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Abstract

This paper studies practical algorithms for parametric identification of cross-directional processes from
input/output data. Instead of working directly with the original two-dimensional array of the high-
resolution profile scans, the proposed algorithms use separation properties of the problem. It is demon-
strated that by estimating and identifying in turn cross-directional and time responses of the process,
it is possible to obtain unbiased least-square error estimates of the model parameters. At each step,
a single data sequence is used for identification which ensures high computational performance of the
proposed algorithm. A theoretical proof of algorithm convergence is presented. The discussed algorithms
are implemented in an industrial identification tool and the paper includes a real-life example using paper
machine data.
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1 Introduction

The paper considers an application-oriented model of a distributed-parameter process where distributed
measurements and control inputs are discretized both in space and time. The process model assumes
separation between the spatial response shape and time-response of the process. That is the process
transfer function is a product of a scalar transfer function describing process dynamical response and
a constant matrix describing spatial response of the process. Both the transfer function and spatial
response matrix need to be identified from the collected data. Transfer functions that are a product of
two conceptually different multipliers are encountered in classical problems of simultaneous identification
of process and disturbance dynamics. Such problems can be solved by using the Generalized Least
Squares (GLS) algorithm, e.g., see [12]. The GLS algorithm iteratively identifies one of the two unknown
transfer functions in turn, while assuming that another one is known. The same general idea is used in
this paper.

While the considered model and the algorithm are general for a class of problems, the paper is
geared towards an application to the industrial process of manufacturing a web of paper or plastic. In
cross-directional (CD) control of a paper or plastic film machine, an array of actuators controlling web
properties are placed across the moving web. Such web properties as weight and thickness are usually
required to be uniform across the web. In paper manufacturing, parameters such as moisture, smoothness,
and gloss can also be controlled. Downstream from the CD actuators, the profile of the controlled web
property is determined by a high-resolution measurement system and fed back to the CD control system
on a periodic basis.

In modern industrial CD control systems, control of a single profile, such as a paper weight profile,
might include more than 300 actuators and 1000 databoxes or samples across the profile. A few hundred
profiles can be collected in a single identification experiment. Processing and identification of such two-
dimensional arrays of data requires highly optimized computational algorithms.

Several prior papers on identification of CD processes have been published. Many of them, e.g.,
[8, 3, 9, 14] consider application of modern time-series analysis methods to CD process identification.
Such methods, however, are not very practical because of an enormous volume of computations associated
with processing time series for each of the profile databoxes and a significant amount of process noise
typically present in the data. Furthermore, a direct application of time-series analysis might result in

highly complicated models, which are difficult to use in control design and tuning.



In this paper, we describe a practical approach to distributed process identification based on identifi-
cation of a parametric model. The proposed approach describes the identification results in an intuitive
way (through the process spatial and time responses), provides for optimal least square identification,
and is very efficient computationally. This is achieved by exploiting such a feature of the problem as a
separation between spatial and time-response models. The approach is based on a separable model of
the distributed process, which is introduced in Section 2.

The contributions of this paper are as follows. The paper demonstrates that the general problem of the
distributed-parameter process identification from two-dimensional data can be separated into two one-
dimensional least square problems of the spatial response and time-response identification. It proposes
an iterative algorithm for solving the overall identification problem with a two-dimensional data set as a
series of one-dimensional problems. The algorithm is demonstrated to be convergent and give unbiased
estimate of the process parameters.

The paper presents an example of the algorithm application to paper machine model identification.
The design and practical applications of an industrial identification tool based on the discussed algorithms

are described in more detail in [6].

2 Identification Problem

Measurements of a distributed parameter process, such as CD process, are characterized by a profile
(vector) of the process data sampled at regular spatial intervals. The profiles are obtained from a
measurement device and are available once every control sample. The profile at discrete time ¢ is described
by a vector p € ™. The manipulated variables of the process are setpoints of the actuators influencing
the process. These actuators are usually placed at regular spatial intervals across the web. It is assumed
that the actuators move once per control sample interval. The control input to the process is defined by
the actuator profile u(t) € R™.

Consider the following control-oriented model of the distributed process relating the manipulated

variables and the obtained profiles:

p(t) = vGg(z"")ul?), (1)

where G € R™" is a spatial interaction matrix, and g(z~!) is a scalar function of the unit delay operator

2~ ! defining the process pulse response. The scalar parameter v defines the overall gain of the process



and the role of this parameter will be explained further on. The model (1) assumes that the process
time-response does not change in space.

Models of the form (1) are commonly used in the industry. They have been studied in many papers
on cross-directional process control and identification, e.g., see [2, 8, 3, 7, 14]. The identification approach
we are going to pursue for the model (1) is based on the fact that the time response model g(z~') and
the spatial interaction model G enter the overall transfer function (1) as separate multipliers.

Let us assume that the process time response can be described by a parametric model of the form

g(z"") = g(z"0r), (2)

where 07 is a vector of the model parameters.
To describe the spatial interaction model, we assume that the process response to each actuator has

the same shape, so that the entries of G have the form
Gy, = b(dsk — ¢j,05), (3)

where b is a continuous function of the spatial coordinate, d; is a spatial distance between the measurement
samples (databox width), ¢; is a coordinate of the response center for the actuator j, and g is a parameter
vector describing the model of the spatial response shape. We assume that the spatial coordinate is
counted from the beginning of the first databox.

In addition to the response shape, the spatial model is described by a mapping (alignment) model.
The alignment model describes how the coordinate c; of the spatial response center depends on the spatial

position of the respective actuator. This model is

c=f(0a); c=lc1 ...cnl, (4)

where the vector ¢ collects the response center coordinates and 6 4 is a vector of the alignment parameters.
In addition to the overall offset and shrinkage of the web between the actuators and the measurement
site, 4 may include parameters describing the paper web shrinkage due to the drying process or the
expansion of a plastic film in the extrusion process. For industrial CD control systems, the CD mapping
model (4) is the most important part of the CD process model for such systems.

In accordance with (3) and (4), the overall matrix G is defined by the parameter vector

bc =05 04]" (5)



The above described model can be identified from the data collected in a specially arranged identifi-
cation experiment. The industry practice is to perform such an experiment in the form of a “bump test”.
In a bump test, the control loop is open and several actuators are stepped (bumped) one or more times.

We will further assume that in the identification experiment, the actuator setpoints change such that
u(t) =Ua(t), U€eR", a(t)eR (6)

where U is the bump profile and a(t) is the amplitude of the bump. This is in accordance with industrial
practice. Typically, a(t) would take one of the values {—1,0,1}. The measured profile data collected in

the identification experiment are put together to form a data matrix

Based on the above discussion, the identification problem can be formulated as follows.
Let the process input (6), where ¢ = 1,... , N, and the process output data (7) be given. Assuming

the process model (1)—(4), find the vector of the model parameters
0=y o7 601", (8)

where ¢ is given by (5).
The identification algorithm should generate unbiased estimates of the parameter vector. This means
that, in case where the data (6), (7) is indeed obtained for the process described by (1)-(4) for the

parameter vector
o' =y oy o], (9)

then the obtained estimate of 6 should coincide with 6*.

It is practically important that the identification algorithm is simple and has high computational per-
formance. For the data set sizes typical in the distributed-parameter control problems, algorithms might
take an unreasonable execution time, unless they are carefully designed. An algorithm for distributed-

parameter process identification satisfying the above requirements is proposed in the next section.



3 Iterative identification algorithm

We assume that initially, at ¢ = 0, the process is at a steady state. By combining (1) and (6), we can

present the modeled process output p in the identification experiment in the form.

p(t) = ypu(Oc)h(t;0r) (10)
pu(fc) = G(Oc)U € R™, (11)
h(t;07) = g(zfl, Or)a(t), (t=1,...,N), (12)

where the profile p, defines a spatial response to the actuator excitation profile U in (6), h(t) defines a
time-response of the process to the excitation sequence a(t), z~! should be considered as a unit delay
operator, and N is the number of the collected profiles.

The identification problem to be solved can be formulated as a least square fit of the model (10)

against the data (7). The parameter vector € (8) can be found by minimizing the following loss index

{7,67,0c} = argmin |P — ypu(0c)h(07) 17, (13)

where h(07) = [h(1,01) ... h(T,07)]%, || - ||% denotes the squared Frobenius norm of the matrix (sum of
all squared matrix entries).
By using standard equalities relating the Frobenius norm and the matrix trace [1], the loss index (13)

can be presented in the form
1P = ypuh |7 = Tr (P = puh”)" (P = puh™)) = |1PII7 + 22101 Ipull* — 27, PR (14)

where || - || denotes the Euclidean norm of a vector.

Without a loss of generality, it is assumed that the parameters 8¢ and 01 are chosen such that always
18(67)]1 = [lpu(Bc)II” = 1 (15)

This is possible for the model (1), because the scaling of the overall gain is done by the parameter .
For any given parameter vectors ¢ and 67, we can find v by minimizing (14). Taking (15) into

account, the estimate of v minimizing (14) is given by

v = szh =hnT"PTp, (16)



Assume that the parameter vector 6¢ is known (G is known). By computing 7 in (14) according to

(16), the conditional estimate of the time-response model parameters f7 in (13) can be found from

Or = argmin(|h(07) —h|*+...) (17)
h = Plpu/y (18)
where ... denotes terms independent of 7 and h € RN is an estimate of the process time response h(t).

The vector h (18) is obtained by cross-correlating the collected spatial profiles p(¢) with the predicted
spatial response shape p,. The problem (17) is a standard single-input, single-output identification
problem that can be readily solved by one of the standard parametric identification methods. The reader
is referred to [10] for discussion of the standard parametric identification approaches and to [6] for an
application example similar to problem (17).

Let us now assume that the time-response parameter vector @7 is given (h = h(67) is known). By
using (16), the optimal conditional estimate of the spatial model parameter vector fc in (13) can be

found by solving the following problem

0c = argmin(||p,(0c) — pull> +...) (19)
pu = Ph/y (20)
where ... denotes terms independent of O¢, 7y is given by (16), and p, is an estimate of the process

spatial response p,,. The spatial response estimate p, is obtained by correlating the time history for each
databox with the single predicted time-response h(t). The problem (19) deals with identification of the
spatial shape parameters ¢ for a single spatial response profile and is much simpler than (13). Such
problem is discussed in [4, 5].

We propose the following iterative algorithm for solving the identification problem (13).

Algorithm 1 Assume that initial estimates of the parameters Or and 0¢ are given. At o step k of the
algorithm use the estimates ch) and Ogc) to compute the predicted responses h and p, according to (11),

(12). Use h(ch)) and expression (16) for optimal v to compute p, in (20). Using the obtained vector

Pu, solve the identification problem (19) to obtain the estimate H(CIJH_I). In the same way, use pu(ﬁg)) and

to solve the identification problem s and obtain the estimate . Repeat the iterations
16 lve the identificati blem (17), (18) and obtain, the estimate %Y. R he iterati

as described above till the convergence is achieved.



In practice, initial estimates for identification parameters can be obtained from physical system consid-
eration or by using a coarse global search procedure. The experience in applying the proposed algorithm
to real-life paper machine data shows that it converges very fast: after 2-3 iterations. One of the reasons
for the fast convergence is that the identification of 67 assuming inaccurately known 6¢ and vice versa
can give fairly accurate result. A formal discussion and references on such “nuisance parameter” problem
can be found in [13].

Algorithm 1 is very efficient computationally, as it reduces the identification problem (13), which
is essentially a two-dimensional problem, to a series of one-dimensional identification problems. The
intermediate and final identification results for the proposed sequential iterative algorithm are intuitively
clear, since they can be presented to a user as a fit of the model spatial response p,(0c) against the
estimated process spatial response p,, and the model time-response h(67) against the estimated process
time-response iLu

Theoretical justification of the algorithm convergence is the subject of the following section.

4 Tterative algorithm convergence

Let us describe the iterative update of Algorithm 1 in a more formal mathematical way. As a part of
this algorithm, ¢ is determined by solving (17), where h = h(07), py, = pu(fc), and -y is defined by (16).

Given 07, the optimal estimate vector 8¢ can be determined by solving the equation

a“pu - ﬁuHZ _

Or.00) =
fe(Or,0¢) 00,

0 (21)

Similarly, the optimal estimate for 67 is determined by solving (19), where h = h(67), py = pu(0c),

and <y is defined by (16). The loss function minimum condition in this case has the form

b —h|I* _

fT(oTaOC) = 89T

0 (22)
By using (21) and (22), an iteration of Algorithm 1 can be presented in the form

ggc+1) _ ¢C(9¥c)) (23)
ggcﬂ) _ ¢T(9g€))

where ¢c(f7) is the implicit function obtained by solving (21) with respect to 07 and ¢r(0¢) is the

implicit function obtained by solving (22) with respect to 0¢.

The convergence properties of Algorithm 1 are given by the following Theorem proved in the Appendix.



Theorem 1 Assume that the identification data (7) is generated by the process of the form (1)-(5) with
the input (6)

P = ypu(95)h" (07) +E, (24)

where the matriz Z € K™ contains the measurement noise and 0, = [, 0("}T 9§‘~T]T is a vector of the

true process parameters in (24). Assume further that the Jacobian matrices

_ Ipu(fc)

GC - 890 y (25)
_ Oh(fr)

Gr = 967 (26)

are of the full column rank for the parameter vector 6 (8) being in an open neighborhood of the parameter
vector 0,. This assumption means that the parameters 0c and O are nominally identifiable from the
process data produced with the excitation input used. Assume that functions py(0c) and h(07) in (14),
(21), (22) are twice continuously differentiable.

By characterizing the noise = through the following parameters
& =E"pu(00), & =IERODI, &= IE"GeOD)I, &= IEGH(67)], (27)
the following statements can be established

1. A positive constant &y can be found such that for max (&1, &2, &3,&4) < & the Algorithm 1 iterations
converge in an open neighborhood of the point 0 = 0* to a single solution - an estimate of the

parameter vector 0%,

2. This estimate is not biased, i.e., for &, — 0, the estimate converges to 6*.

Note that the noise parameters (27) will be vanishing small for a broad class of the bounded random

noise models provided the dimensions of the identification data array are sufficiently large.

5 Application to industrial paper machine process application

The iterative identification algorithm discussed in the two preceding sections is based on solving the
problems of spatial and time response identification. This section provides illustrative examples of such

one-dimensional identification models. The algorithms described above and models described below have



been implemented in an industrial control application product and deployed on paper machines in many
paper mills around the world.

As a model (2) of the process dynamics, a first-order process model with a dead time is used. Such
models are overwhelmingly accepted in the industry for paper machine processes. The parameters of the
model include T}ige - the process rise time and T3 - the process dead time. For such model, the pulse
response in (12) has the form (1 — e*(Ts(t*k)*Tdel)/Trise), where T is the sample time. The parameter
vector 07 = [Trise Tygel]” can be identified by solving the problem of the form (17).

Consider now the model of the spatial response of the form (3). As discussed in [4, 5], the experience
shows that for a vast majority of paper machine processes the spatial response shapes can be well described
by a simple parametric expression of the form b(z) = vg[r(z + dw) + r(z — ow)], r(z) = exp%‘fz cos &%,
where g, w, a, and § are scalar parameters. For this spatial response shape model, the parameters in
(3) have the form s = [w a 6]7. The response amplitude scaling parameter s is absent from fg. It is
chosen such that the normalization condition (15) is satisfied. In accordance with the Algorithm 1, the
components of the parameter vector g, as a part of the parameter vector f¢ (5), should be identified by
solving the problem (19).

For illustrative purposes, consider further a linear mapping (4) between the spatial actuator position
and its spatial response center position. Such mapping describes a uniform shrinkage (or expansion) of
the web between the actuators and a profile measuring device. A discussion of a parametric model and
practical identification results for nonlinear (nonuniform) shrinkage of paper web can be found in [4, 5].
Denote by aj a spatial coordinate of the k-th actuator in the actuator array. For uniform web shrinkage,
the response center ¢, for this actuator can be computed as ¢ = ap + aray . This leads to a model
of the form (4), where 04 = [y 1]”. The optimal estimate of 64 from the data is very insensitive to
change of the response shape parameters . In practice, a 50% error in the estimated response width
w usually results in a negligible error of the mapping identification. This means an accurate estimate of
the spatial mapping parameter 64 can be in effect separated from the estimate of the spatial response
shape parameter factor fs. A more detailed analysis and explanation of this fact is given in [4].

Figure 1 shows identification results obtained for a weight CD process on a US newsprint machine.
The estimated process responses h (18) (dashed line in the upper plot) and p, (20) (dashed line in the
middle plot) are plotted together with the predicted model responses p, (11) and h (12) (smooth lines)

for the identified parameters. The lower plot in Figure 1 shows the actuator excitation profile U in (6).
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Figure 1: Identification of paper weight response for a stock extrusion gap (slice lip) actuator on a US
newsprint machine. Upper plot: identified and estimated time response depending on the time sample
number, in relative units; middle plot: identified and estimated spatial weight response depending on the
measurement databox number, in g/m?; lower plot: actuator excitation profile depending on the actuator

number, in percent of the actuator range.

The excitation amplitude a(¢) in (6) was an unit step applied at sample 8. The proposed algorithm

identifies CD process model in a fast, accurate, and reliable way.

6 Conclusions

This paper proposed high-performance algorithms for identification of cross-directional processes from
input/output data. The main approach is reminiscent of the GLS identification method and is based on
iterative alternating identification of the parametric models for time-response and spatial response of the
process. This allows to achieve high performance, when processing two-dimensional identification data.
It was theoretically demonstrated that the proposed algorithm is asymptotically convergent and provides

unbiased estimates of the distributed process parameters.
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The proposed general approach was used for specific parametric models in an industrial identification
tool. The identification results for diverse types of the paper machine CD process data were demonstrated.
The proposed algorithms work very well for these data, which confirms their practical value. In the
application the algorithms provide very reliable identification of the process model from short sequences
of very noisy identification experiment data. This, together with the high computational performance, is

very desirable in practice and ensures successful application of the algorithms in industrial conditions.

Appendix: Proof of Theorem 1

The proof of Theorem 1 will require the following Lemma.

Lemma 1 Under the conditions of Theorem 1 the following estimates hold

I =Rl < CHllhe = k]l + Cllp« — pll + C5& (28)
1p = pull < CF[[hs = Il + C3lIp+ — pll + C5%0 (29)
Iy = el < CYllhe = hll + CFlIps — pll + C3&0 (30)

where C']h, Cf, and C;-Y (j = 1,2,3) are constants independent of the parameter vector 0 and the noise

realization =.

Note that estimates similar to (28)-(30) can be obtained for || — h,]|, and |p, — p.||. This is because
e = Rl < (1 = Rl + (12 = P

Proof of Lemma 1. The estimates (28)—(30) can be obtained from (15), (16), (18), (20), using (24)
and the Theorem 1 conditions of € being limited to a neighborhood of 8* and &, &2, &3, &4, in (27) being
sufficiently small. [}

Proof of Theorem 1. The iterations of Algorithm 1 converge to a single solution (stationary point)
provided that in a certain domain containing this point the mapping is contracting. Let us show that this
holds in a vicinity of the exact solution, § = 6,, provided that the measurement noise = is small enough.
We assume that in the considered problem all functions are infinitely continuously differentiable. It is
therefore sufficient to show that for the linearization of the mapping (23) at the exact solution § = 6,

the singular values of the transformation matrix for such linearization are strictly less than unity.
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By using the Implicit Function Theorem for computing the derivatives of the right hand sides in (21)

and (22), we obtain

Ogr ofr\ ™" Ofr
Br=— = |- — 31
T 90, (89T> 00c (3
dgc ofc\ ™" dfc
Be=—= = | == = 32
“ = 90r (aoc> 007 (32
For 6 close to 6, the system (23) can be represented in the form
o+l = pe) (33)
%) 0 B
o = | ° |, B= “1, (34)
o3 Br 0
where ... denotes terms of higher order in the components of 9k) — 9. One can easily check that the

set of squared singular values of the matrix B in (34) (the singular values of the matrix BT B) is the
composition of the singular value sets for the matrices B% Br and BgBC. Therefore, the local convergence

condition can be represented in the form
a(B) = max{a(Br),0(Bc)} < 1 (35)

Let us now calculate the matrices Br (31), B¢ (31) and show that their maximal singular values are
less than unity provided that the measurement noise bound &j is small enough. This would guarantee
that the convergence condition (35) holds. Ome can observe that the expressions for By and B¢ are
symmetric with respect to f7 and 6¢c. Therefore, we will evaluate singular values for matrix By only.
Calculations for B¢ are similar to these for Br.

For the calculations we need the following expression

oy T pT
il P
00 h Gc (36)
2 T
— = PG 37
20, pu PG (37)
By using (25), (26) and (36), (37) we obtain
0w _ —y 2Phh" PTG = hh"Ge (38)
00¢c
ﬂ = _772PTpup5PGT = iLiLTGT (39)
08¢
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Thus, in (32), (31) the inverted matrix (Hessian) has the form

Ofr _ 0 (err i) (i
5 = 6 (GT(I+hh )) (h — h)
+GI(I + 20RT + ||h|*RRT) Gy (40)

The first summand in (40) is proportional to h — h. According to Lemma 1, h — h can be made as
small as needed if £y and 6 — 6, are small. The second summand is a strictly positive definite matrix
with the lowest singular value no less than that of the matrix G1.G7. Thus, the inverted Hessian matrix
in (40) has bounded norm provided that &y is small enough.

The second multiplicand in (31) can be calculated as follows

ofr _ 9
960~ 90r

+GI(T + hATY(P — WET)%GC (41)

(G%(I + EET)) (h —h)

By substituting (24) into the expressions for (P — fyﬁfLT)Gc and h — h, where v, p, and h are given
by (16), (18), and (20), and using Lemma 1) one can see that these expressions are bounded by weighted
sums of ||h(6.) — h(0)]|, ||pu(fs) — pu(0)]|, and &. Therefore, by imposing a small bound &; on the noise
parameters (27) and assuming that 6 is in a sufficiently small neighborhood of 6, the values (P —vphT)G¢
and h — h can be made such that 5(Br) < 1 in (35). A similar argument is valid for (B¢). This proves
Assertion 1 of Theorem 1.

To prove Assertion 2 of Theorem 1, consider the update (23). In order for the stationary point of the

update to be 8*, the following should hold

0 = ¢clbr)
0 = ¢r(0¢c)

, (42)

In accordance with the definition of ¢¢(fr) and ¢r(6¢c) as implicit functions in (21, (22), the condition

(42) is equivalent to
fel07,0) = GEpul0F) ~5) =0 )
Ir(07,08) = GE(h(BF) —h) =0

Lemma 1 can be used to estimate the Lh.s. in (43). Recalling that p, = p,(0%) and h, = hy(67) we
obtain the bounds for the L.h.s. in (43) proportional to &. Hence for {; — 0 the stationary (convergence)

point of (42) tends to the exact estimates 67, 7. [ |
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