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Abstract— This paper considers an industrial identification tool
for cross-directional (CD) process of continuous web manufactur-
ing such as papermaking. A special focus is on identification of
the mapping between CD actuators and measured profiles of the
web properties from input-output process data. The developed
algorithms are based on nonlinear parametric models of the CD
response shape and mapping and minimize a model fit error for
a two dimensional array of data. The algorithms are deployed
as a part of an automated process control support tool and have
been successfully used over a period of time on many paper mills
with various types of the CD actuators. The paper is illustrated
by identification results from a real-life paper mill.

Index Terms— distributed system, control, identification, opti-
mization, paper process

I. I NTRODUCTION

CROSS-DIRECTIONAL (CD) control of continuous web
manufacturing, in particular of paper manufacturing, is

arguably the most established industrial application where
large arrays of actuators are used to control spatial distributions
of physical variables. In a paper machine, CD actuators can
influence various properties of a continuously manufactured
paper web, such as areal weight, moisture, thickness, gloss,
etc. These properties must be maintained at target across the
paper web, which is several meters wide and is traveling
through the paper machine at speeds of up to 100 km per
hour. The physical processes influenced by CD actuators and
the actuator principle of action vary broadly. The actuators
might locally modify high-speed sheet flow of the liquid pulp
stock to influence cellulose fiber deposition on the moving
‘wire’ mesh, locally apply hot steam to enhance initial drying
of the paper or locally deform steel rollers that squeeze the
paper to the desired thickness (caliper). Many other principles
of CD actuation exist.

In CD systems, the profiles of paper properties are measured
downstream from the actuators with scanning gauges or array
sensors and fed back to control system employing the actua-
tors. CD control systems have been used in industry for more
than two decades and technical approaches to their design,
engineering, and support are well established. Typically, CD
systems are maintained and supported by technician-level field
personnel and the accepted technical approaches tend to be the
simplest possible that would allow sustained operation. It is
only recently that deployment of more sophisticated control-
theoretic techniques in the industrial systems has been enabled
by new computing technology. The advanced algorithms de-
ployed in industrial plants have to be packaged as automated
software applications that can be used by field personnel with
little or no control theory background. Advanced model based
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control requires setting up and maintaining adequate process
models. Identification is, thus, a necessary and important part
of a CD process control package. As a premier vendor of
advanced CD control systems, Honeywell recognized the iden-
tification importance and sponsored the development described
in this paper.

This paper describes an integrated industrial tool for paper
machine CD control identification. The tool dubbed IntelliMap
is a result of several years of development effort. Presently, it
has been installed in a few hundred of paper mills around the
world and is being used for on-going identification of several
CD processes on each paper machine. This is a significant
responsibility because an identification error could easily de-
tune control system to the extent of producing substandard
paper or even interrupting the paper machine operation. The
losses might be large since a paper machine makes a few
hundred dollars worth of paper per minute. The tool is used
to update a CD response model on a regular basis as a part of
the on-going support of a CD control system. Several years of
the deployment have validated reliability of its identification
algorithms.

One of the most critical issues in the CD control is mapping
between the measurements and the actuators. Practitioners of
CD control know well that even moderate errors in defining
the mapping in a CD control system might lead to control in-
stability. In paper machine processes, the CD actuator mapping
is influenced by a number of factors including: 1) geometric
alignment of the CD actuators and measurement device; 2)
position of the individual actuators within the CD actuator
array; 3) wandering of the paper web; 4) paper shrinkage
characteristics through the drying process; 5) flow pattern of
the extruded liquid paper stock on the initial stage of the
papermaking process (paper machine wire). While the first
two factors, in principle, could be determined from an accurate
measurement of geometrical parameters of a paper machine,
the last three might change with the time, paper grade, and
process equipment settings. In particular, the paper shrinkage
is recognized to be a complicated, non-linear phenomenon
depending on the paper furnish, drying process and many
other factors, e.g., see [17], [22], [23]. The importance of
accurate identification of paper shrinkage increased with the
introduction of the CD actuators with very narrow spacing.
With the number of CD actuators exceeding 300 on some
modern systems, even a 1% increase of the shrinkage towards
the paper web edges can result in the response center displace-
ments exceeding an actuator zone width compared to the case
of uniform shrinkage.

In addition to the mapping, the parametric model being
identified includes CD response shape and time dynamics of
the process response. Knowing these parameters is necessary
for tuning the CD controller as discussed in [19], [18], [20].
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The prior work in CD control identification includes the
papers [15], [4], [14], [24] considering applications of modern
time-series analysis methods in CD process identification.
These methods tend to use large number of free parameters
to describe the identification models. They require relatively
long time series rarely available in practice. The volume of
computations associated with processing time series data for
each of the thousands databoxes can be enormous. Significant
amount of process noise present in the data, short time
series, and computation performance requirements point at
identification of simple parametric models as an attractive
alternative.

The algorithms in this paper were chosen over those found
in other technical papers on the subject mostly because of
the practical application requirements. Section 2 discusses
these requirements in more detail. This paper is a first one
to present technical detail of the approaches outlined in the
earlier journal papers [9], [11], [12]. Another part of this
paper value is as a case study presentation on the algo-
rithms successfully productized in the form of an integrated
identification tool. The early versions of the tool have been
briefly described in [12], [10]. This paper is the first archival
publication that describes the entire set of the algorithms
used in the tool and the accumulated deployment experience.
Section 3 explains the main identification algorithm based on
alternating identification of CD and time-dynamics model. The
convergence of this algorithm was proven in [9] assuming that
the CD identification sub-problem is solved somehow but not
discussing the solution. Section 4 of this paper describes the
CD identification in some detail. Most of technical material in
Section 4 is new and was never published in a journal paper.
Many of the application results in Section 5 are also novel, in
particular the material on the ‘multivariate’ CD identification.

The developed algorithms can be used in CD control of
other flat sheet manufacturing processes, in particular, plastic
film manufacturing. Physics of these processes, actuation, and
sensing are very different from the papermaking. Yet, the
structure of the system models and data used for the identifi-
cation are essentially the same. For all CD control processes,
the time dynamics of actuation and sensing are much slower
than process response, while spatial responses are largely
shift-invariant. This yields “separable” system models where
spatio-temporal system response is a cascade combination of
purely dynamical and spatial response. It is believed that the
identification algorithms discussed in this paper can be also
applied in other, emerging, applications of spatially distributed
control. The algorithms can be extended to spatially invariant
distributed systems where the time dynamics of actuation and
sensing are much slower than the time response of the system.

II. A PPLICATION REQUIREMENTS

This section presents application requirements followed in
designing the CD identification algorithms. Much of technical
literature on identification considers mathematical problem
statements requiring algorithms to be optimal and/or possess
‘nice’ asymptotic properties. Most of the practical engineering
requirements below cannot be reduced to a simple mathemat-
ical problem statement.

First, consider requirements to the overall identification
logic. An industry practice of identifying a CD process, in
particular a CD mapping, is to step (bump) selected actuators
and observe the process response. An arrangement of such
‘bump test’ experiment is shown in Figure 1. The collected
data include actuator positions and process measurements with
time stamps. It is an industrial practice to perform a bump test
in order to verify the paper alignment in a CD control system.
To facilitate acceptance of the developed identification tool by
paper mill personnel, the tool uses a bump test-like excitation.

The main advantage of the bump test arrangement is that
an operator can find out whether the process response to the
‘bumps’ is perceptible on the noise background and abort the
test early if this is not the case. This is important because each
test takes much time and interferes with the product quality.
Other types of excitation were proposed for identification
of CD processes in [5], [2], [4] and defended by various
optimality arguments. When collecting bump test data, a pulse
in space and step in time provide a good broadband excitation.
Excitation of that type is commonly used in the process control
identification. In particular, step responses of the process
provide primary models in many industrial Model Predictive
Control packages.

The setup of the bump test excitation is a part of the
identification tool functionality. In order to perform a bump
test, the control system is taken off the ‘cascade’ (closed-
loop feedback) control and put into an ‘automatic’ mode of
maintaining desired setpoints. In a CD process, the distur-
bances that are being compensated by the feedback control
are slow. A paper machine can operate in an open loop
for some time while making on-spec product provided the
actuator setpoints are maintained the same as just prior to
breaking the control loop. The described arrangement leads
to the following two major constraints on the data collection.
First, the duration of the bump test has to be limited to less
than an hour (less than 100 measurement scans coming with a
15 sec interval). Otherwise, the open-loop process might drift
into an off-spec condition resulting in production loss. Second,

Fig. 1. Arrangement for experimental identification of the mapping for a
paper machine
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the applied bumps may not increase the naturally occurring
process variation by much, lest the identification application is
accused by process personnel in degrading the product quality.

Except for the bump test and data collection functions, the
identification tool software shall run outside of and in parallel
with the control logic. Its interaction with the controller
includes acquiring model parameters currently used in the
controller for comparison with the newly identified parameters.
The tool also should allow an operator to upload a new model
into the controller, as well as store and upload data sets for
past tests.

The identification should be very robust and reliable while
achieving a reasonable accuracy. In particular, an accurate
identification of CD mapping is important, while CD response
shape and time response identification could tolerate much
larger relative error. Being completely automated, the iden-
tification algorithms should always produce some result or
warn of impossibility of identifying a model reliably from
a particular data set. For user to maintain confidence in the
algorithms, a reasonable result should be produced for each
data set where the process response is visible to a trained
operator.

The most important requirement to the identification tool is
operator usability. It should produce the result automatically,
without a need for an operator to set up any parameters or
initial conditions for a broad range of the CD processes.
The computational delay for the identification should be
reasonable, within one–two minutes, such that a user does not
loose patience waiting for the results. This should be achieved
for two-dimensional data sets with 100 to 2000 measurement
databoxes and 20 to 300 actuator commands collected over 10
to 200 scans. The algorithms should work reliably for short
data sequences with the response to the actuator excitation
barely visible in the noisy data. The CD responses might be as
narrow as a couple of actuator zones (4-5cm for 300 actuators
in a 7 m wide machine) to a quarter of the paper width (a
couple of meters). For narrow responses and many actuators
identification of nonlinear shrinkage, it is important to achieve
accurate modeling of the CD mapping. For wide responses,
the nonlinear shrinkage identification is impossible and not
needed.

Finally, consider the requirements to the CD process model
used in the identification. This model should be simple and
include just a few free parameters. It should be easy to explain
to someone with the process knowledge but little control
background. It should closely follow established practices
of describing the CD processes. Using a model with a few
free parameters makes it possible to identify these parameters
reliably from noisy data. The two-dimensional arrays of data
used for CD process identification contain many thousand data
points and allow for significant statistical averaging when only
a few model parameters are estimated.

The requirements brought up in this section were taken into
account and satisfied in the design of the CD identification tool
and its mathematical algorithms described in the following
sections of this paper.

III. OVERALL IDENTIFICATION APPROACH

The CD process measurements are characterized by a profile
of the process data sampled at regular intervals across the
web. The profiles are obtained from a scanning device and
are available on a periodic basis. We will describe the profile
at scant by vectorp(t) ∈ <m. The manipulated variables of
the process are setpoints of the CD actuators influencing the
process. These actuators are usually placed at regular intervals
across the web. The actuator moves are synchronized with the
scanning and are defined by the actuator profileu(t) ∈ <n.

Consider the following control-oriented model of the CD
process relating the manipulated variables and the obtained
profiles.

p(t) = γGg(z−1)u(t), (1)

where z−1 is a unit delay operator,G ∈ <m,n is a CD
interaction matrix, andg(z−1) is a SISO transfer function. The
scalar parameterγ defines the overall gain of the process. The
model (1) isseparable. It assumes that the process response
is obtained as a cascade connection of the dynamical response
g(z−1) , which is the same across the web, and a spatial
responseG. Separable models of the form (1) are commonly
used in the industry. They have been studied in many papers
on CD process control and identification, e.g., see [1], [2], [4],
[13], [24].

In what follows, parametric models of the transfer function
in (1) are assumed in the form

g(z−1) = g(z−1; θT ), (2)

G = G(θCD), (3)

whereθT andθCD are the model parameter vectors.
In a bump test identification experiment the selected actua-

tors are moved (bumped) simultaneously as follows

u(t) = Ua(t), U ∈ <n, a(t) ∈ <, (4)

whereU is the bump profile anda(t) is the amplitude of the
bump. Typically,a(t) would take one of the values{−1, 0, 1}.
The model parameters are identified from the CD profiles
collected in the bump test

P = [p(1) . . . p(N)] ∈ <m,N . (5)

The identification problem is to find the vector of the model
parameters in (2)–(4)

θ = [γ θT
T θT

CD]T (6)

that provides the least square fit of the process output data set
P (5)

θ∗ = arg min‖P − P̂ (θ)‖2F , (7)

whereP̂ (θ) is the model based prediction of the system output
obtained by feeding the input signal (4) through the model
(1)–(3)and the subscriptF denotes the Frobenius norm.

As discussed in [9], the loss index in the r.h.s. of (7) can
be presented in the form

‖P − P̂ (θ)‖2F = ‖P‖2F +
γ2‖h(θT )‖2‖pu(θCD)‖2 − 2γpu(θCD)T Ph(θT ), (8)



IEEE TRANSACTION ON CONTROL SYSTEMS TECHNOLOGY, VOL. 11, NO. 5, 2003 4

Bump Test Data
Input data
Output data
Time stamps

Estimate CD
response

Estimate time
response

CD response
in the bump

test

Time response
in the bump

test

Identify CD
response

model

Identify time
response

model

Model
CD

response

Model
time

response

Fig. 2. Schematics of the iterative identification algorithm.

where the profilepu defines a spatial response to the actuator
excitation profileU in (4), the vectorh(θT ) with components
h(t; θT ) defines time-response of the process to the excitation
sequencea(t)

pu(θCD) = G(θCD)U, (9)

h(θT ) = [h(1; θT ) . . . h(N ; θT )]T ,

h(t; θT ) = g(z−1; θT )a(t). (10)

Without loss of generality, it can be assumed that
‖h(θT )‖ = 1 and‖pu(θCD)‖ = 1. This is because the scaling
or the gains inG and g is taken care of by the parameterγ
in (6). In accordance with (8), the least square estimate ofγ
can be found as

γ = pT
u (θCD)Ph(θT ). (11)

Assume now that the CD model parameter vectorθCD is
known (CD responsepT

u (θCD) is known). By computingγ in
(8) using (11), the least square optimal conditional estimate
of the time-response model parametersθT can be found as

θT∗ = arg min‖h(θT )− ĥ‖2, ĥ = PT pu(θCD)/γ, (12)

whereĥ is an estimate of the process time response obtained
by cross- correlating the collected CD profilesp(t) with the
predicted CD response shapepu. The problem (12) is a stan-
dard single-input, single- output identification problem that can
be readily solved by one of the standard identification methods.
In the deployed algorithms, a first order with deadtime model
is used for the process dynamics. Thus, the vectorθT has
two components: process time-constant and process deadtime.
A combination of a global grid search and a Levenberg-
Marquardt iterative minimization over the two parameters is
used to solve the problem (12) and find an estimateθT .

Finally, assume that the time-response parameter vector
θT is given and the time-responseh(t; θT ) is known. Then
the least square optimal conditional estimate of the cross-
directional model parametersθCD can be found as

θCD∗ = arg min‖pu(θCD)− p̂‖2, p̂ = Ph(θT )/γ, (13)

where p̂ is an estimate of the process CD response obtained
by correlating the time history for each databox with the
single predicted time-responseh(t; θT ). The problem (13)
deals with identification of the CD response parametersθCD

for a single CD response profile and it is a much simpler
problem compared to the original identification problem (5).
The algorithms for solving the CD identification problem (13)
are discussed in the next section of this paper.

An iterative algorithm that is used for solving the overall
least-square identification problem (7) is described in [9].
This algorithms starts from assuming initial estimates of the
parametersθT and θCD and proceeds with in turn solving
the problems (12) and (13). The algorithm logic flow is
graphically illustrated in Figure 2. Theoretical justification of
the algorithm convergence is presented in [9]. The experiments
in applying the proposed algorithm to various real-life data
sets show that it converges rapidly, after 2-3 iterations. The
algorithm is very efficient computationally, as it reduces the
two-dimensional identification problem (7) to a series of one-
dimensional identification problems.

Fig. 3. Example of CD profile data obtained in a bump test data and used
for identification

Figure 3 illustrates a set of bump test data used for iden-
tification. The results of applying the described algorithms to
the data are illustrated in Figure 6 where the time-responses
h(θT ) andĥ as well as CD responsespu(θCD) andp̂ extracted
from the two-dimensional data set are shown in the lower two
plots.

IV. CD MODEL IDENTIFICATION

This section considers the problem of identifying the CD
response (13) in more detail. Unlike the time-response iden-
tification problem (12), the CD response identification (13)
is a nonstandard problem. Though the high-level problem
statements (12) and (13) look similar, the parameters ap-
pear in the fitted function in a very different way. After
formulating the CD response model, this section discusses
identification of response for single actuator. This simplified
problem illustrates main ideas and builds justification for
dividing the CD response identification problem into CD
response shape identification and CD mapping identification.
The identification algorithms described in this section include
two stages. First, rough, approximate identification of the
model is performed. Then the model is fine-tuned by iterative
nonlinear optimization of a loss index.

A. CD response model

The assumed CD response model is that the process re-
sponses for each actuator have the same shape. This assump-
tion is commonly made in practice and is satisfied for most CD
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processes with a reasonable accuracy. The entries of matrixG
in (3) are

Gj
k = b(dsk − cj ; θS), (14)

whereb(x; θS) is a continuous function of the CD coordinate
x, ds is a spatial distance between the measurement samples
(databox width),cj is a coordinate of the response center
for the actuatorj, and θS is a parameter vector describing
the model of the CD response shape. A mapping model
complements (14) by describing how the coordinatecj of the
spatial response center depends on the CD coordinate position
xj of the respective actuator. The mapping model has the form

cj = f(xj ; θM ), (15)

where θM is a vector of the mapping model parameters.
In accordance with (14) and (15), the overall CD response
parameter vector in (3) is

θCD = [θT
S θT

M ]T . (16)

Based on extensive experience with paper machine pro-
cesses, the CD response shape model (14) was assumed in
the form

b(x; θS) =
g

2

[
r

(
x + δ

w

)
+ r

(
x− δ

w

)]
, (17)

r(x) = e−ax2
cosπx,

θS = [w a δ]T . (18)

In (17) g is a normalization parameter, the response gain is
handled through the parameterγ in (6). The three components
of the parameter vectorθS define the response shape. The
parameterw defines “width” of the actuator CD response.
The “attenuation” parametera defines the size of the response
negative lobes. For largea these lobes are practically absent,
for smaller a they are more profound. The “divergence”
parameterδ defines the presence of two maximums in the
response and the distance between these two maximums. In
papermaking, bi-modal responses can result from diverging
waves or wakes propagating on the surface of liquid paper
stock on the wire mesh in production of heavy weight papers.

The CD mapping model (15) describes how the coordinate
cj of the CD response center depends on the CD position
xj of the j-th actuator. In industrial CD control, the mapping
model (15) is the most important part of the CD process model.
A parametric model of mapping used herein is introduced
through a fuzzy logic model of the shrinkage profile and
described in [7], [8], [11]. The model reflects that the paper
typically shrinks more towards the edges of the web and has
the form

cj = c0 +
(

xj − 1
2
x∗

)
(1− s0) + slowllowσ

(
1− xj

llow

)

−shighlhighσ

(
1− x∗ − xj

lhigh

)
, (19)

wherex∗ is the total width of the CD actuator array andc0

is a constant offset. The first two terms in (19) describe the
shift and a uniform shrinkages0 of the paper, the last two
summands describe shrinkage change towards the sheet edges.

The parametersslow and shigh have the meaning of the CD
shrinkage increase towards the web edges. The two parameters
llow andlhigh, as well as the functionσ(x) : σ(0) = 0, σ(1) =
1 describe the shape of the nonlinear shrinkage profile. In
accordance with [7], [8], [11] this function is assumed as

σ(x) = 2(x− atan(x)) (20)

The mapping model (19), (20) is fully defined by the parameter
vectorθM (15) of the form

θM = [c0 s0 slow shigh llow lhigh]T . (21)

In what follows, as a first stage in identifying the “detailed”
CD response model (19)–(21) a “simplified” model is used,
where some of the parameters in (21) are set to the fixed values

θM = [c0 s0 0 0 x∗/4 x∗/4]T , (22)

θS = [w 7 0]T (23)

The simplified model (22)–(23) contains only three free
parameters that need to be identified:w, c0 and s0. As a
result, this identification can be done much faster and with
better robustness than identification of the detailed model.
The simplified model describes the practically observed CD
responses qualitatively well. In what follows, identification of
the simplified model is used as a starting point for the detailed
model identification. In the implemented algorithms, using
the simplified model allows to find a vicinity of the global
minimum for the loss index. The detailed model identification
then improves this initial guess of the global minimum.

B. Identifying CD response for a single actuator

An insight into the CD identification problem (22)–(23) can
be gained by identifying CD response for a single actuator.
In accordance with (14) the response (9) to a single actuator
bump has the form

pu(c, θS) = u[b(ds − c; θS) . . . b(mds − c; θS)]T ∈ <m, (24)

whereu is the scalar amplitude of the actuator move andc is
the response center.

The response centerc can be estimated by minimizing a
quadratic loss index of the form (13) with respect to the
assumed response center positionc. Numerical experiments
indicate that identification ofc is very robust with respect to
the response shape parameters [8]. Though minimal achievable
error of the fit varies widely depending on the assumed shape
parametersθS the location of the minimum coincides with
the bump response center for a broad range ofθS . This fact
indicates that an accurate identification of the CD mapping is
possible even with very rough knowledge of the CD response
shape. A theoretical justification of this fact is suggested
below.

Let us analyze the loss index in r.h.s. of (13) in more detail.
By using (24) and denotinĝpk the components of the vector
p̂ in (13), this loss index can be presented in the form

J =
m∑

k=1

|ub(dsk − c, θS)− p̂k|2. (25)
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In the rest of this section, we assume that componentsp̂k

of the response profile vector̂p in (25) are the sampled values
of a twice continuously differentiable function̂p(x), wherex
is the CD coordinate, so that̂pk = p̂(dsk).

The sum in the r.h.s. of (25) closely approximates an integral
of a continuous function over the CD coordinate. If the databox
width ds is small compared to the width of the CD response,
which is usually the case in practice, the sampled-data loss
index (25) can be replaced by the following continuos loss
index with an accuracyO(ds)

Jc(c) =
∫
|pu(x− c)− p̂(x)|2dx, (26)

wherepu(x− c) = ub(x− c; θS) is the modeled CD response
of the process.

The following proposition shows the reason for the observed
robustness of the CD response center identification to the
response shape change

Proposition 1: Let us consider two symmetric, twice con-
tinuously differentiable functionspu(x−c), p̂(x),< 7→ <, zero
outside a finite support intervalx ≤ x0. Then, for a loss index
of the form (26) the following holds: (1)c = 0 is a stationary
point of Jc(c) (2) c = 0 is a local minimum provided that∫

p′u(x)p̂′(x)dx > 0, where prime denotes differentiation.
Proof. Simple calculations show that

∂Jc(c)
∂c

= −2
∂

∂c

∫
pu(x− c)p̂(x)dx (27)

= 2
∫

p′u(x− c)p̂(x)dx− 2
∫

pu(x− c)p̂′(x)dx,

where we used the fact thatpu(x−c) has finite support interval
and, thus,

∫ |pu(x − c)|2dx does not depend onc. Thus,
∂Jc(c)

∂c |c=0 = 0 as an integral of an antisymmetric function
- a product of symmetric and antisymmetric functions. In a
similar way

∂2Jc(c)
∂c2

= 2
∫

p̂(x)p′′u(x− c)dx

= −2
∫

p̂′(x)p′u(x− c)dx. (28)

Computing ∂2Jc(c)
∂c2 |c=0 in accordance with (28) proves the

second claim of the Proposition. QED
Proposition 1 shows that in the absence of the noise, the

identified response centerc effectively does not depend on the
CD response shape. This center can be accurately determined
by using a broad class of the CD response shape models that
satisfy very mild requirements of Proposition 1 as to their
similarity to the real CD shape. It can be theoretically demon-
strated that a response center position obtained by minimizing
the sampled loss index (25) differs from the position obtained
from the continuos index (26) by an error of the orderd−2

s .
Thus, the proposed method is very accurate if the databox
width ds is much less than the CD response width. The latter
condition holds in most practical cases.

Proposition 1 assumes that the averaged process response
p̂(x) is free of noise. Assume now that the response is in fact
p̂(x) + ξ(x), whereξ(x) is the noise andpu(x), p̂(x) satisfy
the condition of Proposition 1. Denote byJe =

∫ |pu(x−c)−

ξ(x)− p̂(x)|2dx the loss index for the noisy data. Substituting
p̂(x) + ξ(x) instead ofp̂(x) in (27) to compute the derivative
of Je and using (27), (28), yields in the vicinity of the correct
center position estimatec = 0

∂Je(c)
∂c

= e(c) + c
∂2Jc(c)

∂c2

∣∣∣∣
c=0

+ o(c2), (29)

e(c) = −
∫

ξ(x)p′u(x)dx, (30)

where ∂2Jc(c)
∂c2

∣∣∣
c=0

> 0 is as in (28). The error of the response
center position identification can be estimated from (29) as

∆c ≈ e(c) ·
(

∂2Jc(c)
∂c2

∣∣∣∣
c=0

)−1

, (31)

By computing a Fourier transform of the convolution inte-
gral in (30), we obtain

|e(c)| ≤ 1
2π

∫
|ξ̃(iω)| · |p̃′u(iω)|dω, (32)

where tilde denotes a Fourier transform of the respective
function. In many practical cases, the measurement noiseξ(x)
is concentrated on high frequency. At the same time, the
differentiated model responsep′u(x) computed in accordance
with (4) exhibits low-pass characteristics. In this cases, the
noise influence on the response center identification accuracy
is minimal.

C. Finding the initial guess of the CD response parameters

Consider now the problem of obtaining initial estimates
of the response shape and mapping parameters. The problem
(5), (25), (13) with the parametric model of the process CD
response (17), (22) is highly nonlinear and nonconvex in the
parametersθS andθM . The loss index (13) can have multiple
local minimums over these parameters. A search through a
broad range of these parameters is necessary to ensure that a
vicinity of the global minimum for the loss index is selected
over one of the local minimums.

Consider the identification of CD response for a single actu-
ator within the framework of the simplified model (22)–(23).
When used for identification of a single actuator response, this
model has two free parameters: response widthw and center
coordinatec. In accordance with (17), (23) the problem of
minimizing the loss index (25) can be presented in the form

J =
∑

k

∣∣∣∣g u r

(
dsk − c

w

)
− p̂(dsk)

∣∣∣∣
2

→ min
w,c

. (33)

The minimum of the loss index (33) is achieved if the CD
responsêp(x) and the model response shaper(x−c

w ) are in
maximum correlation with each other. This follows from the
normalization condition‖pu(θCD)‖ = 1, which for (33) takes
the form

∑
k

∣∣g u r
(

dsk−c
w

)∣∣2 = 1. Similarly to the transition
from (25) to (26), the problem of minimizing (33) can be
approximately represented in the form

ψ(w, c) = C

∫
r

(
x− c

w

)
p̂(x)dx → max

w,c
, (34)
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whereC is a normalization constant. The expression (34) can
be considered as a continuous wavelet transform of the process
responsepu(x) with the mother wavelet functionr(x). The
minimization of the loss index (6) is equivalent to finding a
maximum of the wavelet transformψ(w, c) (34). By evaluating
the wavelet transform (34) on a relatively sparse grid of the
parametersw andc and finding the maximum on the grid, the
initial guesses forw andc can be found.

The use of the wavelet transforms for the CD mapping
identification, though motivated differently, has been discussed
in [6], [16].

Consider now identification of the simplified model (22)–
(23) from the response data for multiple actuators (13). Since
‖pu(θCD)‖ = 1 in (13), the loss index is minimized if and
only if the responsêp and the model responsepu(θCD) are
in maximum correlation with each other. Similar to (33), (34)
this problem of maximizing the correlation can be presented
in the form

J =
∑

j

Ujψ(w, cj) → max
w,θM

, (35)

cj = f(xj ; θM ), (j = 1, ..., n),

wheref(xj ; θM ) is the mapping function given by (19), (22).
The loss index approximation (35) suggests the following

computationally efficient strategy for the simplified model
identification. As a first step, compute and tabulate the wavelet
transformψ(w, c) (34) on a grid ofc andw values. Then, for
any givenw the loss indexJ in (35) can be quickly estimated
as a linear combination of the tabulated wavelet transform
values forc = cj . The computations at the second step are
very fast, therefore, it can be repeated for many different
combinations ofw and θM enabling a direct search for the
global minimum of (35). This very efficient algorithm was
successfully implemented in the developed tool.

D. Improving the CD model

Once an initial estimate of the global minimum for the loss
index (13) has been obtained by using the simplified model
(22)–(23), the estimate of the parameter vectorθCD can be
further improved by using an iterative optimization method.
Minimization of the loss index (13) is a standardNonlinear
Least Squareproblem. Iterative numerical solution of such
a problem can be performed by theLevenberg–Marquardt
method [3]. Other well known methods such as Gauss–Newton
or Gradient Descent could be considered as special cases of
the Levenberg–Marquardt scheme obtained for special values
of the scheme parameters.

The Levenberg–Marquardt update requires computing the
gradient of the loss index (13) with respect to the parameters
θCD (16). This, in turn, requires computing the Jacobian
∂pu(θCD)

∂θCD
. By using the closed form expressions for the

modeled CD responsepu(θCD) given by (9), (14), (17), (19),
a closed-form expression for this derivative can be calculated
analytically, see [7], [8] for more detail.

Unfortunately, the loss index minimization problem is ill
conditioned, nonlinear, and nonconvex. Therefore, problem-
specific modifications of the optimization method were im-
plemented to obtain robust and reliable estimates of the nine

model parameters with limited number of iterations. They
include variable scaling, Rosenbrock method steps to deal with
ill-conditioned Jacobians, and conditional switching between
iterative minimization and grid search. The implemented com-
bination of these methods contributes to the industrial-level
quality and reliability of the identification algorithms.

The overall logic of the CD response identifications is based
on splitting of the overall identification problem into a series
of simpler problems, simular to how the identification of the
time-response and CD response are separated in the previous
Section. The CD response identification logic subproblems are
as follows
• First, the simplified model (22)–(23) is identified as

described in the previous subsection.
• Once the simplified model identification is completed,

the identification of the CD mapping parametersθM is
performed independently of CD response shape parame-
tersθS . This means the performance index is minimized
with respect toθM while θS is fixed and vice versa. The
optimization of θS involves three parameters only and
can be completed in a straightforward and reliable way
for fixed θM .

• In identification of the CD mapping model, initially only
first two components of the vectorθM (21) are optimized
yielding a model for the alignment and the average
shrinkage. For many processes this simple model of the
CD mapping is sufficient, in particular for processes with
wide CD responses and with relatively small number
of the CD actuators. This is the default option for CD
mapping identification.

• Optionally, the six parametersθM (21) of the CD map-
ping model with nonlinear shrinkage are identified by
using Rosenbrock method steps [3].

The described mixed logic of the identification proved very
successful and reliable in practice for a broad range of CD
processes.

V. I MPLEMENTATION RESULTS

The above described algorithms have been implemented in
a software application tool named IntelliMap. The tool has
been deployed in hundreds of paper mills and applied to
practically all types of existing CD processes. The integrated
tool architecture and the identification result examples are
discussed below.

A. Integrated tool

Figure 4 which shows the system-level design of the appli-
cation. The application consists of two independent parts: the
main computational and data collection application, and the
user interface application. These two parts interact through
a real-time networked database connected to other parts of
process control, measurement, and information system.

Figure 5 shows the dataflow of the application. Two sets of
key parameters are maintained for each actuator. One set is
called System Data and includes data being used in the actual
operation of the process control system, such as process gain
or paper shrinkage. Another set contains identification data,
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such as identified estimates of the process gain response shape
or paper shrinkage. The user can evaluate the identification
data, compare it to the current system data, and upload the
new parameters into the CD control system. In the last case,
the identification data is used to overwrite the system data.

As illustrated in Figure 5, different parts of the application
work with the database, modifying and exchanging data be-
tween the two data sets and with external data. The supported
data modification processes are as follows.

The bump test excitation setup in the tool supports de-
pendence on the paper grade being manufactured. A specific
excitation pattern is stored for each grade. When setting up
a new grade or in some cases during operation, there is a
need to edit the excitation pattern. The supported functionality
includes modification of the positions and amplitudes of the
bumps and modification of the time-sequence of the bumps.

The bump test process resets the identification model to the
current System Data model. In the bump test, data such as
high resolution profiles, actuator setpoints and sheet edges are
collected from the CD control system and added to the tool
database

By default, identification algorithms run automatically once
the data collection in a bump test has been completed. The
operator actions required to perform the identification are

limited to initiating a bump test and approving the acceptance
of the newly identified parameters as System Data. This degree
of automation is very important in practice, very little learning
effort is needed to successfully use the tool. The automated
identification is supported by an intuitive user interface allow-
ing the operator to initiate the test and examine the results
before approving them.

At the same time, a more sophisticated user can have much
more detailed control over the bump test setup and the iden-
tification process. For advanced users, the application allows
for ‘manual’ identification by direct editing of the model data.
This function is supported by displaying the fit of the process
CD responsep̂ (13) and time responsêh (12) against the
predictionspu(θCD) (9) andh(θT ) (10) for the user-entered
model parametersθCD and θT . The feature is helpful when
understanding the process model parameters or dealing with
extremely poor response data where an operator knowledge of
the process needs to be taken into account in order to obtain
meaningful estimates of the model parameters. As one more
‘advanced’ feature, the tool allows storing identification data
in a disk file or uploading the data from a file.

B. Identification results

The developed CD identification tool was routinely used by
hundreds of paper mills over a few years and proved to be
robust, reliable, and convenient. It has consistently improved
the quality of the CD control system operation. One screen
of this identification tool with paper mill data is shown in
Figure 6. The lower left plot in the screen shows the CD
response identification results. The two displayed curves are
the predicted model responsepu (9) (smooth curve), and the
CD responsêp (13) (jagged curve) estimated from the two-
dimensional array of the collected identification experiment
data. The lower right plot shows the estimatedĥ (12) and
modeledh(θT ) (10) time responses. This representation of the
two-dimensional array of the identified data is highly intuitive.
The upper left plot in Figure 6 shows the CD profileU (4)
set up for the next identification experiment, the smaller upper
right plot shows the time profilea(t) of the excitation input
(4).

The middle two plots in Figure 6 show current status of
the CD process. The middle right plot shows the CD actuator
setpoints. The middle left plot shows current measured profile
error compared to the target. Another curve on the same plot
is a prediction of how the process profile will be modified
after the currently set bump profile (in the left top plot) is
applied. The prediction is computed using the process model
in the System Data and is very helpful for predicting what
impact the bump test will have on quality of the continuously
manufactured product.

The identification results in Figure 6 are obtained for paper
weight process controlled with a slice lip actuator. A slice lip
is a stainless steel bar mounted on the paper machine headbox
and covering one side of the gap where the paper stock
flows on the paper machine wire. The slice lip CD actuators
are attached to different points of the lip and, by elastically
deforming the lip, are capable of changing the extrusion gap,
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thus influencing locally the stock flow and ultimately the paper
weight.

Figure 7 illustrates the screen of the developed tool control-
ling the nonlinear mapping function identification. The upper
plot on the screen shows the fit of the identified CD response
model against the estimated CD response in (13) . The lower
plot shows the nonlinear shrinkage profile which corresponds
to the identified nonlinear parametric mapping function (19).
Finally, six sliders with indicators in the lower part of the
screen correspond to the six components of the mapping
parameter vector (21). Figure 7 shows identification results
for a nonlinear shrinkage profile obtained on a fine paper
machine with dilution weight actuators. The dilution actuators
add water to the paper stock as it flows out of the machine
headbox. This change in stock consistency reduces or increases
the relative content of fiber in the stock and results in lighter or
heavier weight paper being produced. The dilution water flow
is regulated by motorized computer-controlled valve. There
can be more than 300 dilution CD weight actuators across the
machine, each changing the stock consistency locally. More
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heating CD actuator

detail on the consistency profiling technology can be found in
[21].

C. Multivariable identification example

Most of paper machines have multiple sets of CD actua-
tors and paper properties are measured by multiple scanning
gauges. Typically one CD actuator set is used to control
one profile associated with it. The automated identification
enables building ‘multivariable’ models of how each set of
CD actuators is influencing each of the measured profiles.

An illustrative example of the multivariable CD identifica-
tion is discussed below. A US paper machine with four CD
actuator sets and three scanning gauges (on the same frame)
was used in this study. The four CD actuator sets included in
the study are: slice lip actuators for weight control (with 57
zones), steambox for moisture control (with 65 zones), water
spay re-moisturisers (with 88 zones), and inductive heating
caliper control (with 84 zones). There are three profiles of
ready paper properties measured at the end of the paper
machine: paper weight, moisture, and caliper (thickness). Each
profile includes 1280 databoxes with 5.5mm width.

Figure 8 shows identification results for moisture profile
response to a CD steambox actuator set. The CD actuator
units influence the paper moisture by applying heat to localized
areas of the paper surface. The data in Figure 8 is characterized
by relatively weak response and high level of process variation.

Finally, Figure 9 shows results for identification of paper
caliper (thickness) control using induction heating actuator.
The paper caliper is adjusted near the end of the process by
squeezing the paper between a stack of large steel rolls. The
actuator set has 120 inductive heating elements each acting
on a local area of one of the rolls. The localized thermal
expansion of the roll reduces paper caliper in the area. Because
the inductive heating has to overcome large thermal inertial of
the roll, the inductive heating actuator has slow time-response.

The overall ‘multivariable’ identification results are sum-
marized in Table I. For each pair of the CD actuators and the
measurement, the table shows the parameters of the response
shape modelθS = [w a δ]T (18) , the process gaing, and
the parametersθT of the dynamical process model (6). In
the response shape model the response widthw is shown in
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Measurement
CD Actuator Dry weight Moisture Caliper

Slice lip
200 1.2 0.3
15.3 30 0.65

255 1.2 0
22.2 30 0.50

570 7 0
147 0 0.55

Steambox
470 7 0
37.5 30 0.26

265 7 0.3
53.5 30 −2.4

470 7 0
37.8 240 −0.45

Water spray No interaction
250 7 0
21.1 42 4.9

130 7 0
15.1 55.6 0.79

Inductive heating No interaction No interaction
250 7 0
233 29.2 −1.8

TABLE I

MULTIVARIABLE MODEL IDENTIFICATION RESULTS .

The format of the displayed model is:
w a δ
Tc Td g

millimeters. In the dynamical model,θT = [Tc Td]T , where
Tc is the process time constant (time constant of the first order
lag model) andTd is the process deadtime, both in seconds.
The process gains are shown in relative units because of the
proprietary nature of the data. The parametersθM of the CD
mapping model (21) were identified for each actuator/sensor
pair but are not displayed in Table I.

The results in Table I illustrate how automated CD iden-
tification can be used to improve understanding of complex
interacting CD processes. Detailed explanation of the obtained
model requires understanding of the papermaking process and
is beyond the scope of this paper.

VI. CONCLUSIONS

This paper presented the design and core algorithms of a
industrial identification tool for cross-directional (CD) pro-
cesses. The tool has been successfully deployed for a few
years in hundreds of paper mills around the world and
proved to be very reliable in operation with many different
types of CD processes. The acceptance of the tool by mill
personnel is facilitated by following the established practices
of CD process modeling and identification (bump tests). The
tool uses a conceptually simple model of CD process and
provides insight into the underlying physics of the process.
Identification is performed by fitting a nonlinear parametric
model to the bump test data. The overall problem is solved
as a sequence of simpler sub-problems of identifying CD
alignment, CD response shape, CD shrinkage profile, and
process time-response. Estimation of two or three respective
parameters in each sub-problem, as described in the paper,
is very reliable and to large extent independent of other sub-
problems.
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