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Abstract—This paper demonstrates analytical method
for resource mix optimization. The case study is for an
isolated large minigrid of Esperance in Western Australia.
The method is based on discrete convolution of conditional
probability distributions learned from data. It accounts for
demand interdependence with wind and solar generation
and for grid storage. The capacity value of these resources
is established by computing Loss of Load Probabilities
(LOLP) for combined probability distributions.

Index Terms—Capacity value; variable generation re-
sources; storage; reliability; planning; probabilistic analy-
sis; analytical method.

I. INTRODUCTION

Horizon Power, the Government-owned, vertically
integrated, monopoly utility operating across regional
Western Australia is hard pressed for effective plan-
ning of its 38 minigrids to include renewable energy
and storage technologies. Maintaining reliability while
optimizing the resource mix requires knowing capacity
values of these variable resources. The state of the art
is to use Monte Carlo analysis, see [1] for wind, [2] for
solar, and [3] for storage capacity value.

Planning tools based on Monte Carlo simulation anal-
ysis are currently used by RTO/ISO organizations and
large utilities but are poorly suited for high penetration
of renewables and for smaller grids. The analysis is too
labor and computation intensive for the size, number, and
resource mix fragility of isolated micro- and minigrids.

This paper demonstrates analytical method devoid
of these drawbacks. The method is based on discrete
convolution approach, e.g., see [4]. It allows for fast
and accurate reliability analysis of resource mix by
combining data-driven models for each resource. The
known approach convolves probability distributions of
independent random variables; it has to be extended in
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several important ways. First, wind and solar generation
as well as load depend on day hours and seasons.
Second, even for a given hour and month, wind, solar,
and load are not independent. (For example, see [5]).
Finally, addressing energy storage is non-trivial.

Though a complete analytical method for resource mix
has not been demonstrated earlier, there is prior work
on many of the subproblems. Using a data-driven model
for each hour of the year is discussed in [6]. For one
given hour, it is more reasonable (though still inaccurate)
to assume load and variable resources independent and
convolve respective distributions. Such approach is used
in operational forecasting, e.g., see [7] and [8].

Prior work on storage capacity value is much less
extensive. The main approach used is simulation analysis
assuming a fixed scenario of storage charge-discharge or
optimizing the storage performance as part of simulation,
see [9]. No analytical methods for storage capacity value
seem to be available, apart from the earlier related work
of the authors [10] that is extended in this paper.

The analytical method in this paper combines prob-
abilities models for resources conditional on time re-
gressors (such as hour and month) as described in [10].
These quantile models effectively define the load (or
variable generation) duration curves for a given hour.
Machine Learning methods used to obtain these models
from limited historical data are described in [10]–[12].

The main contribution of this paper is demonstrating
the analytical method for integrated resource planning in
the Esperance minigrid. Importantly, this paper extends
energy balance analysis in [10] to the computation of
bounds for storage capacity value. In addition, several
extensions of the modeling approach in [10] are demon-
strated: combined model for simulation and historical
data in Section III, intra-hour variation model in Sec-
tion IV-A, and quantile bins model in Section III-D.



II. ESPERANCE MINIGRID

A. Problem description

The town of Esperance is located on the Southern
Ocean coastline of Western Australia, some 720 kilome-
ters (450 miles) from the nearest major city. It supplies
electricity to just under 14, 000 people. Esperance is
surrounded by national parks, where transmission lines
to connect the town with the main grid would be an en-
vironmental issue even if they were not cost-prohibitive.

Considered against Horizon Power’s total portfolio
of isolated minigrids, Esperance has average total sup-
ply costs despite its large low-density 33 kV network.
Rooftop solar has reached the maximum hosting capacity
level for unmanaged installations set at 2.1 MW (an 11%
penetration for Horizon Power’s capacity).

Horizon Power has peak load of approximately
18.5MW, with a shoulder load of 12.5MW. Being on the
Southern Ocean coast, Esperance has a winter peak with
4.7MW difference between winter and summer peak
demand, which is atypical of Australia.

Esperance demand has two sources: approximately
75% is town load from residential and business cus-
tomers and around 25% is local port load. Seven gas
turbines in two power stations with total 38.5MW capac-
ity currently provide around 85% of the supply. Existing
2.0MW Ten Mile Lagoon Wind Farm and 3.6MW Nine
Mile Beach Wind Farm contribute around 5% and 10%
of the generation supply respectively.

Esperance does not currently have any installed stor-
age capacity, but it is considered. Interconnection to the
bulk grid is not considered viable now.

III. MODELING

Figure 1 shows the block diagram of the resource mix
analysis flow. Machine Learning approaches detailed in
[10] are used to build probabilistic models for individual
resources from historical data. The analytical method
described here then integrates the component models
for resource mix optimization. This section discusses the
component models for the Esperance minigrid.

Fig. 1: Block Diagram of Modeling and Analysis Flow

A. Modeling Data
Horizon Power demand is represented by over 3 years

of feeder data for the residential load sampled every 5
min. Port demand is modeled as 10% residential load and
90% block load profile with known total annual energy
consumption. The block load profile approximates a
typical industrial user and is shown in Figure 2 along
with residential demand on a summer day in 2015.
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Fig. 2: Residential and Port Demand
Gas plant outages were modeled using NERC value

of EFORD = 11.02% (i.e., the outages occur 11.02% of
the time the gas plant should be running).

For wind farm and rooftop solar generation modeling,
we used data from Renewables Ninja [13]. Assumed
historical generation is based on standard values for
efficiency factors and available wind and solar resource.

B. Conditional Probability Model
A distribution for a sampled random variable u can

be represented by sampled values

p(u[k]) = p[k], (1)

where independent variable samples u[k] are uniformly
spaced on a grid covering support interval [u0, umax].

We consider conditional distributions where regres-
sor vector Z indicates time variables including month,
weekday, hour, and holiday. Binary vectors Z include 24
indicators for hour, 7 for weekday, 12 for month, and 2
for holiday/workday. There are total of 24×7×12×2 =
4032 different regressor states.

Conditional probability model is described by a vector
of samples pi (1) for each state Zi. Machine Learning
methods described in [10]–[12] characterize a condi-
tional distribution of u|Z through sampled Cumulative
Density Function (CDF)

P(u ≤ vm|Z) = qm, vm = v(Z, qm), (2)

where quantile levels qm are uniformly spaced on a
grid covering interval (0, 1). Quantile model v(Z, qm)
in (2) can be estimated from data, see below. It can be
converted to form (1) as discussed in [10].
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C. Demand Model
Quantile Regression (QR) model is one special case

of Quantile model. QR model assumes linear influence
of each regressor in (2),

v(Z, q) = Zβ(q) + α(q). (3)

where q ∈ (0, 1) is quantile level. Machine Learning
methods described in [10] allow building QR models.
Such model is given by a set {qi}mi=1 and corresponding
QR parameters: vectors βi ∈ Rn and scalars αi ∈ R.

D. Solar Generation
Quantile Bins (QB) model is another special case of

the Quantile model. QB models for each regressor state
Zi are independent. This requires more data then QR
model, because there is less statistical averaging.

QB model was developed for Esperance solar gener-
ation. The only regressor components that of influence
here are month and hour. Thus, there are 12× 24 = 288
different regressors (bins) Zi. The solar QB model is
based on historical data from 2011 through 2015.

Figure 3 shows the predicted solar generation distri-
bution and real points at Oct 21, 2015.
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Fig. 3: Solar Generation and Model Quantiles

E. Generator Outage
For a sum of two independent random variables,

probability distribution can be computed as discrete con-
volution of the two sampled probability density functions
(PDFs). Assume u and v are two independent variables
with sampled PDFs pu[·] and pv[·] of the form (1). Then

pu+v[·] = pu[·] ∗ pv[·], (4)

where ∗ denotes discrete convolution.
An example is Outage of multiple gas generators in

Esperance minigrid. Outage of each generator is modeled
as a sampled PDF based on EFORD parameter. The
distribution of the total outage power can be computed
as the convolution of the individual generator outage
distributions, see [10]. The convolution method for in-
dependent variables is well known, see [4]. Its extension
for dependent random variables is discussed next.

F. Combined Model of Demand, Wind, and Solar

Demand d, wind generation w, and solar generation
s are three interdependent random variables. A nested
model (conditional on time regressor vector Z) is built
following [10]. The model uses s and w as predictors of
d, and s as predictor of w,

w = w̃ + α · s, (5)

d = d̃+ β · s+ γ · w, (6)

where w̃ is the prediction residual independent of s, and
d̃ is the prediction residual independent of s and w. The
coefficient impact factors α, β, γ are conditional on Z.

Multiple Quantile Model including parameters α, β,
and γ in (5) and (6)) is built from historical data as
described in [10]. The model parameters depend on
regressor vector Z. Figure 4-6 shows 3-D plots of α,
β, γ vs hour and month. For wind and solar generation,
only hour and month components of Z matter.
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Fig. 4: Solar Impact on Wind, α(Month,Hour)
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Fig. 5: Solar Impact on Demand, β(Month,Hour)
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Fig. 6: Wind Impact on Demand, γ(Month,Hour)
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Based on (5) and (6) and Subsection III-E, we can
combine the PDFs after collecting the terms for three
independent variables s, w̃, and d̃ in the sum w+ s− d,

pw+s−d[·] = p(1+α−β−αγ)s[·] ∗ p(1−γ)w̃[·] ∗ pd̃[·]. (7)

G. Model Validation

How do we know that the developed models, with
all the assumptions made in the estimation, have good
predictive power for the future years? The answer comes
from validating the model on a separate test set.

The data from 2015 through 2016 were used for
building dependent variable model (5), (6). The model
was then validated with data from 2017. The Pearson’s
chi-squared goodness-of-fit test was computed for 11-
bin empirical probability distribution. Table I shows the
validation result, which confirms predictive power of the
model.

TABLE I: Model Validation: Goodness-of-Fit Test
Variable Dimension 95% Level χ2 Statistics
Demand 10 18.31 15.5810

Wind 10 18.31 5.6285
Solar 10 18.31 6.6206

IV. POWER AND ENERGY RESERVE MARGINS

We used the developed probabilistic models to explore
three scenarios for the Esperance grid planning. These
scenarios are summarized in Table II. Today there are
seven gas turbines with total dispatchable capacity of
38.5 MW. In Scenarios B and C, one of the turbines is
replaced with variable wind or solar generation, respec-
tively, supported by a 4-hour battery storage system.

TABLE II: Grid Planning Scenarios

Scenario Dispatchable Storage Solar Wind
Today (A) 38.5MW - 2.1MW 5.6MW
Wind (B) 33.0MW 2MW 2.1MW 18.0MW
Solar (C) 33.0MW 2MW 11.0MW 5.6MW

A. Power Reserve Margin

We define reserve margin R as a random variable

R = G−O + S +W −D + V, (8)

where G is the dispatchable generation capacity. Other
terms are random variables modeled as follows
O is the outage power, see Subsection III-E.
W , S and D are wind generation, solar generation,

and total demand, respectively. Subsection III-F de-
scribes the model for the sum W + S −D.
V is the intra-hour variation of demand from mean

hourly value D. It is modeled using 5-minute data.

Other variables are assumed to be constant within each
hour. This paper extends the formulation in [10] by
adding Quantile Bins model of V with month and hour
indicators as regressors. Figure 7 shows the quantile
model of the intra-hour deviation for Aug 30.
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Fig. 7: Quantile Model for Intra-hour Variation

Distribution R|Z in (8) is computed by combining
conditional PDFs for independent variables O, S+W −
D, and V through discrete convolution at each of the
4032=24× 7× 12× 2 regressor states Zi.

B. LOLH Reliability Analysis:

Negative R in (8) means the generation cannot meet
the demand. We computed Loss of Load Probability
(LOLP) for a given state Zj as

LOLPj = P(R ≤ 0 | Zj) (9)

Numerical value of LOLPj can be obtained from the
conditional PDF for R|Zj computed as a convolution of
the component PDFs.
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Fig. 8: LOLPj in the peak week

Figure 8 shows the LOLP for peak week. The expected
Loss of Load Hours (LOLH) is (see [10] for detail),

LOLH = 365× 24×
N∑
i=1

LOLP(Zj) ·P(Zj) (10)

NERC 1-in-10 requirement for capacity adequacy is
equivalent to LOLH≤ 2.4.
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C. Energy Reserve Margin

The LOLH analysis of the previous subsection can
be extended to the scenarios with grid-scale energy
storage (battery). Batteries can store energy when excess
power is available and generate power when reserve
margin is depleted. The battery contribution can be
analyzed through energy margin introduced in [10]. If
we consider a reserve margin (without a battery) as a
random variable, the battery can only avert loss of load
if the sum of negative reserve margins in n consecutive
hours is less than battery energy capacity Bn for any n.
The energy margin is defined as

Rn = Gn −On + Sn +Wn −Dn, (11)

where Rn is computed as the convolution of R in (8)
with a rectangular filter window of n ones. (Note that
Vn = 0, since it has zero average for any given hour). To
model Rn, the already described methods are used with
the component signals in (8) after rectangular window
(moving sum) filtering. For a given window width n,
LOLPn = P(Rn ≤ −Bn). The energy balancing risk
can be evaluated through LOLH = maxn{LOLHn}.
More details can be found in [10]. Since Rn +Bn ≥ 0
is a necessary condition of energy balancing, the energy
margin method yields the lower bound of actual LOLH.

An upper bound of the LOLH can be obtained by
assuming a specific operational profile of the battery,
which modifies the demand model used for the LOLH
estimation in Subsection IV-A. Figure 9 provides battery
operation profile assumed for the Esperance minigrid.
The battery is fully charged every night from midnight-
6am, discharges at a certain rate during daytime, and
runs empty at the end of the day.
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Fig. 9: Net Generation Distribution

In the evaluated scenarios, the upper and lower bounds
are not too far apart. This means the presented analysis of
energy balance is reasonable and does not overestimate
LOLH by much. The result shows how much improve-
ment might be achievable by optimizing the battery
operation further compared to the profile in Figure 9.

V. ANALYSIS RESULTS AND CONCLUSIONS

Table III shows the results of the LOLH analysis for
three scenarios in Table II. Since Scenarios B and C
include grid-scale battery storage, the upper and lower
bounds of LOLH are shown. In Scenario B, replacing
one 4.5MW gas turbine out of seven, requires at least
12.4MW of wind nameplate capacity and 2MW of 4-
hour storage to keep the same LOLH reliability. In
Scenario C, the same result is achieved through 8.9MW
of extra solar nameplate capacity and 2MW of storage.

TABLE III: LOLH for Analyzed Scenarios

Scenario LOLH
A 0.66
B (0.66, 1.25)
C (0.65, 1.38)

With an increasing share of renewables in the genera-
tion mix, fuel costs and dispatch requirements from the
gas plant can be greatly reduced. Full economic analysis
is beyond the scope of this paper. Yet one can note that
demonstrated reliability analysis is useful for negotiation
of long term power purchase agreements, especially as
the costs of renewables and storage continue to fall.
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