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Probabilistic Modeling for Optimization of
Resource Mix with Variable Generation and Storage
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Abstract—Renewables, such as solar and wind generation,
combined with storage are becoming a key part of modern
grid. This paper develops probabilistic tools for analysis of grid
reliability with such variable generation resources. The developed
tools improve speed and accuracy of the reliability analysis
compared to usual Monte Carlo methods. This is achieved by
using an extension of well known convolution method applicable
to interdependent variables. The interdependent distributions
are obtained from historical data using Machine Learning of
quantile models. The paper presents a novel approach to the
analysis of reliability contribution of storage based on these
models and related to Information Theory. The developed tools
are demonstrated in several example scenarios for ISO-New
England service area.

Index Terms—LOLE, Machine Learning, Optimization, Power
Grid, Renewables, Resource Mix, Ramp Rate, Storage

I. INTRODUCTION

Renewable energy has large and increasing impacts on
the grid. California plans to go carbon-free by 2045, Mas-
sachusetts considers similar legislation. Solar and wind re-
sources are non-dispatchable and bring random variability.
To compensate, more energy storage gets connected to the
grid. Managing risk and cost of the grid with storage and
variable generation at scales beyond anything seen before
requires new probabilistic analysis tools. This paper presents
tools for planning and market design using machine learning of
probabilistic models from historical data. The tools can support
capacity investments and other planning studies and enable
optimization of resource mix scenarios supporting NERC 1-
in-10 reliability requirement (one day of outage in ten years).

Probabilistic reliability analysis of grid can be done by
Monte Carlo or analytical methods [1]. Predominantly, Monte
Carlo methods are used in practice because they allow to
encode complex analysis scenarios. Some examples include
tools like StorageVet, DER-CAM [2], and SERVM [3]. One
issue with Monte Carlo methods is that heavy computing is
required to evaluate risk for distribution tails (peak events).
This impedes their use for iterative resource mix optimization,
especially in scenarios far different from historical data.

Analytical methods are based on discrete convolution, e.g.,
see [1]. Prior work addresses several subproblems of prob-
abilistic risk analysis for grid with renewables and storage.
Data-driven models for each hour of the year are discussed in
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[4]. For a given hour, load and variable resources are assumed
independent and respective empirical distributions convolved.
Such approach is used in operational forecasting, e.g., see
[5] and [6]. Other prior work combined analytical and Monte
Carlo methods, e.g., see [7], [8].

Existing methods need to be extended in two important ways.
First issue is accounting for the interdependence of load with
solar and wind generation, e.g., see [9], [10]. Machine learning
of such interdependence is discussed below. Second need is
rigorous probabilistic analysis of energy storage contribution.
Prior work on grid reliability with energy storage is mostly
based on deterministic simulation analysis of storage dispatch,
e.g., see [11]. Analytical methods for energy adequacy and
reliability with storage seem to be limited to the earlier work
of the authors [12], which is extended in this paper.

Accuracy of both analytical and Monte Carlo methods
is predicated or careful modeling of underlying probabil-
ity distributions. To model the distributions, this paper uses
Machine Learning methods related to quantile regression.
Quantile regression for conditional quantiles of dependent
variable was introduced in [13] and is now widely used in
statistics. Multiple quantile regression and related issues of
quantile level crossing are discussed in [14]–[16]. Quantile
regression modeling of distribution tails is discussed in [16],
[17]. Multivariate quantile regression was introduced in [12],
[18]. Multiple quantile regression was used to forecast demand
and renewable energy in [19], [20].

Analytical methods in this paper use probability models
conditional on time regressors (such as hour and month). These
quantile models are related to the load (or variable generation)
duration curves for a given hour. Machine Learning methods
used to obtain such quantile models from limited historical
data are based on convex optimization and Extreme Value
Theory for the tails; they are described in earlier work of the
authors [12], [21]–[23].

This archival paper incorporates results from conference
papers [12], [21] to provide for self-contained presentation
with a view of practical use. Over half of this paper is new
material. Section II-C, Section III with exception of III-C and
III-E, Section IV, Section V-C, and Section VI have not been
published earlier. The two main contributions of the paper are
as follows. First is a machine learning method for modeling of
interdependent random variables that also depend on time. It
is used for probabilistic modeling of demand, solar, and wind
generation. Using these models, adequacy of the resource mix
can be assessed with less effort and more accurately than with
existing approaches. Second, this paper provides probabilistic
assessment of energy storage in grid reliability using approach
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connected to Information Theory.
Section III of this paper describes Machine Learning for

component models using historical data. Section IV provides
statistical validation of the developed models demonstrating
their predictive power and improvements over a simple Monte
Carlo approach. For a given resource mix, the component mod-
els are combined to get the distribution of reserve margin and
compute the risk; this is introduced in Section II. Section V
provides several grid planning examples. For each example,
the analysis provides scenario with desired level of reliability
(risk).

II. RISK ESTIMATION

This section introduces analytical methods for grid reli-
ability. The reserve margin distribution is evaluated from
component models for demand, solar, and wind generation.
The known convolution approach is extended to use of inter-
dependent conditional models.

A. Sampled Distribution

Consider random variable u with known probability distri-
bution. The probabilistic analysis is based on sampling the
Cumulative Distribution Function (CDF) Fu as

Fu[k] = P(u ≤ k∆h), pu[k] = Fu[k] − Fu[k − 1], (1)

where k is an integer sample number and pu is the Probability
Mass Function (PMF) for the sampled CDF Fu. If sampling
step ∆h is small enough, the sampled model is sufficiently
accurate. Continuous distribution CDF can be recovered by
interpolating Fu between the samples.

If independent random variables are sampled on the same
grid, the probability mass function (PMF) of their sum is a
convolution of the individual PMFs. As an example, outage
distributions for a set of power generating units are described
by independent Bernoulli distributions for each unit. The
distribution of the total outage power can be computed as a
chain convolution of these Bernoulli distributions sampled in
accordance with (1), see [12]. Such convolution method has
been used for grid reliability analysis for over two decades, see
[1]. This paper extends the convolution method applications
to include solar and wind generation as well as storage.

B. Conditional Distribution

Consider a sampled conditional random variable u∣Z, where
explanatory variables (regressors) Z are in a finite state space
with states Zj that have probabilities P(Zj). For example, the
model for the load (electricity demand) is conditional on vector

Z = col(ZM , ZW , ZH , ZHol) ∈ R
45
, (2)

which includes 12 binary regressors indicating calendar
months ZM , 7 weekday indicators ZW , 24 indicators for hours
of the day ZH , and 2 indicators for holiday or not ZHol. There
are a total of 12 × 7 × 24 × 2 = 4, 032 different states Zj .
Such regressors have been used in many papers on the subject,
e.g., see [23], [24] where further references can be found. In
what follows, conditional distribution for wind and solar are

modeled using Months and Hours as regressors; wind and solar
do not depend on Weekday and Holiday. For each state Zj ,
there is a conditional variable with PMF

uj = u∣Zj , uj ∼ puj
[ ⋅ ]. (3)

For two conditionally independent variables u∣Z and v∣Z,
distribution of (u + v)∣Z can be computed as convolution

pu+v∣Zj
[ ⋅ ] = pu∣Zj

[ ⋅ ] ∗ pv∣Zj
[ ⋅ ]. (4)

The sum of the two variables can be described by conditional
distributions for all N states Zj computed as the convolutions.

C. Linear Interdependent Model

Consider two interdependent variables Y and X . By Bayes’s
Theorem, we have P(Y,X) = P(Y ∣X)P(X). Assume linear
quantile model for the variable Y ∣X . (Estimating such models
from data is described in Section III). The model is

PY ∣X (y ≤ αq + γx∣x) = q, (5)

where αq is the quantile determined by q and γ is a coefficient.
This is equivalent to

PỸ (ỹ ≤ αq) = q, (6)

where Ỹ = Y − γX is a new random variable. The joint
distribution of variables X and Y can be represented as

P(Y,X) = P(Ỹ , X) = P(Ỹ )P(X), (7)

This means random variables Ỹ and X are independent.
This derivation can be extended to multiple dependent vari-

ables by considering vectors X = col(X1, X2, ..., Xn) and
Y = col(Y1, Y2, ..., Yn). By using chain rule, (7) is extended
to a product of n independent distributions,

P(Y ) =P(Ỹ1)P(Ỹ2)...P(Ỹn), (8)

Ỹk =Yk −
n

∑
i=k+1

γk,iYi. (9)

Using vector notation Ỹ = col(Ỹ1, Ỹ2, ..., Ỹn), we get Ỹ =

Y − ΓY with upper diagonal coefficient matrix Γ,

Γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 γ12 γ13 ... γ1n
0 0 γ23 ... γ2n
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 ... 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (10)

Solving Ỹ = Y − ΓY for Y yields

Y = (1 − Γ)−1Ỹ . (11)

This allows computing distributions for sums of dependent
variables Yj through sums of independent variables Ỹj ,

∑
j

Yj = ∑
j

γ̃j Ỹj , (12)

Computing (12) as 1TY and using (11) yields

col(γ̃1, γ̃2, ..., γ̃n) = 1T (1 − Γ)−1. (13)

A distribution of sum in (12) can be computed by convolving
the PMFs of independent variables γ̃j Ỹj , see (12).
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As an application example, consider three interdependent
variables: demand (load) L, wind generation W , and solar
generation S. To describe dependency between L, W , S
assume quantile models of the form (5)

PL∣W,S(L ≤ αL,q + γLWW + γLSS∣W,S) = q, (14)
PW ∣S(W ≤ αW,q + γWSS∣S) = q, (15)

PS(S ≤ αS,q) = q. (16)

Section III describes how quantile models (14), (15), (16) can
be estimated from historical data. Independent variables can be
obtained through interdependent variables in (14)-(16) similar
to (9)

L̃ = L − γLWW − γLSS, (17)

W̃ =W − γWSS, (18)

S̃ = S. (19)

Conversely, dependent variables W , S, and −L can be ex-
pressed through the independent variables following the logic
of (12). This yields an expression for a ‘net injection’ sum

W + S − L = γ̃W W̃ + γ̃SS̃ + γ̃LL̃, (20)
γ̃S = 1 − γLS + γWS − γLSγWS , (21)
γ̃W = 1 − γWS , (22)
γ̃L = −1. (23)

The distribution of W +S−L can be computed by convolving
PDFs of the independent variables γ̃LL̃, γ̃W W̃ , and γ̃SS̃ as

pW+S−L[⋅] = pγ̃W W̃ [⋅] ∗ pγ̃S S̃[⋅] ∗ pγ̃LL̃[⋅]. (24)

Section III presents Machine Learning approach to estimat-
ing the joint distribution of the three variables L, W and S
conditional on Z. The distribution of sum (20) can be then
computed through the convolutions (24) for each of regressor
states Zj . More complex copula models for similar purpose
are proposed in [10]; such models are much harder to estimate
from data, however.

D. Evaluate Risk

This paper computes Loss of Load Hours (LOLH) reliability
index, which is the expected number of hours for loss of load
per year [25]. The 1-in-10 NERC requirement corresponds to
having LOLH ≤ 2.4. Other risk analysis indexes for the power
grid, such as Expected Energy Not Served, can be computed
from the same distributions as LOLH is in this paper.

Reserve margin R measures the generation capacity over
and above the demand. Negative reserve margin implies that
the generation cannot meet the demand. Assume that sampled
conditional distribution for R is available in form (3). The
conditional distribution of the reserve margin R∣Z allows
computing Loss of Load Probability (LOLP) as

LOLP(Zj) = P(R < 0∣Zj) = ∑
Rj≤0

pRj
[k]. (25)

Using (25), we can compute LOLH = P(R < 0) as

LOLH = E(P(R < 0∣Z)) =
m

∑
j=1

∑
Rj≤0

pRj
[k] ⋅P(Zj), (26)

where probability of states Zj with Holiday indicated is
P(Zj) = pH/2016; the rest, P(Zj) = (1 − pH )/2016; and
holiday probability is pH = 9/365 is the holiday probability;
see Subsection II-B.

III. MACHINE LEARNING METHODS

Section II discusses computation of risk given the distribu-
tion models. This section shows how such models can be built
from historical data. The models are conditional distribution
versions of (14)-(16). A starting point of the method is learning
a distribution for u∣Z, where u is the random variable and Z
is explanatory variable (regressor) vector, from historical data

D ≡ {ui, Zi}Ni=1. (27)

A. Modeling Data

The examples illustrating the proposed approach use data for
ISO New England (ISO-NE) service area. Publicly available
ISO-NE data include time series for load [26] and wind
generation [27]. Historical solar generation was obtained from
Renewables Ninja [28] based on MERRA-2 dataset assuming
non-tracking solar panels with 10% loss, tilt angle of 35°, and
azimuth of 180° spread over four locations in New England.
We modeled load intensity, wind intensity, and solar intensity
as non-dimensional variables on [0, 1] interval. Since the
annual demand is decreasing around 2.3% per year from 2015
to 2017, load intensity scale factor decreases the same amount.
The wind intensity is scaled by wind generation nameplate:
750MW, 880MW, and 1, 005MW in years 2015–2017.

B. Quantile Bins Modeling

Quantile Bins is the simplest quantile model formulation. It
also requires the most data to estimate. This approach works
well for solar generation modeling, e.g., see (16). For solar
(and wind) modeling, the weekday and holiday regressors in
(2) are irrelevant. The remaining regressors are ZM ∈ R

12,
binary variable indicating calendar month, and ZH ∈ R

24,
binary indicator of hour. The regressor state is then described
by the direct product vector

ZMH = ZM ⊗ ZH ∈ R
288
. (28)

For any regressor vector Zj , state vector ZMH,j (28) indi-
cates the month and hour. Let J be a set of indexes i in data
set (27) such that Zi = Zj , The quantiles of the distribution
u∣ZMH,j can be found by solving m separate Linear Program
(LP) problems for each quantile level qk (e.g., see [13])

αk,j = arg min ∑
i∈J

h(ui − αk,j ; qk) (29)

h(y; q) = 1
2
∣y∣ + (q − 1

2
)y, (30)

where h(⋅; q) is the ‘pinball’ function. Model parameters αk,j
are quantiles that correspond to quantile levels qk ∈ (0, 1),
(k = 1, ...,m). Separate multiple quantile models {αk,j}mk=1
are estimated for all 288 distinct combinations of month and
hour ZMH,j . Sufficient data is needed to achieve the accurate
estimation of the 288 ×m parameters αk,j .
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We used 5 years of hourly data from 2011 to 2016 to
train quantile bins model for solar generation. This provides
around 152 data points to estimate multiple quantile model
for each regressor state ZMH,j . Figure 1 shows the predicted
quantiles of solar intensity and example data for the day with
peak solar generation in year 2016. In Figure 1, ZM is fixed
and corresponds to month of August, while ZH is defined
by the hour shown as plot argument. For each hour, αk,j is
computed and shown, where k indexes quantile qk in (29) and
j corresponds to ZMH,j = ZM ⊗ ZH .
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Fig. 1: Solar Generation of a Sample Day

C. Multiple QR Model

As a starting point for Machine Learning of interdependent
conditional distributions (14) and (15), consider Quantile Re-
gression (QR) model for random variable u conditional on
regressor vector Z, of the form

P(y ≤ y(q)∣Z) = q, y(q) = Zβ(q) + α(q), (31)

where q ∈ (0, 1) is quantile level; β is parameter vector in the
dot product Zβ and α is scalar. For a given quantile level q,
model (31) can be found by solving an LP problem, see [9].

To estimate distribution at multiple quantile levels qk, Mul-
tiple QR problem was formulated in [29] as an optimiza-
tion problem in Second Order Cone Program (SOCP) form.
Model parameters, scalars αk and vectors βk, for quantiles qk
(i = 1, . . . ,m) are minimizers for the following SOCP

{αk, βk}mk=1 = arg min
m

∑
k=1

N

∑
i=1

h(ui − Ziβk − αk; qk) (32)

+ λ
m

∑
l=2

∥βl − βl−1∥2
+ µ

m−1

∑
j=2

(αj+1 − 2αj + αj−1)2.

The solution of (32) and selection of regularization param-
eters λ and µ are discussed in [12].

D. Linear Dependent Model Estimation

Power demand, solar, and wind generation are interdepen-
dent. Sun influences the wind, while both sun and wind affect
the demand. Subsection II-C introduced linear interdependent
model for demand, solar, and wind.

Machine Learning method below estimates such model
for (14), (15) from historical data of the form

DW ≡ {li, wi, si, Zi}Ni=1, (33)

where i is the index of hourly data sample; li, wi, si are
samples of demand, wind, and solar; Zi are samples of
explanatory variable (regressor) Z.

For a given vector Z (2), model (14)-(23) expresses inter-
dependent random variables −L, W , S through independent
random variables L̃, W̃ , S̃ using model weights γ̃S(Z), γ̃W (Z),
γ̃L(Z). This subsection assumes that dependence on Z is fully
described by the month and hour indicators ZMH (28). We
group all unknown model weights for the 288 distinct states
ZMH,j in parameter vectors

ΓLW = col(γ(1)
LW

, . . . , γ
(288)
LW

) ∈ R
288,1 (34)

ΓLS = col(γ(1)
LS
, . . . , γ

(288)
LS

) ∈ R
288,1 (35)

ΓWS = col(γ(1)
WS

, . . . , γ
(288)
WS

) ∈ R
288,1 (36)

Multiple QR problem for interdependent model (14) can be
estimated by solving an SOCP extending (32),

{{αi, βi}mi=1,ΓLW ,ΓLS} = arg min
m

∑
k=1

N

∑
i=1

h(li − Ziβk − αk − ZMH,i(ΓLWwi + ΓLSsi); qi)

+ λ
m

∑
l=2

∥βl − βl−1∥2
+ µ

m−1

∑
j=2

∥αj+1 − 2αj + αj−1∥2

+ ν1∥D2
MΓLW∥2

+ ν2∥D2
MΓLS∥2

+ ν3∥D2
HΓLW∥2

+ ν4∥D2
HΓLS∥2

, (37)

where k is quantile index and i is the index of data point in
data set (27). The last four terms in (37) are the regularizations
for ΓLW and ΓLS dependencies on month and hour with D2

M

being a circulant second difference operator for dependence on
month and D

2
H for dependence on hour. The regularization

parameters λ and µ in (37) are selected similar to (32);
parameters ν1, ν2, ν3, ν4 can be selected by cross-validation,
see Section IV. The SOCP (37) was set up in CVX and solved
using Gurobi. For 2 years of data, there are N = 17, 520 data
points and m = 10 quantiles, and 1, 036 decision variables;
the solution takes about 4 minutes. Figure 2 shows 3-D plots
of ΓLW , ΓLS , ΓWS vs hour and month in ZMH obtained by
solving (37).

Multiple QR model for wind (15) dependent model can be
estimated by solving the SOCP optimization problem similar
to how (37) estimates model (14). The differences are that data
wi is used in place of li, vector ΓLS is replaced by ΓWS , and
vector ΓLW is absent from the problem. Estimation of model
for solar (16) is described in Subsection III-B.

E. Tail Modeling

For the NERC 1-in-10 requirement, the probability of outage
for each hour is of the order of 10

−4. This means quantiles
of interest have just 2-3 hourly samples per year available for
modeling. The distribution tails (for 0 < q ≪ 1 or 0 < 1−q ≪
1), can be modeled using Extreme Value Theory (EVT), see
[24]. Power system peak data usually follow Exponential or
Generalized Pareto distributions predicted by the EVT [22],
[30]. Estimating 2 or 3 parameters of these distributions allows
extrapolating the tail into the quantiles where data are scarce.
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Fig. 2: (A) Solar Impact on Wind Coefficients ΓWS

(B) Wind Impact on Load Coefficients ΓLW
(C) Solar Impact on Load Coefficients ΓLS

Quantile sampling used in Multiple QR model (37) covered
quantile levels q1 = 0.05 to qm = 0.95 with pitch 0.1. For
two years worth of hourly data, there are about 800 demand
points with q ≥ 0.95. The distribution tail was modeled using
Peaks Over Threshold (POT) approach of EVT. For the right
tail, solution of (37) was used to compute

eR,k = yjk − Zjkβm − αm, (38)

where POT data indexes jk are such that eR,k > 0. Fitting EVT
Pareto tail model to the POT demand data is described in [22],
[24]. The tail model can be then sampled beyond quantile level
qm. Similar to (38), the left tail is modeled based on POT data

eL,k = yjk − Zjkβ1 − α1, (39)

where indexes jk are such that eL,k < 0. Figure 3 illustrates
the QQ plots for the tail, QQ is a method to visualize the
fitness of empirical distribution and theoretical distribution.
QQ plot, know as quantile versus quantile plot, is the graph
of of the quantiles of empirical CDF FE versus corresponding
quantiles of a hypothesized CDF F0 [31]. The QQ plot is
[F −1
E (q), F −1

0 (q)] for 0 < q < 1. In Figure 3, the left and right
blocks are using QQ plots to test the goodness-of-fit for left
and right tails of the distribution of demand, respectively.

Distributions for solar and wind generation are bounded
between zero and nameplate capacity. In these cases, Multiple

-0.1 -0.05 0
-0.1

-0.08

-0.06

-0.04

-0.02

0
LEFT TAIL QQ (q=0.05)

0 0.1 0.2 0.3
0

0.1

0.2

0.3
RIGHT TAIL QQ (q=0.95)

Fig. 3: QQ Plots on the Tail of Demand

QR formulation (37) includes quantile level samples at q = 0
and q = 1.

IV. VALIDATION

Statistical tests were used to quantify the fitness of the
estimated conditional model (14)-(16) and to help choosing the
10 hyper-parameters of the Machine Learning estimator (37)
(regularization parameters).

A. Pearson’s Chi-squared Test

Pearson’s Chi-squared Test [32] is used to test whether a set
of data is coming from a certain distribution. The test divides
probability space into k bins with probabilities {pi}ki=1. The
χ
2 statistic is computed from bin sample counts ni as

χ
2
= N

n

∑
i=1

ni/N − pi
pi

, (40)

For large enough ni, statistics (40) follows a chi-square distri-
bution with k − 1 degrees of freedom (DOF). The hypothesis
that data comes from the assumed distribution is rejected if

χ
2
> χ

2
1−α,k−1. (41)

Load, wind, and solar data from 2015 to 2016 were used
to train the models, and 2017 data to test them. For wind
distribution, data from 2015 to 2016 were used for the training
and 2017 data for the testing. For the solar, five years of data
from 2012 to 2016 were used for training and 2017 data for
the testing. To validate model predictive power for the net
injection W + S − L (see, (24)), data from 2015 to 2016 was
used to train, and data in 2017 to test the model. The scales for
load, wind, and solar were taken from Scenario F in Table II.

The estimated distribution models were validated using
Pearson’s Chi-square test with 11 bins defined by quantile
boundaries q1 = 0.05, q2 = 0.15, ..., q10 = 0.95. The bin
sample counts are

ni =
N

∑
j=1

I(uj ∈ (Qi−1, Qi)∣Zj), (i = 1, 2, ..., 11), (42)

where I(⋅) is the indicator function, and Qi is the quantile for
qi; it is assumed that Q(i = 0) = −∞ and Q(i = 11) = +∞.
The χ2 statistics are calculated according to (40).

The linearly dependent model in Subsection II-C involves
three variables: demand L, wind W , and solar S. Table I
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summarizes the results of the goodness-of-fit test for estimated
models of L, W , S, and convolution model W + S − L. All
chi-square statistics are below 95% level for both the train set
and test set, which means all trained models fit the test data
well. The model for W + S − L was based on Scenario F,
where renewables support over 59% of demand.

Variable DOF 95% Level Pearson’s χ2 Statistics
Training Set Test Set

L(Load) 10 18.31 0.7569 17.9580
W (Wind) 10 18.31 16.8932 9.8689
S(Solar) 10 18.31 0.4973 4.0557

W + S − L 10 18.31 9.4982 9.7098

TABLE I: Grid Planning Scenarios

B. Comparison with Monte Carlo Analysis

This subsection compares the proposed analytical method
with a Monte Carlo approach. The examples below illustrate
two fundamental issues with the Monte Carlo. First, Monte
Carlo tools for power grid reliability analysis usually simulate
limited number of samples. As a result, the tails of the esti-
mated distributions are not accurately characterized. Second,
the tools used in practice usually ignore dependencies between
the underlying distributions to reduce the effort required for
setting up the analysis. We show that the results then could
be substantially biased for large penetration of renewables.

As an example, reserve margin distribution was computed
through the mix of load, wind, solar and generation capacity
for R = C − L + S +W . The example follows Scenario F in
Table II with 59% of renewables. Capacity C in the example
is a constant parameter (generator outage is not modeled). The
analytical method for computing distribution of R described
in Section III-D estimated interdependent models for L, S, W
from the data. The PMFs for R = C +W + S − L∣Zj , were
computed by convolutions. The Monte Carlo analysis of R was
based on two years of historical data. For the peak hour/week
(no holiday), the two years of data contain 9 samples. Assum-
ing that variables L, S, and W are independent, 9×9×9 = 729
Monte Carlo samples for R combine the raw data samples
for L, W , and S to estimate the empirical CDF. Figure 4
shows the CDFs for R computed by the two methods for Zj
corresponding to the peak hour/week (for August, Tuesday,
5pm, no holiday) and C = 25.2GW.

The convolved CDF was validated to be accurate, see Sub-
section IV-A. The Monte Carlo estimation deviates from this
CDF. The difference in reserve margin at the 10

−4 level can
be as high as 5GW, over 15% of the total capacity. The CDFs,
such as shown in Figure 4, were used to compute LOLP and
then LOLH as described in Section II-D. Figure 5 illustrates
the computed LOLH vs fixed generation capacity C for the
two methods. Monte Carlo underestimates capacity C required
to achieve LOLH = 2 by roughly 2GW, which is about 6%.
This result illustrates the importance of the accurate estimation
of interdependent distributions for demand, solar, and wind
generation achieved by the proposed method.

V. RISK ESTIMATION EXAMPLES

This section provides examples where the tools presented in
Section II and Section III aree applied to ISO-NE service area
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Fig. 4: Reserve CDFs: Monte Carlo and Analytical Method
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Fig. 5: LOLH for Monte Carlo and Analytical Method

data. We consider scenarios with solar and wind capacities
higher than current ISO-NE values. We also consider large
battery storage added to the actual pumped storage (2GW of
power, 12GW-hours of energy).

A. Power Balancing

Reserve margin R is a random variable computed as

R = F + C −O − L +W + S, (43)

where the first two terms in the r.h.s. are constants
F is the fixed transfer capacity of 1.7GW,
C is the dispatchable generation capacity of 36.4GW.

The last four terms in (43) are random variables with distri-
butions estimated from historical data as described below.
O is the outage capacity,
L is the load (power demand),
W is the wind generation,
S is the solar generation.
Outaged Generation: Capacity and outage data for ISO-NE

generators are stored in NERCs GADS database, same as for
other ISOs. The total dispatchable capacity C is provided by
306 thermal generating units. GADS includes unit capacity
levels h and outage probabilities q given as Equivalent Forced
Outage Rate - demand (EFORd) values. Sampled Bernoulli
distribution models were obtained from h, q and sampling
step ∆h = 1MW. Outage PMF is a convolution of the
sampled Bernoulli distributions for the individual outages,
see Subsection II-A. Figure 6 shows the PMF of outaged
generation for the ISO-NE data.

Load, Wind, and Solar: The hourly load, wind and solar data
for ISO-NE service area are described in Subsection III-A. The
probabilistic models for demand, solar, and wind generation
were estimated from data as described in Section III.
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Fig. 6: Probability Distribution of Outaged Generation

To compute the distribution for W + S − L in (43), the
estimated distributions were convolved as described in Sub-
section II-C.

Computing LOLH: The LOLH risk index calculation de-
scribed in Subsection II-D requires conditional distribution
of reserve margin, R∣Z in (25) (26). Distribution of reserve
margin R in (43) is modeled as conditional on calendar
variables: Month, Weekday, Hour of a Day, and Holiday,
see Subsection II-B. There are a total of 4, 032 different
time regressor states Zj . For each of these states, conditional
distribution for (S + W − L)∣Zj is computed as described
in Subsection V-A. In (43), F and C are constants; random
variable O is independent of Zj and of L, W , and S. For each
Zj , the distribution for R∣Zj = (F + C −O + S +W − L)∣Zj
in (43), can be computed by convolving PMFs of independent
variables (F+C), −O, and (S+W−L)∣Zj , see Subsection II-B.
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Fig. 7: Distribution of Reserve Margin at a Peak Hour

Given the conditional probability distributions of reserve
margin R∣Zj for all the regressor states, the LOLH risk index
can be calculated as described in Subsection II-D. As an
illustration, Figure 7 shows the reserve margin distribution of
R∣Zj , where Zj corresponds to a peak hour of the peak day.
The shaded area under the curve corresponds to LOLP(Zj) in
(25).

B. Energy Balancing with Storage

The contribution of storage is analyzed through energy
margin introduced in [12]. The battery can only stave off loss
of load if the energy margin, the sum of reserve margins in
n consecutive hours combined and battery capacity Bn for
energy injection over these n hours, does not fall below zero.
The energy margin can be computed as

Rn = Fn + Cn −On − Ln +Wn + Sn, (44)

where the first two terms in the r.h.s. are constants
Fn is the energy transfer capacity over the n hours, Fn = nF ,
Cn is the n-hours energy generation capacity, Cn = nC,
The remaining terms in (44) are random variables that can be
estimated from the data as described below,
On is the total outage energy over the n hours,
Wn is the wind-generated energy over the n hours,
Ln is the total energy demand over the n hours,
Sn is the solar-generated energy over the n hours.

Outaged Energy: The outaged energy over n consecutive
hours from tk − n + 1 to tk can be defined as

On(tk) = O(tk − n + 1) + . . . +O(tk). (45)

Each of n terms O(tk) in the r.h.s. of (45) is assumed
to be an independent random variable following the outage
distribution computed as discussed in Subsection II-A and
illustrated in Figure 6. The PMF of resulting distribution is
given by convolution of the PMFs for the n summands, which
is n-fold convolution of Figure 6 distribution for O with itself.

Net Energy for Load, Wind, and Solar: Variables Ln, Wn,
and Sn in (44) at any hour t, can be expressed similar to
(45). Data-driven models for these variables can be built from
historical data. As an example, the data for the random variable
Sn is obtained by taking a time series of hourly samples
for S(t) and running it through a convolution filter with
rectangular window [1, 1, ..., 1] of n ones. The convolution
output samples can be used to build a probability distribution
model for Sn as described in Subsection III-B. The same
approach is used for computing Wn and Ln as rectangular
window convolutions of wind and load data, respectively.

The estimation of interdependent probability distributions for
Ln, Wn, and Sn from the data is similar to that for L, W ,
S in Subsection V-A. To compute the distribution for Wn +
Sn−Ln in (45), the distributions are combined as described in
Subsection II-C. The r.h.s. of (44) is the sum of the constant
Fn +Cn and two conditionally independent random variables:
On and Wn + Sn − Ln. The distribution for Rn is computed
by convolutions, similar to R in Subsection V-A.

C. LOLH Bounds for Energy Balancing

For a given window width n and time regressor Zj , consider
a loss of load condition

LOLPn,j = P(Rn ≤ −Bn −Hn∣Zj), (46)

where Bn is energy provided by battery storage within n hours
and Hn by hydro storage. The battery energy is limited by

Bn = min(nBM , BC ),

where BM is max power and BC is energy capacity of the
battery. Similar expression holds for hydro storage energy Hn.

In expression (46), Rn +Bn +Hn < 0 is a condition of load
loss assuming that full energy capacity of storage system is
available any time it is needed, the storage is fully charged.
This expression yields the lower bound of actual LOLP; actual
LOLP can be only higher. Using (46), one can calculate the
lower bound LOLHn as described in Subsection II-D.
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Fig. 8: Information Theory View of Storage Impact on Grid Reliability

Variable Scenario A Scenario B Scenario C Scenario D Scenario E Scenario F
Dispatchable Capacity 34.4GW 30.4GW 30.4GW 30.4GW 30.4GW 25.2GW

Wind Nameplate Capacity 0.95GW 6.41GW 9.79GW 6.41GW 6.41GW 23.6GW
Solar Nameplate Capacity 0.57GW 12.57GW 12.57GW 18.57GW 12.57GW 23.07GW

Battery Storage (5-hour) - 1.5GW 1.5GW 1.5GW 2.7GW 5GW
Pumped Storage (8-hour) 1.5GW 1.5GW 1.5GW 1.5GW 1.5GW 1.5GW

Fixed Transfer 1.7GW 1.7GW 0.7GW 0.7GW 0.7GW 4GW
90/10 Load 24.94GW 24.94GW 24.94GW 24.94GW 24.94GW 24.94GW

LOLH Lower Bound 0.3328 0.5317 0.8337 1.0482 0.4427 0.1944
LOLH Upper Bound 2.37 2.23 2.19 2.16 2.24 2.21

TABLE II: Grid Planning Scenarios
More accurate lower bound is obtained by considering all

possible energy windows with different lengths n. Assume
that storage charges during the night and discharges during
the day. If the storage runs out of energy, this means condition
Rn+Bn+Hn < 0 holds for one of the energy windows during
the day. Thus, the lower bound for LOLH is

LOLH = max
n

{LOLHn}. (47)

Additional discussion can be found in [12].
An upper bound of the LOLP can be obtained by assuming

a fixed dispatch of the battery. With this assumption, storage
generation just adds a deterministic term in power balance
analysis of Subsection V-A. We assume storage dispatch is the
same every day within a month. On each day, energy stored
equals energy discharged and does not exceed storage capacity.

0 5 10 15 20
Hour of A Day
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0
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G
W

Operation of Battery and Pumped Storage in June

Battery Operation
Pumped Storage Operation

Fig. 9: Storage Power Dispatch

Figure 9 has an example of battery and pumped storage
dispatch for Scenario F in Table II during a day in June.
Storage charging is shown as positive value, discharging as
negative. Scenario F has 59% renewables with large solar
generation; storage is discharging in the evening and night.

Information Theory View: The presented energy balance
analysis is related to Information Theory analysis of digital
communications. Figure 8 depicts LOLP analysis problem as
communication system. The input is B, the storage hourly
operation profile. This signal is transmitted through a noisy
channel (R + B)∣Z, where R is given by (43), and produces
an hourly reserve margin waveform. The Receiver/Detector
determines Loss of Load events as R + B < 0. The decoded
output is 1 if there is Loss of Load, otherwise 0 is decoded.

Random variable R represents channel noise. Code B (stor-
age dispatch) is meant to be decoded as 0, no Loss of Load.
LOLP is the probability of decoding 1 instead, an error. Perfor-
mance of the code is determined by the probability of error,
which is computed the LOLP upper bound in Section V-B.
Capacity for error-free transmission in a noisy communication
channel is described by Shannon’s Limit, which has the
meaning similar to the lower bound for the expected error
probability computed in Section V-B.

There are two fundamental differences between the analysis
in this paper and the standard usual Information Theory
analysis. First, Shannon’s analysis assumes Gaussian noise
in the channel, while distributions of reserve margin in this
paper are very much non-Gaussian. Second, Shannon’s anal-
ysis assumes memoryless channel, while in this paper the
probability distributions are dependent on time regressor Z
and strongly vary through the day. Thus, despite the described
analogy, Shannon’s analysis is not directly applicable and more
complicated analysis presented in this paper is necessary.

VI. PLANNING GRID WITH RENEWABLES AND STORAGE

This subsection provides LOLH analysis result for six sce-
narios in Table II. In each scenario, the upper bound of LOLH
is around 2.2 in compliance with the 1-in-10 requirement.
Scenario A is close to actual 2017 ISO-NE system, but the load
is factor 1.4 higher. In Scenario B, wind and solar account for
10% of annual load and battery storage is added. Scenarios C,
D, and E, replace 1GW of fixed transfer capacity in Scenario
B by wind, solar, and battery storage, respectively. The results
show capacity factor of 29.6% for wind, 16.67% for solar, and
83.3% for battery.

Scenario F is extreme case where solar and wind account for
58.7% of the total annual load. It assumes that all dispatchable
generators over 525MW are retired. Battery capacity is raised
to 4GW, and fixed transfer capacity is raised to 5GW. For
most scenarios, the ratio of upper and lower bound of LOLH
is less than 2. The ratio is larger for Scenarios C and F because
of the large wind capacity. The wind is rather unpredictable
and cannot be addressed by using the same battery profile
everyday.
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VII. CONCLUSION

This paper demonstrated efficient, practical tools for proba-
bilistic reliability analysis of grid with very high penetration
of renewables and storage. Machine learning models are
built from historical data and accurately describe probability
distributions for interdependent variables (solar, wind, load)
including extreme (tail) events. The tools combine the models
to compute probabilities, LOLP, and LOLH for a planning
scenario with given variable generation and storage capacities.
The accuracy of predicting the probabilities based on the
previous year training data is statistically validated.

The demonstrated tools are substantially more accurate than
Monte Carlo methods currently used in practice. They are also
much faster. Complete risk analysis for a given scenario might
take just a few seconds. This allows to analyze many scenarios,
e.g., for resource mix optimization.

The developed analysis of a grid with storage provides a
lower bound for the LOLH risk. Similar to Shannon’s limit in
Information Theory, this lower bound allows to evaluate room
for improving a given battery schedule. A specific schedule
provides an upper bound of the LOLH.

Probabilistic ramp rate analysis using developed tools will
be demonstrated in a follow-on paper.
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