3 Discretized problem . . . . . . oL e e 7
2.4 Problems of task-dependent feedforward control . . . . . . . ... L L oL 8

3 Radial Basis Function approximation 9
3.1 Exact RBF interpolation . . . . . . . . . . . . . e e 9
3.2 RBF network approximation . . . . . . . . . . .. e e e 11
3.3 Recursive identification of the RBF model . . . . . . . . . ... .. 11
3.4 RBF approximation of task-dependent feedforward . . . . . . . .. . ... ... ... ... 12

4 Learning feedforward for a given task 13
4.1 Learning control as on-line optimization . . . . . . . . . . ... L L 13
4.2 Robust convergence of the learning control algorithm . . . . . . . . ... ... oo oo 14
4.3 Finite difference update of the gradient . . . . . . . . . .. L L 15

5 On-line learning update in task-dependent feedforward 16
5.1 Approximating system sensitivity . . . . . . . .. L. L e 16
5.2 Local Levenberg-Marquardt update . . . . . . . . . . . . .. L 17
5.3 Update of RBF approximation in the feedforward controller . . . . . . ... ... ... ... ...... 17

6 Adaptive learning of task-dependent feedforward 18
6.1 Affine RBF Network Model of the System Mapping . . . . . . . . . . .. .. .. 19
6.2 Adaptive Update Algorithm . . . . . . . . . . . o 20
6.3 Discussion . . . . . . .o e e e e e e e 21
6.4 Application example: Learning control of flexible arm . . . . . . .. .. .. ... 0L oL, 22

7 Conclusions 23

*Current address: Honeywell Technology Center, Honeywell CA35-5272H, One Results Way, Cupertino, CA 95014, email: dim-
itry.gorinevsky@honeywell.com



1 INTRODUCTION

Abstract

The paper considers intelligent control system architectures for task-level control. The problem is to compute
feedforward control for a sequence of control tasks. FEach task can be compactly described by a task parameter
vector. The control update is performed in a discrete time: from task to task. The paper considers an innovative
controller architectures based on Radial Basis Function (RBF) approximation of nonlinear mappings. The more
advanced of these architectures enable on-line learning update for optimization of the system performance from task
to task. This learning update can be considered as a generalization of the well-known learning (repetitive) control
approach. Unlike the repetitive control, which is only applicable to a single task, the proposed algorithms work for
a parametric family of such tasks. As an example, a task-level feedforward control of a flexible articulated arm is
considered. A vibration-free terminal control of such arm is achieved using a task-level algorithm that learns optimal
task-dependent feedforward as the arm goes through a random sequence of point-to-point motions.

1 Introduction

Motor control in humans and animals is believed to use feedforward widely instead of relying only on feedback. One
hypothesis on feedforward control organization is that control programs of complex motions are learned, memorized,
and then just extracted from the memory when needed. This hypothesis provided an inspiration for this paper, which
presents a paradigm for the task-level feedforward control. The practical value of this paradigm is demonstrated by
applying it to solve a difficult control problem.

Classical automatic control theory heavily concentrates on the issues of low-level feedback control or feedforward
compensation of disturbances. This is because most controlled systems used in industrial and other applications
in the past two decades and many of those used now are characterized by a low level of computational power and
relatively simple logic of operation. In addition to feedback control, classical control theory paid much attention to
the issues of open-loop (programmed) control, in particular, optimal control. This was initially motivated by space
flight and ballistic missile control applications, where the control program for a mission can be accurately computed
in advance.

Many modern advanced control systems are integrated systems with high-performance computers, multiple sensors
and actuators. These advanced systems possess automated operation, adaptation and self-tuning features, build-in
identification and fault diagnosis capability. The trend in control practice is towards development and deployment
of intelligent control systems performing increasingly complex tasks with minimal or no operator supervision and
adapting to changing operation condition. The setup, commissioning, and operation regime change for such systems
should be also automated. Development of intelligent systems requires comprehensive multi-layered control and
information processing architectures, that are more complicated than classical feedback loops.

The task-level control algorithms considered in this paper are assumed to be executed one level above the tradi-
tional planning and servo feedback level. To define this new control level, we assume that the overall motion planning
and feedback tracking of this planned motion is a sequence of separate (but possibly related) tasks. We assume
that each task and a control problem associated with this task are completely defined by a few task parameters.
The algorithms considered in this paper operate in discrete time: from task to task. In this respect the proposed
controllers can be considered as hybrid systems.

There are a few groups of papers in the literature more specifically related to the topic and technical approaches of
this paper. Recently, a learning control paradigm has been considered by a number of authors, starting by Arimoto [3],
mostly with regard to the manipulator path tracking. The paradigm regards a feedforward control program as a high-
dimension array, which stores a time-history of the feedforward control input. Authors of [2, 3, 20, 38, 39, 41, 48, 54, 68]
assume that a dynamic model of the system is to some extent known and consider an iterative method for improving
the performance by updating a feedforward control program in the course of repeated motion trials. The iterations
converge for a single given motion, but the learned control would not work for another trajectory.

Another direction of work related to the technical approach of this paper is associated with approximation-based
control. In a sense, any practical linear control approach is based on a model, which is but an approximation of a real
plant. Herein we consider nonlinear gray box approaches that use generic computational architectures to approximate
unknown nonlinear mappings. Such approximation-based approaches are usually applied within neural network or
fuzzy logic framework.

Many authors use neural networks to acquire knowledge of the controller plant dynamics that allows to compute
feedforward control at each instant, given the planned motion, velocity, and acceleration (for instance, see [42, 46,
62]). Some related papers consider different techniques for computing the feedforward through approximation of the
dynamics mapping of the system by using polynomial associative memories [4, 69, 70] or fuzzy control. Such an
approach to learning is capable of generalization, which means that the knowledge of inverse dynamics acquired for
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one trajectory allows to compute feedforward control for other motions. Yet robustness of such approach to high-
order dynamics is not always acceptable and real-time implementation of the approach requires enormous resources,
especially if the order of the system dynamics is high.

A distinct learning control paradigm combining features of the two above-described approaches was proposed in
the author’s earlier papers [22, 24, 25]. According to this paradigm, a mapping from the task parameters to the
feedforward control program is learned (approximated). An example of the task parameters are an initial and a
desired final state of the system in a transient motion control. The described approach is also related to the task-level
control paradigm proposed in [1, 8].

This paper surveys the author’s work on approximation and learning in task-level control problems [22, 24, 36, 35,
34]. Herein, we mostly concentrate on the paradigms and algorithm ideas. The convergence results and applications
of the approach are referenced but not presented in any detail. The learning process, which we consider in this
paper, can be regarded as an adaptive control of a linearly parametrized nonlinear system. In [27] we demonstrate an
application of the algorithms considered in this paper to the adaptive control of an unstructured nonlinear system.

The proposed learning control paradigm has several fundamental advantages that make it potentially very useful
for many applications. First, our approach is well suited for real-time implementation, since the entire control program
is computed before the motion begins. Second, unlike sophisticated feedback controllers, the approach is robust to
high-order unmodelled dynamics. Third, high sensitivity to the system parameter variations, which is inherent to
open-loop control, is compensated by the on-line feedback update of the controller parameters.

Our approach is based on using a connectionist network approximation of the control program dependence on the
task parameter vector. Such network has a fixed number of weights that can be updated based on the system operation
results. This paper uses a Radial Basis Function (RBF) network architecture for approximating dependences such as
feedforward program dependence on the task parameters. It has recently been acknowledged that in many problems
the RBF networks possess superior spatial filtration and approximation accuracy properties, as compared to the
Multilayered Perceptron networks [12, 13, 33, 40, 44, 50, 64]. Even more important for this study is that the RBF
network output is linear in the network weights. This property makes the powerful tools of the linear system theory
applicable to system estimation (identification) with an RBF network. So designed algorithms converge much faster
than usual neural network algorithms based on gradient descent (backpropagation). Furthermore, the computational
complexity of the RBF network approximation does not grow with the dimension of the output variable, which is
usually large for the problems of the considered type.

Task-level algorithms considered in this paper are expected to be useful for many application. Currently, ap-
plications of these algorithms have been applied to problems of robotics, process control, automotive, and flexible
spacecraft control. In this paper, we demonstrate efficiency of the proposed approach in control of flexible arm mo-
tions. We simulate very fast arm motions that take only about 1.5 periods of the lowest eigenfrequency oscillations.
The system is oscillatory and very nonlinear, and, therefore, difficult to control using classical approaches even if
the system dynamics are known exactly. For this system, we achieve a high control performance by using a learning
control algorithm without any a priori information on the system dynamics.

The outline of the paper is as follows. Section 2 considers a general statement of the task-level control problem.
One of the section goals is to show how such problems relate to the classical feedback and programmed control
problems. A consize formal mathematical problem statement of the task-level control is related to discrete-time
on-line optimization of a static multivariate vector-valued mapping. We formulate four different problem statements,
which assume different degrees of uncertainty about the system. The problems stated in Section 2 are then considered
in four subsequent sections of the paper.

Section 3 presents some background facts on the RBF approximation. The formulation of this section constitutes
the basis for the development of Sections 5 and 6. The section also discusses a basic architecture of task-level
controller based on the RBF network approximation. Section 4 discusses learning control algorithms applicable for
a fixed parameter vector. The problem statement is similar to the standard learning control papers cited above, but
the suggested algorithms differ from most of these papers. The advantage of the algorithms considered is that they
can be conveniently generalized to the case of changing task parameter vector.

Sections 5 and 6 propose task-level feedforward control algorithms with learning (adaptive) capabilities. In
Section 5 we assume that the system sensitivity information is available prior to the system operation, similar to
system gain information in feedback control. We then derive an algorithm for on-line update of the feedforward
control approximation based on the task completion errors. In Section 6, the sensitivity information is assumed to
be inaccurate and is updated on-line in the adaptive control manner. Section 6 also presents an application of the
algorithm to the terminal control of a two-link flexible manipulator. The manipulator performs a random sequence
of point-to-point motion tasks.
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2 Problem statement

This section presents a formal statement of the learning control problem. The problem is formulated in a general
form, so that the statement is applicable to a large class of control systems and tasks. To make the exposition more
transparent, Subsection 2.3 introduces an example problem - one of feedforward control of a flexible planar arm -
and illustrates how the general formulation considered can be applied to this example. Further, in Section 6, the
algorithms developed in the following sections are applied to the same example.

2.1 Control formulation

This paper considers task-level control problems and algorithms. Such algorithms perform computations and updates
of control variables and internal models from task to task. They are essentially discrete-time algorithms evolving
with the performed task number. The goal of this and the two following subsections is to explain how these task-level
algorithms relate to more classical issues of feedback, feedforward, and programmed control. To this end, we start
with a continuous-time controlled system in a state-space form and then arrive at the task-level control formulation
for such system. The task-level control problems and algorithms considered further, however, are generic discrete
algorithms (in the same sense as classical optimization algorithms) and can be applied to a wider class of practical

problems.
Let us consider a parametric family of nonlinear time-invariant systems of the form
¢ = flz,up), 1
y o= ), 2)
where z € R"* is a state vector, y € R"¥ is an observation vector, u € R"* is a control input vector, p € M C R"»
is a vector of system parameters, and M is a given domain. We further assume that the nonlinear mappings f(-,-;-)

and h(-) are smooth and the nonlinear system (1), (2) is known to be observable and reachable for each value of the
parameter p € M. We will discuss the assumptions about the smoothness, controllability, observability, and nature
of available information about the system in more detail later on as they will be needed.

The system (1), (2) describes a task being executed. This system evolves in a local time, which is the time since
the beginning of the task. In the sections to follow, we will consider issues of task-level control, i.e., the control and
estimation evolving from one task to another. It is assumed that a local time ¢ can be used for description of system
dynamics in each task.

In each task, we consider a controlled motion of the system (1), (2) on the given interval [0, T] of the local time ¢
and assume that the initial state vector belongs to a smooth manifold of the form

2(0) = (N), 3)

where A € R"* is a vector that defines initial conditions.
The control problem for the task is to find a control input u(-) defined on the time interval [0, 7] that allows to
achieve the control goal formulated as minimization of the performance index of the form

Ji(y()ya(-; A v);u(-)) — min (4)

Here v € R"” is a vector that defines the task goal, for instance, in the form of the desired system state at the end
time T, trajectory of motion, etc.; and yq(¢; A, v) € R™ is a preplanned desired output of the controlled plant in the
task. We will call v a vector of the control goal parameters. The preplanned output yq depends on both the initial
condition vector A and the control goal vector v.

Let us introduce a task parameter vector p comprising the initial condition vector A (3), the vector of the system
parameters p (1), and the vector of the control goal v (4) for this task

A
pZ[ulE%NP, Np =nx +ny, +ny (5)
v

The optimal feedforward control input u(-) that solves the problem (1)-(4) depends on the vector p (5). We
assume that the vector p belongs to a given compact domain P C R"?.

We further assume that we can repeatedly apply the computed feedforward control u(-) to the system (1), (2)
in different tasks, observe its output y(-) on the time interval [0, T'], and, possibly, use the obtained observations to
update the control. For each task, we suppose that the local time ¢ is reset to zero and the initial condition has
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form (3). We assume that the parameter vectors A\, p, and v can take different values for different runs (system
motions). The control objective is to minimize the performance index (4) for each value of the parameter vector
p=[AT T 71T (5) in the given domain: p € P C R >.

At this stage, we do not specify how the parameter vector p (5) changes from one task to another. This issue
is discussed further on in Section 4. The task-level learning control algorithms, which we are going to discuss,
are more general than those considered in previous papers on learning and repetitive control. Standard learning
control formulations, e.g., [2], correspond to assuming the parameters A, u, and v to be fixed. Repetitive control
setting [39] assumes that the initial conditions for each task coincide with the final system state at the previous task,
and the variation of the initial conditions is small. Furthermore, the prior learning control work mostly confines
itself to the trajectory tracking problem. The lask-level learning paradigm of [1, 8] is related to the above general
problem statement, but covers a somewhat different class of problems. Herein we formulate a control problem as
a minimization of a general performance index, which includes most of the previous learning control formulations
as special cases. In particular, as shown below, such formulations can be used for both the trajectory tracking and
terminal control problems. A few recently published papers study control approaches related to some aspects of the
considered formulation [6, 63].

As already mentioned in the Introduction, the learning control papers usually consider a trajectory tracking
problem. This problem can be described with a performance index of the form (4)

T T
Ty, yar ) = / ly(t) = yalt; A )IPdt + p / Ju(|Pdt - min, 6)
0 0

where || - || denotes the Euclidean norm of a vector. The first term in (6) is a penalty for the deviation of the system
output from its desired value. Since the trajectory tracking problem is generally ill-posed, the second term in the
performance index (6) is very important. It regularizes the solution in accordance with the technique of [67]. For
0 < p < 1, a solution to (6) provides good quality of the trajectory tracking (see [24] for more discussion on the
subject).

Similarly, the point-to-point control problem can be described with the performance index (4) of the form

T; T
Jos (s yas ) = / ly(®) = ya(T)|Pdt + p / Ju(|Pdt - min, @
T (0]

where we assume that the output y of the plant (1), (2) can be monitored on the time interval [T, Ty], and Ty > T.
The first term in (7) gives a measure of the overshoot, the second term, of the control effort. We assume that on the
interval T' < t < T the desired output yq is a constant defined by the vector v, and u(¢) = 0, which corresponds to the
system being in the desired final steady state. Unlike (6), the performance index (7) penalizes only overshoot of the
system output after the end of the desired motion. Under appropriate conditions of controllability and observability,
a solution u(-) of (7) approaches quadratic-optimal terminal control as p — 0. For linear systems, this is studied in
more detail in [23] and, generally, a smooth nonlinear system can be linearized in the vicinity of the optimal solution
to make the linear system results applicable.

Unlike most other work on learning control, we will be interested in obtaining a dependence u(-; p) of the feedfor-
ward control (1) on the parameter vector (5), rather than in learning the feedforward control for a single given value
of the parameter vector p.

The mapping p — u(-) defined by the optimal control problem (1)-(3), (4), and (5) is generally complicated
and nonlinear, even for a linear system (1), (2). We suppose that the system(1)-(2) and the performance index (4)
are such that this mapping is continuous. For instance, it is continuous, if the right-hand side mappings in (1)—(2)
are smooth, the system is reachable, p > 0, and we are considering a quadratic performance index (6) or (7). Yet,
we would like to note that study of the properties of the mapping from the coordinates into control for a general
nonlinear system is a complicated problem. In particular, it is known that for certain systems with smooth right-hand
sides, such as nonholonomic systems, no continuous stabilizing state feedback exists [9]. Some discussion regarding
approximation of the feedforward shape dependence on the task parameter vector for a nonholonomic system can be
found in [34].

2.2 Example: Control of two-link flexible arm

Let us consider a two-link articulated arm shown in Figure 1. We assume that inertial drives placed in the arm joints
are connected to the links through lumped elastic elements and all motion is in a horizontal plane. Our goal is to
demonstrate an application of the approach of this paper to a standard problem. Therefore, we employ commonly
made assumptions about the elastic-joint manipulator dynamics [65]. In particular, we assume that the damping in
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the elastic elements is negligible, and that angular motion of the drive rotors is decoupled from the arm structure
motion. The latter assumption holds for the drives with high transmission ratios.

Let ¢ € R be the vector of the arm joint angles; v € R2, the vector of the rotation angles for the output shaft of
the drive; and p € R', a lumped mass (payload) attached to the arm tip. Under the assumptions made, the equations
of motion of the system have the form

M(q)i+C(q,q) + K(qg—7) =0, (8)
Jy+By+K(y—q) =1, (9)

where M(q) € ®>? is the inertia matrix of the arm; C(q,q¢) € R* is the vector of Coriolis and centrifugal forces;
the matrix K = diag{k1, k2} € R2? defines the elastic element stiffnesses k; and ky; J = diag{ji,j2} € R22 is the
diagonal matrix of the drive rotor inertias; B = diag{81, 82} € ®*>? is the matrix of the internal drive damping; and
7 € R? is the drive torque vector, which we consider as a control variable. The exact form of the nonlinear functions
M (q) and C(q, ¢) for a planar arm with uniform links and a lumped payload can be found elsewhere, e.g., in [14].

Figure 1: Two-link planar arm with flexible joints

We further assume that the control torque vector 7 applied to the drives is computed in the usual way, as a sum
of a proportional and a derivative (PD) drive position feedback and feedforward compensation u(t)

7(t) = K.(qa(t) = (1)) + Bx(qa(t) —¥(#)) + u(t), (10)

where g,(t) is the reference drive position, K. = diag{k.1, k«2} € £2? is the matrix of the proportional drive position
feedback gains; and B. = diag{fB.1, 8-2} € R>? is the matrix of the velocity feedback gains.

We consider the feedback gains K. and B. as fixed parameters and the vector of the feedforward joint torques
u(t) € R? as an external (control) input to the system. We assume that the observations used in the learning include
the drive rotation angles g and the elastic element deformations ¢ — . We suppose that the drive velocities ¥ are
available for the low-level servocontrol (10), but not to a higher level controller implementing the learning algorithm.
Such situation is very common in robot control practice, where servocontrollers of the drives usually do not provide
the upper level of the control system with the velocity information.

For the system (8)—(10), the state vector has the form z = [¢7 ¢* 4T 47]7 € R® and the observation vector,
y=1[¢" (g—)T)" € R*. The system (8)—(10) is a special case of the system (1), (2).

Let us introduce a vector A € R of the initial condition parameters, so that the initial state vector (3) has the
form

z(0)=[AT 00T 00]", (11)

where A\ € R? defines the initial joint angles of the arm and the drive angles. The initial condition (11) means that
q(0) = v(0) = X and ¢(0) = ¥(0) = [0 0]".

Let us consider the control goal parameter vector » € R that is equal to the desired joint angle vector gq4(T') after
the motion of the arm. The preplanned output y4(-; A, v) describes the desired path of the arm motion, which is used
as a reference in the PD controller (10) and the planned joint deformations. The path planning method commonly
used in Robotics is to compute the reference path as a straight line in the joint angle space that can be written in
the form

qa(t) = A(1 = s()) + vs(?), (12)
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where s(t) is a smooth scalar-valued function (e.g., a third order polynomial) such that s(0) = s'(0) = s'(T) = 0, and
s(t) =1 for t > T. We assume that the planned values of the joint deformations gq4(t) — v4(t) and their derivatives
are always zero.

Let us consider a problem of point-to-point control of the arm stated as a so-called “cheap control problem”, e.g.,
the problem of minimizing the performance index of the form (7), where 0 < p < 1. For ¢ > T, we assume that
the feedforward is zero and the PD controller uses the constant set point y4(7"). As mentioned in Subsection 2.1.,
a solution of the control problem (7) approaches a quadratic optimal solution of the terminal control problem as
p—0.

2.3 Discretized problem

Subsection 2.1 states the problem of approximating the optimal feedforward control u over a domain of the parameter
vector p. This approximation problem involves a mapping from a domain P C ®¥7 of the parameter vector p (5) into
the Banach space L2(%"*;0,T), where the feedforward control input u(-) belongs. An implementable computational
algorithm that solves the stated problem has to use a truncation of Banach space vectors such as u(-). Furthermore,
a control algorithm implemented with a digital computer introduces the truncation in the form of input and output
signal sampling. The problem treatment based on the truncation is acceptable, since in practice only a restricted
approximation accuracy is required. After the truncation, the time-histories of the feedforward input u(-) to the
system (1), and the system output y(-) (2) will be represented by finite-dimensional vectors, and the approximation
problem will include mappings between finite-dimensional vector spaces.

In order to truncate the formulated Banach-space problem, let us introduce a set of the shape functions ¢;(-) :
[0, 7] = R, (j = 1,...,N). The shape functions ¢;(-) € L2(R;0,T) make a basis of the linear manifold IIy C
L2>(R;0,T). By using the Galerkin-Rietz approach to solution of the problem (1)-(3), we consider a projection of the
control u(-) € L2(R™*;0,T) onto the linear manifold R™* @) IIn, where Q) denotes a direct product of two vector
spaces. This projection, also known as an assumed mode expansion, has the form

N U,
u() =Y Uigi(); U=| : |enr™, (13)
Jj=1 Un

where we have collected the weight vectors U; into the vector U of the dimension Ny = n,N. The vector U (13) is a
coordinate vector on the linear space ®"* ) IIy. It is well known that for many choices of the shape functions - such
as a trigonometric or polynomial Fourier series, B-spline approximations, or wavelet expansions - the Galerkin-Rietz
method converges to the exact solution of the continuous-time problem, as N — oo.

We do not discuss a particular choice of the shape function set or the expansion order here, since this is a well-
studied problem addressed elsewere. We assume known that the expansion of the form (13) gives an acceptable
solution of the problem. An additional insight can be obtained from the papers [17, 23, 71, 63], among many others,
where the applications of expansions of the form (13) to related continuous-time control problems are discussed in
more detail.

In many applications it is advantageous to use B-splines in the expansion (13). The B-splines shape functions
with the same bases (support) differ only by translations. It is possible to use B-splines of various orders in (13). In
particular, zero-order B-splines will give a piece-wise constant feedforward (13), while cubic B-splines will result in
a twice continuously differentiable feedforward. In the application example of Section 6, first order B-spline function
are used.

We further assume that the shape function set is given and vector U defines the feedforward control on the interval
[0,T], i.e., for the task in question. We will call U a control input vector or a control program.

Similarly, we describe the system output with a finite-dimensional output vector Y. We introduce a sampling
time sequence {t; }]]le and output vector Y and a desired output vector Yy that have the form

y(t1) ya(t1)
Y = : eRYY, vy= : e Ry, (14)

y(tr) ya(tr)

where y € R"¥ is the system output (2), ya(t) = ya(t; A, v) is the desired output as in (6) and (7), and Ny = nyL.
Under appropriate observability conditions imposed on the sampling time sequence and on the controlled plant, the
desired output of the system (1), (2) can be evaluated by monitoring only the sampled output (14). Due to the
measurement sampling in a digital computer, the measured output has the form (14) in most practical cases.
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The input vector U defines the output vector Y in accordance with equations (1)-(2), (5), (13), and (14). We
will write this dependence in the form
Y =5(U,p) (15)

and assume that the system (1) is such that S is a smooth mapping. Let us also consider a modified form of the
performance index (4)
J(Y,Yq;U;p) = min, (16)

where Y is obtained by sampling the preplanned output yq(¢; A, ) in the same ways as y(t) in (14). The vector p in

(15) is presented explicitly in order to show the dependence of the control problem on the task parameters A, u, and

v that influence the output according to (1), (2), (3), (13), (14), and (16). For a broad class of controlled systems,

it is shown in [23] that, under appropriate conditions, a solution of the discretized problem as introduced in this

subsection approaches the solution of the original continuous-time problem. Because of space limitations, we do not

discuss this issue in more detail here and further will limit the consideration with the discretized problem (14), (15).
For the performance index (16), one can write the condition of the extremum in the form

aJ T aJ _ _ 9y _as
—(U*,p)+G (U*,p)—(U*,p) _07 G(U7 )_ oU - oY

where G € RVY VU is an input/output sensitivity matrix of the system - a Jacobian matrix of the mapping (15). If
the mapping (15) is known analytically, one can use (17) to find analytically or numerically an optimal control input
U. for each value of p. For the performance index of the form (6) or (7), we can write the modified performance
index (16) in the form

J =Y = Yall? + pllU|[3 — min, (18)

where || - || denotes the Euclidean norm in ®"Y and ||U||% = UT RU, where R € RVU°MU is a positive definite matrix
defined through a Grammian of the shape function set {¢;(-)};_,. Performance index (18) can approximate either
(7) or (6), assuming that the sampling of the output y(¢) (14) is uniform on the interval [T, T], or [0, T'] respectively.
To make the presentation more transparent, we further assume that in (18) R = Iy, is a unity matrix and both
norms in (18) are the regular Euclidean norms. In particular, this is valid if the shape functions (13) are orthonormal.
In general case, the orthonormality of the shape functions can be achieved with a simple linear transformation.

For problem (18), the extremum condition (17) has the form

pU 4+ GT[S(Up) = Y4l =0 (19)

and could be solved analytically or numerically, once the form of the mapping (15) is known. The solution to (19)
has the form
U=U.(p), peP, (20)

where we assume that the mapping U. (p) is smooth, which is valid for a broad class of systems (15).

2.4 Problems of task-dependent feedforward control

In what follows, we consider a few different control architectures and problems related to (15), (16). In particular we
will concentrate on the performance index (16) of the form (18).

The first problem we are going to consider is to build a controller implementing the solution (20) to the problem
(15), (16). The key issue here is to design a practically implementable controller that is able to compute the optimal
feedforward vector U, in real time with limited computational resources. This could be achieved by computing
U.(p) approzimately, rather than exactly. Such an approach is perfectly justified from a practical viewpoint because,
anyway, real-life systems always differ from their computational models, however accurate the latter are.

Problem 1 Computing Task-dependent Approximation for the Feedforward.
Design a practically implementable controller computing an accurate approzimation U(p) of the optimal solution U (p)
of the problem (15), (16) for any parameter vector p (5) in the given domain P.

The design of an approximation-based controller solving Problem 1 is discussed in Subsection 3.4. This design employs
a Radial Basis Function network for approximating the mapping U (p).

As will be discussed further in more detail, Problem 1 can be solved by first obtaining optimal control U, for
selected task parameters p and then interpolating this data. As an alternative to numerical model-based optimization,
an optimal control vector Us for a fixed given task parameter vector p can be directly learned in the course of repeated
execution of the same task. Though repeated experiments are only possible in some problems, the learning problem
stated below is of didactic importance to us. The RBF network learning problems considered further can be seen as
generalizations of this problem.
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Problem 2 Iterative Learning of Feedforward for a Given Task.

Let us assume that p in (15) is given and fized. We assume that the mapping (15) is unknown, but we can repeatedly
ezecute the same task defined by (1), (2), (3), (5), (18), (14). For each task repetition, an input vector U is applied
and the output vector Y is observed. The problem is to design a learning control algorithm that iteratively updates
the input vector U in order to optimize the performance index (18).

A learning procedure solving Problem 2 is studied in Section 4 of this paper.

For many real problems, designing a feedforward controller by interpolating solutions of Problem 2 is not practical,
since this would require multiple repetitions of the same task. A more practical controller can be obtained by first
using an available model of the system for off-line design and then updating the feedforward control approximation
based on output errors registered as it operates. Such an approach follows usual practice of the general feedback
controller design where setpoints can be calculated off-line or on an upper level of control and then tracked using an
error feedback. The difficulty in updating the control approximation ﬁ(p) is that, unlike the considered Problem 2,
in the course of normal operation of the system, the sequence of the task vectors p is defined by a higher control level.
Thus, it is unreasonable to make any assumptions about this sequence when designing the controller. The formal
statement of the discussed problem is as follows.

Problem 3 On-line Learning Update in Task-dependent Feedforward Approximation.

Assume that an imprecise approzimation U(p) of the control input optimal in the sense (16) is available for each value
of p. Assume further that an approzimation G'(p) of the system output Y sensitivity (16) to input U is available for
each value of p. For a generic sequence of the parameter vectors p (5), and a corresponding sequence of the optimal
control input vectors U(p) (1), (13) applied to the system (1)-(2), (15) observe the sequence of the output vectors Y
(2), (14) and update an approzimation [j(p) of the control input to optimize it in the sense (16) for each value of p.

Problem 3 is studied in Section 5.

As mentioned above, Problem 3 is essentially about a discrete-time feedback controller design. In some cases such
model-based controller may not perform well enough in practice, in particular, if an available model of the system
sensitivity (gain) is not sufficiently accurate. In such cases, one may want to use an adaptive or self-tuning controller,
which estimates the system gain based on the closed-loop operation data (possibly with self-excitation added). The
problem of designing such an adaptive controller is as follows.

Problem 4 Adaptive Learning of Task-dependent Approximation for Feedforward.

Given a sequence of the parameter vectors p (5), apply a sequence of the control input vectors U (1), (18) to the
system (1)-(2), (15) and by observing the sequence of the output vectors Y (2), (14) estimate for each p a local model
of the input—output mapping U — Y including the system sensitivity. Using this model, update an approzimation
U.(p) of the optimal control input (20).

Section 6 of this paper presents an iterative adaptive learning procedure that updates an approximation of the
mapping p — U.(p) for a priori unknown mapping (15), as required in Problem 4.

3 Radial Basis Function approximation

This section considers a generic approximation problem, and introduces a RBF network architecture suitable for
solving such problems. We then show how a controller using a RBF network approximation can be used to solve
Problem 1 stated in Subsection 2.4. The material of this section us used as a base for developing algorithms in the
subsequent sections.

3.1 Exact RBF interpolation

Let us consider an auxiliary problem of approximating a smooth nonlinear mapping G(-): ®"> — RV¥ over a compact
domain
V=g(p); YeR"; pePcyr', (21)

where p is an input parameter vector, P is a compact domain, and Y is an output vector. We assume that a scattered
(irregularly placed) set of N; input/output pairs is available and call this set the training data set

O = @), pV} =1V 22)

The problem is to find an approximation ¥ = g(p) of the mapping (21) that can be used for any argument p € P.
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A computationally convenient way of representing an unknown nonlinear function is to present it as an expansion.
The expansion is linear in parameters that are assumed to be unknown. Let us consider an approximation of the
mapping (21) that has the form

V=4 = 29u;p), (23)

where N, is the order of the expansion, w; (p) are scalar expansion shape functions, and 29 e RVv are the expansion
weights. The truncated Fourier series expansion, polynomial expansion and B—spline expansion all have the form
(23). In the ANN literature approximations of the form (23) are known as Functional Link Networks [11, 55] and we
further call vectors ZY) the network weight vectors.

Given the expansion shape functions wj(p) (23), a standard way to solve the Scattered Data Approximation
problem is to choose the parameter vectors Z) by fitting the expansion (23) to the data (22) with a least error. In
the special case N, = N¢, when the number of the expansion weight vectors (23) coincides with the number of the
training set data pairs (22), one can generally fit the training data exactly.

In this paper we consider an expansion of the form (23) with functions w;(-) that depend on the radii r; =
||Q(j) — p||, where QY € RV are given vectors. Such expansion is known under the name of Radial Basis Function
(RBF) approximation. RBF approximation has been used in computer graphics and experimental data processing
applications (e.g., geophysical data) for two decades and has been demonstrated to provide for a high quality of
approximation. One can find further details and references in [16, 18, 19, 45, 60, 61] The cited papers employ the
method recently referred to as an ezxact RBF interpolation. This method uses the radial functions centered at each
of the data points (22). In this method, the radial function centers are QY = p¥), and the expansion functions in
(23) have the form

w;(p) = hip —p"), (24)
where h(-) is a radial function, i.e., h(p — pY)) depends on the radius ||p — p'’||. Some most commonly used radial
basis functions are

h(p) = exp(~llpll*/d*);
h(p) = (L+Ilpll*/d*)""*; (25)
h(p) = (L+Ilpll*/d*)™"2,

where ||-|| denotes the Euclidean vector norm. The first radial function in (25) is Gaussian, and the last two are called
Hardy Multiquadrics and Reverse Multiquadrics respectively [45]. Usually, the radial function width parameter d in
(25) is chosen to be about an average distance between the neighboring node centers [7, 16, 18, 61].

Let us introduce the data matrix Y and the parameter matrix 6 built of vectors (22) and (23)

Yy = [y, vy eptv,
o = [zW,.. ., z0)]) g jNv:Ne (26)

In the exact RBF interpolation we have N, = N;. By substituting (23) and (24) into (22), and using (26), we
can write the condition of the exact fit for the training data ¥ (p")) = Y) in the matrix form

Y =60H, H={h(p® -p")}N_ eRrV, (27)

The symmetrical matrix H in (27) is called interpolation matriz. This matrix has been proved to be invertible
for the commonly used radial functions, if the vectors p/) are distinct [49]. With (23), (26), and (27) we obtain the
interpolation of the mapping (21) of the form

Y = f(p) = YH "h(p), h(p)=col({h(p—p)}},) € R™ (28)

It has recently been acknowledged that RBF interpolation minimizes a certain regularization performance index
that describes the interpolated surface roughness [16, 58, 60]. Different forms of radial functions (25) correspond to
minimization of different regularization indexes.

Note that the approximation (28) is linear in the data vectors Yy (26). Thus, the computational complexity of
the method remains moderate even for a large dimension IV, of the vector Y.

The exact RBF interpolation (28) is global in the sense that it has the same form for any p € P. One needs to
complete the most computationally expensive part of (28) - inversion of matrix H (27) - only once for any number
of points, where the approximation (28) of the function (21) is to be computed. Yet, this advantage cannot be used
if the training set (22) grows with time.

10
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3.2 RBF network approximation

Recently, some authors have treated the RBF approximation in the connectionist network setting [5, 40, 47, 50, 56,
57, 58]. They consider the radial function centers Q) (we will call Q) the network node centers) that do not
coincide with the training set points, so that the expansion functions in (23) have the form

wi(p) =h(p—QY), (j=1,...,Na) (29)

Suppose that the node centers QV), (j =1,...N,) are given and fixed vectors. Let us fit the training set data
(22) using the network (23). Employing the same notation (26) as in (27), we can represent the fitting problem in
the regression form .

Y=08+& @={h(p" -QU)} 0 e RV, (30)

where £ = [e™), ..., eM)] € RVv Nt ig a residual error matrix. Since we cannot be sure that @ is a well conditioned
or even a full rank matrix, we will look for a regularized least square solution to (30) that minimizes

IENZ +allflZ> —» min, 0<a<1, (31)

where || - ||r denotes a matrix norm equal to the square root of the sum of the squared matrix entries (the Frobenius
norm). In (32), « is a scalar regularization parameter, introduced to obtain solution of possibly ill-conditioned
problem following the regularization technique of [67]. The parameter « is small and does not influence the solution
if the problem is well conditioned. Solving (30) and (31) for 8 gives

=Y (aly, +®3") ', (32)

where Iy, is the N, x N, identity matrix.

If Ny > N,, and the training set inputs p¥/) are uniformly distributed in the input domain, matrix @ should have
arank N,, because the basis functions (29) are linearly independent. The condition that ® has the full rank is called
the Persistency of Excitation condition. As the exact RBF interpolation is known to yield very accurate results, one
can expect that an RBF network with fixed centers can provide good approximation accuracy. More discussion of
the properties of the RBF network with nodes placed on a uniform grid can be found in [64]. The idea discussed
in [64] and theoretically studied in more detail in [61] is that an RBF interpolation on a uniform grid performs a
spatial filtering of the approximated function. Thus, the RBF approximation error is small, if the function has small
high-frequency contents.

3.3 Recursive identification of the RBF model

Equation (32) describes the computation of the network parameter matrix 6 with the method that is called batch
learning in the ANN literature. This method assumes that the whole training data set (22) is available at once.
In many practical situations, however, the training data pairs arrive one by one, and a recursive weight updating
procedure is desirable. The recursive weight update enables the user not to keep track of all upcoming data, but rather
modify the parameter matrix 6 as the new data arrive. This feature is especially important for RBF network-based
nonlinear adaptive control applications, such as these considered further in this paper.

We can apply a well-known recursive least square estimation methods to update an already available estimate of
the matrix 6 (26). Let us introduce a regressor vector for the expansion (23), (29)

®(p) = [h(p— Q™) ... h(p— QWN)]" (33)

and denote ) = &(p*)). Note that the vectors ®*) are the columns of the regression matrix ® (30). The RBF
approximation (28), (29) can be presented in the form

V=4(p0) =02p); 6=[z" ... 20", (34)
where § € RVY Ve is an RBF network parameter matrix.

A recursive estimation technique commonly used in signal processing and adaptive control is projection estimation.
The projection estimation is a special case of the Least Mean Square algorithm, which is known as the Widrow-Hoff
updating rule in the signal processing literature and as a delta rule in the ANN literature. To derive the projection
update, instead of minimizing a mean error index (31), let us minimize a one-step error increment index similar to
(31). Let 6*) be an estimate of # available at step k and e® be the k-th step approximation error

le®1 + allg*+) = 813 - min, (35)
NONSHONY OF O

11
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The solution of (35) for #*) has the form similar to (32)

et — gk 4 a(k)e(k)@(k)T/(a + ||<I>(k)||2) (36)
)
where ||®")]]? = 3™ ®) and the deadzone parameter a¥) is 1. In the presence of the approximation error, a*)
should be chosen zero inside a deadzone to in the usual way to ensure robust convergence of the algorithm despite
the approximation error and, possibly, measurement noise, e.g., see [21] for more detail.

Let us discuss the algorithm convergence issue. We assume that the RBF network approximation (34) of the
mapping (21) can be made accurate enough by appropriate choice of the network weight matrix 6, i.e., for some
0 =0.

lg(p) — g(p, 0|l < by, (37)

where 0y is a “sufficiently” small approximation error. The convergence of the recursive estimation algorithm (36)
in the presence of the approximation error and, possibly, measurement noise can be guaranteed according to the
standard results of adaptive control and parameter estimation theory [21, Sect. 3.6, pp. 88-91]. To ensure the
convergence, the deadzone parameter sequence a™® should be chosen as

o) — { 0, if [le™] < v

1, otherwise (38)

Projection estimation of RBF network weights in adaptive control of a nonlinear system is considered, for instance,
in [51]. The papers [12, 11] consider an application of the Orthogonal Least Square modification of the RLS algorithm
to RBF network approximation. The papers [12, 44] consider modifications of the RLS identification of an RBF
network for the cases of dynamical node creation, update and clustering of the node centers. In this paper, we
consider the numbers of the nodes and the node centers as fixed parameters.

The well-known condition for the estimation algorithm (36) to converge to the correct parameter matrix . is
persistency of excitation condition [21]. The persistency of excitation requirement is that for N, > 1, § > 0 exists

such that for any n
n+Np
T
g( Z OF ALY ) > 5, (39)

k=n+1
where g(A) denotes a minimal singular value of the matrix A. According to (33), the persistency of excitation depends
on the sequence of training inputs p™). In [28], it is proved that in the RBF network identification, persistency of
excitation is provided if the inputs p*) are in certain neighborhoods of the network node centers QM.
It is a well established fact that for the projection update the prediction errors e®) always converge into the 26y
deadzone [21]. The convergence result is valid for any regressor vector sequence, i.e., for an arbitrary task parameter
vector sequence {p*}.

3.4 RBF approximation of task-dependent feedforward

Let us return to Problem 1 as introduced in Section 2.4. It is possible to design a task dependent approximation
U(p) of the optimal feedforward vector on the task parameter vector p (5) by using the RBF network approximation
technique discussed in the beginning of this section.

Let us assume that the optimal feedforward vectors U. ; = U.(Q*) are known for certain (discrete) values Q%)
of the task parameter vectors p. Given N, pairs of vectors Q%) € P and U., as {Q"¥), U, = U.(Q™) }kN:"l, we
can approximate the mapping U, (p) over the given domain P of the task parameter vector p by using an exact RBF
interpolation as discussed in Subsection 3.1. This approximation can be also represented by an RBF network of the
form

U(p) = K&(p), (40)

where ®(p) € Ve is the RBF regressor vector (33) and K € RVU-"a is the RBF network weight matrix.
It follows from (23),(24) and (28), (40) that the matrix K can be found from exact RBF interpolation conditions
as

K=[Ud1.. U H, (41)

where H € ®"V+"Ve is the RBF interpolation matrix of the form (27)

H={hQ" - Q")} (42)

i,j=1

12
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Figure 2: Schematics of feedforward controller using RBF approximation of dependence on task parameter vector

The RBF network task-level controller defined by (40) is schematically shown in Figure 2. A sequence of tasks,
each defined by a task parameter vector p is generated externally with respect to the controller. The vector p is
supplied to the input of the system mapping Y = S(U, p) (15) and to the input of the controller, which computes the
feedforward U by using the RBF network approximation. The task parameter vector p changes in discrete time (from
task to task). This change cannot be predicted by the controller and can be considered as an external disturbance
acting on the task completion process. The designed RBF controller provides a feedforward compensation for this
(measurable) disturbance.

Design of the proposed RBF network controller is straightforward. We assume that the dependence (20) of the
optimal feeforward vector on the task parameters is a smooth mapping. Such mapping can be approximated by an
RBF network to arbitrary accuracy, provided the grid of the RBF nodes Q™ is dense enough. Thus, for K = K.

|K.®(p) — U(p)|l < v, (43)

where, as mentioned above, 6y can be made as small as needed by choosing a denser grid of the RBF node centers.
The RBF network approximation weights K. can be computed according to (41) or by another method.

The optimal feedforward vectors U, for the RBF interpolation (41) can be obtained in different ways. The
vectors U, can be computed in the course of numerical optimization by using a detailed numerical model of the
system. An advantage of an RBF network approximation in this case is that it can be used for a fast computation
in real time, while the computationally expensive numerical optimization is done off-line. An application of this
approach in control of car parking is considered in [34], in control of free-flying space robot in [35], and in 3-D slewing
maneuvers of a flexible spacecraft system in [37].

Alternatively, the optimal feedforward vectors can be learned in the course of iterative repetitive experiments with
the system, where the task parameter vector p repeatedly takes the respective value Q®). This approach, discussed
in the next section, does not require detailed knowledge of the system dynamics. An experimental application of
such approach in control of fast motions for a direct-drive robot is studied in [36].

4 Learning feedforward for a given task

This section is devoted to the problem of learning a single optimal shape vector U.. We assume that the task
parameter vector p is fixed. Therefore, we will not write explicitly dependencies on p unless this is needed to avoid
ambiguity. The section has a didactic purpose and exposes some background ideas of learning control that are further
elaborated in more comprehensive approaches of Sections 5 and 6.

4.1 Learning control as on-line optimization

Let us assume that the parameter vector p is fixed. In order to achieve the control goal, a feedforward shape vector U.
has to be found that minimizes the performance index (18). Let us first assume that an estimate G for the Jacobian
matrix G = g—g of the mapping (15) is known for the optimal input U.. Let U™ and Y™ = S(U(")) be input
and output vectors obtained at iteration n. By using the Levenberg-Marquardt algorithm [15], the next minimizing
input guess can be computed as

Ut = U — (In, (p+ pa) + GTG) T (U™ + GT (Y™ —12)), (44)

where p, > 0 is a step length parameter, In,, is a Ny x Ny unity matrix and G = G(U™).
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Figure 3: Schematics of learning update in a feedforward controller

The motivation for the update (44) is as follows [15]. Let us consider a local affine model of the mapping (15) of
the form

Y=Y"™4+GquU-u"m), (45)
Let us also demand that the minimization step length does not exceed a given value d, > 0
Uyt — gy + S("); ”S(")” <dn, (46)

By solving (18) and (45) with respect to U"*Y) and using the Lagrange multiplier method to satisfy the constraint
(46), we arrive at (44). The Lagrange multiplier p, is nonnegative and can be computed once the Jacobian estimate
G and the allowed step length d,, are given. With increase of y1,, in (44), all eigenvalues of the inverted matrix in (44)
increase, hence, the step length ||s(")|| decreases. Therefore, the dependence of u, on d, is decreasing. In practice,
instead of computing u, from d,, usually u, itself is made a parameter of choice. More detail on the method can be
found in [15].

If p is small, the method approximates the Newton-Gauss method; if p is large, it approximates the downhill
(gradient) method. Each iteration in (44), presumes a repeated execution of the same given task; each time using
a different feedforward input, U*) | and measuring the corresponding sampled output vector Y ®) . Thus, (44) is a
learning control iteration. In the commercially available software implementing the Levenberg-Marquardt method,
the step limiting parameter p in (44) is chosen at each step. This, however, requires several evaluations of the
minimized function. In the learning control problems, each evaluation is a completion of the task for the controlled
system and, thus, has a very large cost. Therefore, we are using the update (44) with a constant preselected parameter

The schematics of the discussed learning update is shown in Figure 3. At step k, the feedforward vector U=0®
stored in the memory is applied to the system and the output Yy = S(U(k)) is obtained. This output us used in
the Levenberg-Marquardt update (44) to compute an update for U. The updated value of Uis applied at the next
iteration and so on. As shown in Figure 3, the update uses an estimate G for the sensitivity matrix G(U.).

The update rule (44) presumes that an estimate of the gradient(input/output sensitivity) matrix G is known
and is sufficiently accurate. If unknown, this matrix can be estimated with a finite difference method. The next
subsection presents a simple result showing that the update (44) has certain robustness to error in the estimate G.
Subsection 4.3 discusses a finite difference update for this estimate. Such an update would add an extra feedback
loop for the gain G in Figure 3 and make the learning algorithm adaptive.

4.2 Robust convergence of the learning control algorithm

Analysis of the Levenberg-Marquardt algorithm convergence for a nonlinear problem can be found in [15]. This
analysis assumes that the Jacobian G is known exactly at each step. Herein we consider the update (44) as a part
of a discrete-time closed-loop control system. Following the established approach to analysis of such systems, let us
study robust stability of the linearized loop. We assume that the system (15) is affine in U in the vicinity of the
optimum. The affine model has the form

Y=GU+Z (47)
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In the linear-quadratic setting (18), (47), the Levenberg-Marquardt algorithm (44) converges for any positive
values of the parameters p and p, and it is robust with respect to the error in estimating the matrix G. A sufficient
condition for the convergence is given by the following Theorem.

Theorem 1 Let us consider the update (44) of the system (47) input. The algorithm asymptotically converges for
any initial condition W, if some ko > 1 exists such that for any k > ko the mazimal singular value of the gradient
estimation error satisfies the following inequality

A 2p 4
a(G-G)< —\/m (48)
Theorem 1 shows that the convergence robustness improves for larger values of the regularization parameter p
and is absent if no regularization is performed. At the same time, increasing p increases the steady-state tracking
error ||Y — Yyl for the convergence achieved.
Proofs of Theorem 1 can be found in the papers [24, 36], which also present an analysis of static error for the learned
feedforward depending on the error in the estimation of matrix G. The papers [24, 36] demonstrate experimental
results in application of the learning control update of the form (44) to trajectory control of robotic arms.

4.3 Finite difference update of the gradient

Let us proceed with a situation, where the Jacobian G is not known and we can only evaluate the function mapping
(15) pointwise, by executing the respective task with the given input U and observing the output Y. In such case,
a possible approach is to introduce an affine model (45) of the mapping (15) and update estimates of parameters of
this model from the available input/output measurements.

The most common practically used method for estimating the Jacobian G is the Broyden secant update. Let G™
be an estimate of the Jacobian at the step n. Denote by s variation of input, and by w™ corresponding variation
of the output at the previous minimization step. For a small step length ||s™]|, the updated estimate should provide
fit to the observed data, i.e.,

Gs™ = ™, sM =™ _ =1, ym) _yn=b) (49)

The Broyden update rule can be considered as an application to (49) of the projection estimation algorithm
[21], which is very popular in adaptive control and signal processing applications. The Broyden update is used in
conjunction with the input update (44) and has the form

Gt — G (w(") _ é(")s("))s(")T/(c2 + ”5(”)”2)7 (50)

where ¢ > 0 is a scalar parameter used to avoid division by zero.

For a nonlinear mapping, a local convergence of the Levenberg-Marquardt algorithm with the Broyden secant
update can be proved using the bounded deterioration technique as considered in [15]. The idea of such a proof is that
in the vicinity of the optimum and for a sufficiently small initial error of approximating the gradient G, the algorithm
will converge before the gradient approximation error will have time to grow due to the system nonlinearity.

Let us now consider another method for estimating the Jacobian G, which can be more appropriate if the mea-
surements are corrupted with a noise. In the on-line learning algorithms discussed in the subsequent sections,
approximation errors can be considered as such a noise. Let us write the affine model (47) for the mapping (15) in
the form of a linear regression

V=QU+Z=0w; 6=[Z/c G W:[C}, (51)
where c is a positive scaling constant, 6 e RNy -Nutl g o regression parameter matrix, and W is a regressor vector.
The Broyden gradient update (50) is a two-step estimation algorithm for the regression (51) that first sets Z =

GU D —y (=1 iy (51) and then updates an estimate for G with the projection method. A more natural, one-step
projection estimation algorithm for the model (51) has the form

it — gln) 4 a(n)(y(n) _ é(n)W(n))W(n)T/”W(n)||2, (52)

where " = [ZzW /e ™), WP = [¢ U(k)T]T, and a®) € {0,1} is a scalar deadzone parameter. Unlike the
secant update (49), (50), which uses function values obtained on two consecutive steps, the update (52) uses only
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one function value. This makes it possible to generalize the update (52) for the optimization with changing task
parameters, as shown in the next sections.

Let us write a step of the Levenberg-Marquardt algorithm for the affine model in the form (51). By solving (18)
and (51) with respect to U, and using the Lagrange multiplier method to satisfy constraint (46), we obtain

—1 ~
yrth — g _ (I(p+ [in) + G(n)TG(n)) (pU(”) + G(n)T(Y(n) _ Yd)) , (53)

where V(™ = G™U™ 4 2" We have Y™ = Y™ for the projection update (52), as long as a(™ = 1. Therefore,
(53) coincides with the Levenberg-Marquardt step (44). A more detailed theoretical study is presented in [31]. The
experiments in applying learning control algorithms with an adaptive update of G as considered in this section to
trajectory control of a direct-drive manipulator are described in [36].

5 On-line learning update in task-dependent feedforward

This section considers Problem 3 stated in Subsection 2.4. We assume that a model of the system is available for the
design of the task-dependent feedforward controller. This model is, however, imprecise and the approximation [j(p)
of the optimal control input (1), (13), (16) is not satisfactory accurate.

This section presents an algorithm that allows to update (learn) the approximation U(p) in the course of normal
system operation, i.e., assuming that the sequence p(k) of the task parameter vector is arbitrary. Upon completion of
each task, characterized by the task vector p™), the output vector Y *) is used to compute an update of the controller
approximation U(p) available at this step. In what follows, we propose and study such an update.

5.1 Approximating system sensitivity

Similarly to the learning algorithm considered in Section 4, the algorithm of this section updates the guess of the
optimal feedforward control based on the available estimate of the system input-output sensitivity matrix G in (17).
Unlike Section 4, in this section we have to consider the dependence of this sensitivity matrix on the changing vector
p. Let us introduce the matrix-valued function defining the system sensitivity at the optimal feedforward input

G.(p) = 250.p) , (54)

aU U=Ux(p)

Though the mapping (54) is not known exactly, it can be approximated based on the available system model, in the
same way as the approximation U(p) for the optimal control is built in Section 3.

Let us assume that for each of the RBF approximation nodes p = Q) used for building approximation of the
optimal feedforward in Section 3.4, the sensitivity matrix G., = G.(Q"*)) is computed along with the optimal
input vector U, = U (Q(k)). The sensitivity matrix would usually be computed as a by-product of a numerical
optimization procedure (such as Levenberg-Marquardt) applied to the available system model to find U (Q(k)). In
the process of the numerical optimization, a matrix G.(Q*)) can be obtained, for instance, by a finite difference
method.

Similarly to the approximation (40) for the mapping U.(p), let us use an RBF network approximation for the
mapping G« (p). Unlike a vector-valued mapping U.(p), the mapping G.(p) is matriz-valued. To facilitate work with
such mappings, let us introduce the vectorization operator vec(-). For a matrix A € R™", the vector vec(A) € ™"
is composed of all the entries of A, column by column. An RBF network approximation G(p) for G«(p) can be
presented in the form, similar to (40)

vee(G(p)) = Y _ vec(Gy)h(p — Q) =T®(p), peP, (55)

where G; € RVY MU are the RBF network weights, and ®(p) is the RBF regression vector (33). Note that (55) can
be also represented in the form

Gp) =) Gihlp—QY) (56)
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The weights of the RBF network (55) can be computed so as to implement exact RBF interpolation of the matrices

G = aq. (Q(k)). In this case, the network node centers in (55) coincide with the data points p = Q™ and the
weight matrix I’ can be computed similarly to (41) as

r= [vec(Gil)) ... vec(G(n,)) H (57)

where H is the RBF interpolation matrix of the form (42).

Under general conditions, the function G.(p) has derivatives, which are uniformly bounded on P, provided that
the derivatives of U.(p) are bounded. Hence the error of the RBF network approximation (55) can be made small
for high order N, of the expansions (55).

Computing and storing the approximation G(p) of the sensitivity matrix G (p) is similar to the usual practice of
storing the system gain information along with setpoints as a part of a feedback controller design. It is particularly
related to gain scheduling methods, where gain and setpoint tables are stored in the controller.

5.2 Local Levenberg-Marquardt update

In this subsection we assume that the RBF approximation U(p) (40) is not accurate enough and design an update for
the feedforward, using the input-output data for the system (15). Let us assume that in the task k an input vector
U™ (13) was applied to the system, and an output vector y® (14) was obtained, while the task parameter vector
was p*). Note that the applied input will be U*) = U(p*)), where U(p) is the approximation (40) of the optimal
feedforward mapping as available at this step.

Following the usual practice of iterative optimization, such as discussed in the derivation of the Levenberg-
Marquardt algorithm in Subsection 4.1, let us consider an affine model of the mapping (15). A local model valid for
the current task, i.e., for p = p*), can be obtained by using the input/output data U® | v® and the sensitivity
estimate G/(p) (55). This local affine model has the form similar to (45)

V(') =v® + ") w -v™) (58)

By substituting the affine model into the performance index (18) and finding the minimum, we arrive at the
optimality condition

Gp™) ¥ (™) - Ya) +pU =0 (59)

where Y (p®) is defined by (58).
By solving (58), (59) and limiting the update step as in (46), we obtain the Levenberg-Marquardt update similar
to (44). This update gives us U = U®Ik+1) "the a posteriori optimal control input for task k (task parameter vector

p=p"),
ikt rrk) + AU(k),
~ ~ —1 ~
AW = —(GTE"EEM) + (p+wI)  (GTEM)YP —Ya) +pU "), (60)
where AU is the update step for the feedforward U. Note that the update (60) is calculated assuming that the task

parameter vector is fixed, p = pt*). In fact, our goal is to calculate an update for the RBF approximation controller
(40) for all p. This can be done based on the update (60) as explained in the next subsection.

5.3 Update of RBF approximation in the feedforward controller

As mentioned above, we assume that the feedforward vector U applied at the step k is computed using the task-
dependent RBF approximation controller (40) shown in Figure 2. In accordance with (40), this control has the
form

U — K(k)q,(p(k)) (61)

where K®) is the weight matrix of the feedforward RBF controller available at step k. Based on the a posteriori
optimal feedforward solution (60), the weight matrix K should be modified so that the controller would yield this
new optimal solution for p = p(k). The latter condition can be written as

Ukl — K(kJrl)q)(p(k)) (62)
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Figure 4: Schematics of learning update in a task-dependent RBF approximation feedforward controller

where K**1) is the updated RBF network weight matrix.
By using (60) and (62), we obtain a projection update for the controller (61) in the same way as (36) is obtained
from (35). Modified to include a deadzone compensation for the approximation error, this update has the form

KO = KO —a®av®e o)/ 20| (63)

where a®) = {0, 1} is a deadzone parameter and AU is defined by (60). The update (60), (63) is analogous to the
projection update (36). As one can easily check by substitution, for a®> = 1 (62) holds exactly. For a*) = 0, no
update is performed.

Figure 4 illustrates the proposed design of the learning controller. The task parameter vectors p are generated
externally to the diagram of Figure 4 and are supplied to the controller (40) computing an RBF approximation for
U.(p). The RBF approximation in (40) is updated in accordance with (60), (63) depending on the system output
U™ The update (60) uses the approximation for the Jacobian G(p) in (60), which is computed by the RBF network
(55). The weights of the network (55) are computed off-line, e.g., according to (57).

The deadzone parameter a'*) in (63) should be chosen similarly to (38) in order to ensure the algorithm conver-
gence. The deadzone must compensate for the approximation error (43) and also initial error of the approximation
(61). It is possible to demonstrate deadzone convergence of the proposed algorithm and estimate the necessary dead-
zone by using a modification of standard convergence results in [21]. However, presenting such proof is beyond the
scope of this paper. The algorithms of this section have been applied by the author in control of slewing maneuvers
of a flexible spacecraft system with nonlinear rotational dynamics.

6 Adaptive learning of task-dependent feedforward

This section proposes a solution to Problem 4 stated in Subsection 2.4. The problem is to learn (update) an
approximation U(p) (18) of the optimal feedforward input for an arbitrary sequence of the parameter vectors p (5) by
using only input/output data. Unlike previous section, an accurate approximation for the Jacobian G.(p) dependence
on the task parameters is no longer assumed to be available in advance. The available approximation of the Jacobian
is assumed to contain an error and is refined on-line as a part of the learning controller we are going to develop.

In order to solve the stated problem, we introduce an affine RBF network model of the system mapping and
estimate this model on-line. The algorithm discussed in this section resembles the algorithm for on-line parametric
nonlinear least square optimization proposed and studied in [29, 31]. This algorithm can be viewed as a discrete-time
adaptive algorithm for nonlinear system control.
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6.1 Affine RBF Network Model of the System Mapping

The on-line parametric optimization algorithm of [29] we are about to derive can be considered as an extension of
the Levenberg-Marquardt algorithm. Similarly to a standard derivation of the Levenberg-Marquardt algorithm given
earlier, our derivation here will be based on an affine model (45) of the mapping (15). Such affine model can be
written in the form

Y =G@)U + Z(p), (64)

where G(p) and Z(p) are (smooth) matrix and vector functions of p. For a fixed task-parameter vector p, the model
(64) is affine in U; at the same time, the model depends on p in a nonlinear way.
Let us introduce functions:

Y.(p) = S(U«(p),p),  Z«(p) =Yi(p) — G(p)Ux(p) (65)

where G.(p) is given by (54). Similarly to (56), let us use RBF networks for approximating the functions Z.(p) and
G.(p). Let us assume that these mappings can be represented in the form

Ng

Z.(p) = Zsh(p—QY) + 62(p), 62| <6z, peE P, (66)
j=1
Na .

G-(p) =Y Guhlp— QD) + 6G(p), [5G <dc, pe€ P, (67)
j=1

where Z.; € RYY | and G.; € RVY VU are the expansion weights. The residual errors §7 and dg can be made small
for high order N, of the expansions (66), (67), i.e., by selecting a sufficiently high density of the RBF network nodes.

We are now in position to explain the basic algorithm of [29, 31], which we are going to use for adaptive update
of the controller. As in Section 5, when deriving the algorithm, we neglect the approximation errors 0y, dz, and
dc. These errors are taken into account in the algorithm convergence analysis of [29, 31]. In the absence of the
approximation error in (42), (for 6y = 0), (40) can be represented in the linear regression form

U.(p) = K-2(p), (68)

Similarly to (68), we can present (66) and (67) in the form of regressions linear in the weights Z.; and G.;. With
these regression representations (66) and (67) in mind, the model of the form (51) can be represented as the following
regression:

V =0%(@p,U), 0¢cRN NNt gp 1) e NN HD, (70)

d(p,U) = d(p)oW, W =[cU"]", (71)

where ® denotes the Kronecker (direct) product of matrices, and ¢ > 0 is a scalar scaling parameter, ®(p) is the
regressor vector (33), ®(p,U) is an extended regressor vector, and © is the RBF network weight matrix. For a fixed
parameter p, the model (70) has the form (64). By substituting © =[Z1/¢ G1 ... Zn,/c Gn,]into (70), one obtains

an affine model of the form (64), where

Zp) =) Zikp—QY), Gp)=)_ Gihp—QY) (72)

We assume that for © = O, and in the absence of the approximation errors, i.e., for dy = dz = Ju = 0, the affine
model(70) gives exactly the linearization of the mapping (15) in the optimum (66), (67). In other words,

O. =[Zu/c Gui ... Zun,]c Gun,] (73)

Note that the approximation (72) for the function G.(p) (54) has the same form as the approximation (57)
considered in Section 5. Unlike Section 5, where the approximation (57) was estimated using RBF interpolation of
the pre-computed data on the Jacobian matrix, in this section we consider an algorithm that estimates (72) by only
using values of the mapping (15), i.e., input and output vectors for each task.
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6.2 Adaptive Update Algorithm

The algorithm we are going to present is an extension of the Section 5 algorithm that updates a guess of the optimal
weight matrix K, in (68). Our goal is to build an approximation of the form (68) to the optimal input mapping
U.(p). We assume that a sequence of the information vectors {p*)}% , is given. Let K*) be the value of the input
parameter matrix in (68) at the step k. Then, in accordance with (40) and similar to (61), the input vector for task
kis U® = K®&(p*). Let us denote by

U(’H—Uk) — K(k)q)(p(k'-i-l)) (74)

the output of the controller (40), which would be obtained at step k + 1 if the matrix K*) is not updated. As in
Section 5, we denote the output vector for task k by Y¥) = S(U(k),p(k)).

Let us demand that, similarly to the standard Levenberg-Marquardt method, the step of the control update
should be bounded. Instead bounding step for the updated variable k, we will consider the change in U that this
update brings, and bound this change. We will use condition similar to (46) but somewhat differing from it

Ukt — rletiie) 4 S(k), Hs(k)” < dy, (75)

If in (46) we do not consider dependence on p, in (75) we do. Therefore, both U* %) (74) and U**Y given by
(61) are computed for the same task parameter vector p = p(kH)) before and after the update of the RBF weight
matrix k), respectively. The output of the off-line RBF model (70) at the step k + 1 is

PEED — @e(ptth) ykth) (76)
PO o kD)0

where W = [0 s(k)T]T and YETUR) = @@(pk+D) y*+R)Y - By substituting ¥ *+V in (76) as YV and U**+Y in

(74) as U into (18), and optimizing the minimization step s**) subject to the constraint ||s**|| < dj,, we obtain
S(k) — —(INUHk + f)(k+l))—1 (éT(p(k+l))(f/(k+llk) _ Yd) + U(k+1\k)) (77)
D&Y — g + GT(p(k+l))G(p(k+l)) (78)

where uy, is a Lagrange multiplier that is introduced to comply with the step boundedness condition ||s|| < di. As for
the classical Levenberg-Marquardt method explained earlier, the dependence of uj on dj is monotone nonincreasing
and instead of empirically choosing dj, first and computing the Lagrange multiplier ux based on dg, it is advisable to
make py, itself a parameter of choice. Recall that we update the input U indirectly, by updating the weights of the
RBF network approximation for U, (p). According to (68), (74), and (75) we can write

s — (K(k+1) _ K(k))tI)(p(k+1)) (79)

By finding a least square solution of (79) for the RBF weight matrix update K*+1 — K®) and substituting (77) for
s(k), we obtain a step of the proposed basic parametric NLS optimization method:

" (p*t)

(k41) _ po(k) AR+ =1 (AT (k1)) (g (e+1]k) (k+11k)
K =K (Inypx + D ) (G (p Y Ya) +U ) 1@ (p*+D)]|]2

(80)

where G(p) is defined by (72); D™, by (78); U*+1%) by (74) and (33); and ¥ #+1%) is defined in accordance with
(70), (74), (76) as Y10 = @&(pt) pk+iik)y,

As discussed above, the affine model (64) can be written in the regression form (70). Therefore, at each step of
the proposed update algorithm, we can use the projection update for an estimate of the parameter matrix © in (70).
This update has the form

O+l — gk 4 a(k)(y(k) _ @(k)(i)(k))i,(k)T/”(i,(k)”2, (81)

where ©*) is the regression parameter matrix at step k and k) = @(p(k), U(k)) is an extended regressor vector at
step k. The update (81) can be considered as a generalization of the Broyden update (50). In (81), a’*) is a scalar
deadzone parameter that is introduced in the usual way to compensate for the influence of the mismodeling error.
The deadzone parameter a™ is zero if the prediction error Y® —0®e*) is within the mismodeling bounds defined
by the approximation errors dy, dz in (66), (67); a™ is unity otherwise.
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Figure 5: Schematics of adaptive learning update in a task-dependent ‘RBF approximation feedforward controller

Figure 5 illustrates the designed controller. Vector p is defined externally to the control diagram of Figure 5 and
acts as a disturbance for control (18). The Levenberg-Marquardt update (80) modifies the weight matrix K in the
RBF network controller (18). The Levenberg-Marquardt update (80) uses estimates of the output ¥ *+/%) (75) and
of the Jacobian (sensitivity) matrix G(p) obtained from the affine model (70), (71). The external loop in Figure 5
updates an estimate for this affine model according to (81).

The discussion on the choice of the deadzone parameter a® in (81), as well as a proof for the algorithm conver-
gence, are considered in [29, 31]. To ensure convergence of the estimation algorithm, a small self-excitation signal
can be added to the computed control U®) before it is applied to the system. This self-excitation is needed to make
the regressor vector sequence in (81) persistently exciting as discussed in [28, 29].

6.3 Discussion

Equations (33), (71), (80), and (81) constitute the basic algorithm for on-line parametric NLS optimization first pro-
posed in [29]. An analysis of the algorithm convergence is presented in [29, 31]. For a generic nonlinear mapping (15)
it is only possible to prove local convergence of the algorithm. The locality here means that the initial approximation
to the nonlinear feedforward control mapping (68), (33), should be sufficiently close to the optimum. The domain of
the algorithm convergence theoretically ensured in [29, 31] depends on the degree of the system nonlinearity (second
derivative bound).

The local convergence results of [29, 31] demonstrate that the algorithm of this section is consistent. It can be
shown that under certain persistence of excitation conditions (such as discussed in [28]) the parameter matrix ©
of the RBF affine model (70) converges into a deadzone neighborhood of the matrix (73). At the same time, the
approximation (61) of the feedforward converges into a neighborhood of the “best” approximation (43). The practical
usefulness of the algorithm depends on its performance in a particular application. The next subsection considers
one application of the proposed approach.
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6.4 Application example: Learning control of flexible arm

This section applies the developed learning algorithm to control of fast motions in a flexible-joint arm. No a priori
knowledge of the system dynamics is assumed to be available. Let us consider a planar flexible-joint arm example
as introduced in Subsection 2.2, and the problem of point-to-point control for such arm. We assume that the joint
torques of the arm are computed according to (10), where the desired trajectory is planned as in(12).

The control problem is to compute feedforward u(-) so that the arm comes to the final position ¢4(T") = v at time
T = 1.5 without oscillations. This is a difficult problem, since the oscillation period for the lowest eigenfrequency of
the system is close to unity.

We divide the motion interval [0, 7] into seven subintervals [j,7;11], (j =0,...,7), 70 = 0,73 = T and consider
the feedforward input (13), U € R!2, that is piecewise linear on these subintervals and zero at times 0 and T'. In
other words, the shape functions ¢;(-) in (13) are the first-order (triangular) B-splines. We monitor the arm motion
on the interval [T, Tf], Ty =T + 0.5 at L = 14 uniformly spaced output sampling instants t; =T, ..., t14 = Ty.
The measurement vector y comprises drive angles and joint deformations, y = [¢© (¢ —7)T]" € R*. By sampling the
vector y at instants t;, we obtain the output vector ¥ € R°°.

The task mapping (15) in this problem depends on the task parameter vector p (5) that includes the initial and
desired final configurations of the arm. Since the system is cyclic, the control depends only on the wariation of the
first joint angle. Thus, we can write the task parameter vector p in the form

p = [92a(0) q2a(T) (q1a(T) — q1a(0))]" (82)
We assume that the task parameter vector (82) remains bounded inside the following domain
3T

P={peP: 7 <qu0),qu(T) <

To implement the adaptive task-level learning algorithm of Section 6, we use a network of the Gaussian Radial
Basis Functions with the node centers Q(j) placed on a uniform mesh 5 X 3 X 3 in the task parameter space. When
tmplementing the control algorithm, we assume the dynamical model of the system to be completely unknown and
set the initial estimate of the parameter matrix © in (81) to be zero.

The adaptive update algorithm of Section 6 was implemented as a Matlab program on an 1.2 MFlops computer,
and the arm motion simulation was coded in C. The task-level control algorithm does not exploit any initial knowledge
of the controlled system dynamics available for simulation and uses just the input/output data for the control tasks.
Given the input and output dimensions U € ®% and Y € ®°¢, and the number of the RBF network nodes N, = 45,
the sizes of the matrices in (71) are ®(p,U) € R°° and © € R*%5%5. These sizes cause no computational problems,
as the updates (80) and (81) only include matrix multiplications, and the matrix inverted in (80) has the (15) size.

For our Matlab implementation of the algorithm, the control update (80) took 0.16 sec, and the affine model
update (81), 0.23 sec. These computational delays could be acceptable even for the feedforward control of a real-life
system, since the updates need to be done only once for each motion. The computation of control in accordance with
(40) takes less than 25 ms, which suggests that the proposed algorithm is feasible for on-line control, especially if the
updates (80) and (81) are scheduled outside time-critical feedback loops.

When simulating the planar arm motion, we assume that the arm links are uniform rods of unit mass and length.
We take the moments of inertia of the drive rotors as J = diag{2, 2}, the damping in drives as B = diag{0, 0}, and
the angular stiffnesses of the lumped elastic elements in the joints as K = diag{200, 200}. We further assume that
the angular position gain of the PD feedback controller (10) is K. = diag{100, 100}, and the angular velocity gain
is B. = diag{40, 40}. Note that for the above parameters of the system, the period of oscillations with the lowest
eigenfrequency is about 1, if the elbow angle is 37/4. The motion time 7' = 1.5 is close to this period, which makes
the control problem very difficult. We have found that adding a small measurement noise to the simulated system
output does not change the algorithm performance in any visible way. The reason is that for a random parameter
vector sequence p'®), the error approximating the system mappings with the RBF networks in the algorithm already
acts in the same way as an output noise.

In a numerical experiment, a sequence of the task parameter vectors p is generated so that the initial arm
configuration coincides with the final arm configuration at the end of the previous task. Figure 6 shows the progress
of the error ||Y —Yj|| with the optimization iteration number. One can see that the control error converges to a small
acceptable value over the entire parameter vector domain. The error, which is achieved at the end of the optimization
process, is about 20 times less than the initial error, which is obtained without feedforward. The oscillations of the
motion error in Figure 6 are related to the variation in the arm motion amplitude as new task parameter vectors p
are randomly generated in the course of the learning.

Figure 7 illustrates the feedforward control computed as a result of the RBF network approximation after the
algorithm convergence for the motion with the initial joint angles A = [0° 60°]7, and the final angles v = [70° 105°]7.

—5 < 0a(T) — qu(0) < 5} (83)
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Figure 6: The progress of the terminal error ||Y|| with the optimization iteration number. The arm moves through a
randomly generated goal positions sequence.

Figure 8 shows the joint deformations for the same motion. Thanks to the computed feedforward, the deformation
is small after the time 7" = 1.5, which means the arm arrives to the final position without visible oscillations. The
acceptable motion accuracy is achieved despite the high motion speed, low feedback gains, moderate network size,
and large covered domain of the task parameters (83). For comparison, Figure 9 shows the deformations for the same
motion in the absence of the feedforward.

Figures 7 and 8 illustrate an example of the learned motion pattern produced by the network after the end of the
training procedure. Figure 7 shows the time-dependence of the feedforward control computed by the network. Figure 8
illustrates the time histories of the joint deformations. Thanks to the computed feedforward, the deformation is small
after the time T = 1.5. The acceptable motion accuracy is achieved despite the high motion speed, low feedback
gains, moderate sizes of the RBF networks, and large covered domain of the task parameters (83). For comparison,
Figure 9 shows results for the same motion as in Figure 8 obtained in the absence of the feedforward. In Figure 9,
the oscillations continue long after the desired terminal time.

7 Conclusions

We have presented a new paradigm and RBF network architectures for task-level feedforward control of nonlinear
systems. These algorithms belong to the realm of intelligent control and work at a higher hierarchical level compared
to classical feedback or programmed control algorithms. We assume that the system operation can be considered
as a sequence of clearly defined tasks and compute feedforward control for each task. The learning features of the
proposed algorithms are aimed at optimizing the feedforward from one task to another based on the performance
for a completed task. Dependence of the feedforward control on the task parameters is approximated using an RBF
network.

The surveyed applications of the algorithms demonstrate their usefulness. This is illustrated by this paper example
of point to point control of a flexible articulated arm. Computational resources required for practical implementation
of the algorithms are moderate, especially since the algorithms need to run only once for each task. The application
of the proposed paradigm can help to solve difficult practical control problems, for which other known methods are
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Figure 7: Feedforward for a test motion after the algorithm convergence
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Figure 8: Joint deformations for the test motion with the approximated feedforward
Shoulder joint - solid, elbow joint - dashed

not adequate. The algorithms can also be extended to allow adaptive feedback control of nonlinear systems.

The main limitation of common approximation-based approaches to nonlinear control, such as neural networks,
is the necessity of completing many learning trials in order to train the network. Generally, a number of examples
required for the network identification (training) grows exponentially with the input variable dimension. In the
proposed paradigm, such input variable is the task parameter vector p. Thus, the proposed task-level control technique
offers the best advantage compared to the state-space learning approaches if there are few task parameters and the
state dimension is high. This advantage is achieved because the proposed algorithms do not attempt to approximate
full nonlinear dynamics of the controlled system and limit themselves to optimizing performance just for a parametric
family of control tasks.

First joint - solid, second joint - dashed

Deformation (deg.)

0 0.5 1 15 2 25
Time

Figure 9: Joint deformations for the test motion with zero feedforward
Shoulder joint - solid, elbow joint - dashed
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