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Abstract

This article considers the design of practical feedback controllers for a class of
spatially-distributed processes where the state of a uniform physical substrate is
influenced by an array of evenly-distributed, identically-constructed actuators and
measured by an array of evenly distributed, identical sensors. A constructive proce-
dure is introduced for designing spatially-distributed feedback controllers with the
objective of practical implementation. The full controller design cycle is addressed;
including specification, synthesis, and implementation. The proposed design proce-
dure has been field-tested and forms the basis of a software tool that has recently
been implemented in a commercial product for the design of industrial paper ma-
chine controllers.
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1 Introduction

This article considers the design of practical feedback controllers for a class
of spatially-distributed processes where the state of a uniform physical sub-
strate is influenced by an array of evenly-distributed, identically-constructed
actuators and measured by an array of evenly distributed, identical sensors.
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We consider processes described by linear time-invariant models that are also
spatially-invariant (except possibly near the spatial domain boundaries).

The class of models presented in this work was originally developed to encom-
pass the variety of spatially-distributed processes found on modern industrial
paper machines. The physics of these processes include heat transfer and ther-
mal expansion, drying dynamics, fluid flow, and mechanical deformation [37].
Devising a model structure suitable for all of these processes has led to a frame-
work general enough to potentially include a range of spatially-distributed
engineering applications:

e Other sheet-forming processes include the formation of plastic film [9,19],
and steel making [14,32,33], and are surveyed in [11].

e The growth of semiconductor crystals where arrays of heating elements
maintain a uniform temperature distribution throughout the furnace [1].

e Micro-electromechanical systems (MEMS) are an emerging technology in
which thousands of tiny actuators distributed over a large structure can be
coordinated to achieve global control goals [3,16,31].

e The automated control of a string of vehicles on a highway, known as pla-
toons have been studied in [3,26].

e Mechanical deformation of structures for attenuation of vibration in struc-
tures [12], or for low-frequency shape control of optical devices [15].

As stated, the process models treated in this work are linear, time-invariant
multivariable systems and therefore could potentially be treated with conven-
tional controller design techniques. However, the problem is complicated by
three main issues:

(1) The complexity of the large-scale multivariable processes leads to difficul-
ties in determining practical control objectives for the closed-loop system. In
many practical cases, the open-loop process model is ill-conditioned. Even at
steady-state, some of its singular values are vanishingly small. Signal norm
specifications may be imposed, but the designer must consider the direction-
ality of the process model in order to determine achievable requirements.

(2) The synthesis of a controller for such a large scale system can be intractable
even with modern computing power [11]. A process with a few hundred actu-
ators is an order of magnitude larger than the multivariable control systems
for which the now-familiar synthesis techniques (for example Hy and H,)
were developed [35,42]. The computational complexity rises quickly with the
number of actuators to prohibit the blind application of popular commercially
available controller synthesis tools to realistic problems (Section 6.4.2 in [11]).

(3) Finally, when evaluating a design, the practical implementation of a con-
troller must be considered. Many synthesis strategies will result in a fully-
centralized controller in which each actuator is required to be connected to



every sensor in the system. While capable of satisfying performance require-
ments, such a high level of connectivity does not provide a feasible imple-
mentation. It may include sensor-actuator pairs that are physically far apart,
and the real-time computational complexity becomes important with systems
composed of hundreds or thousands of actuators and sensors.

Recognition and exploitation of the near spatially-invariant properties of the
processes in question are central to the work presented here. Analogous to
time-invariance in dynamical systems, the property of spatial-invariance al-
lows the design problem to be spatially decoupled. This is the key idea of the
analysis and synthesis techniques presented in [2,3,6,17]. In [6,17] the spatial-
invariance allows the problem to be conveniently presented in a multidimen-
sional state-space format. In [2,3], the large scale multivariable design problem
can be decomposed into a family of independent single-input-single-output
(SISO) design problems, one for each spatial frequency.

Research in a different direction has simplified controller synthesis algorithms
for a more general class of multivariable process models, whose plant model
structure is such that the same singular vector matrices may be used to decou-
ple the plant at any temporal frequency. The design of Hs- and H.-optimal
controllers again reduces to the design of a family independent of independent
SISO controllers - in this case one for each singular value [20].

Plants with symmetric circulant transfer matrices are used throughout the
current work and may be interpreted as a special case of either the spatially-
invariant structure of [3] or the SVD structure considered in [20]. Controller
designs for circulant symmetric plants have been presented in [4,21,25].

The main contribution of this article is a constructive procedure for designing
spatially-distributed feedback controllers with the objective of practical imple-
mentation. The full controller design cycle, including specification, synthesis,
and implementation, is addressed by this procedure.

We introduce the use of the two-dimensional frequency domain at the specifi-
cation stage prior to controller synthesis. In addition to simplifying the compu-
tational complexity of the controller synthesis, many of the familiar concepts
from control engineering are present in the two-dimensional frequency domain.
For example, in dynamical systems the performance requirements are typically
imposed at low temporal frequencies, and robustness requirements are applied
at high temporal frequencies. Similarly in the broad class of two-dimensional
systems under examination it is found that high performance may be achieved
at low spatial and temporal frequencies, while robustness requirements must
be imposed at high spatial and temporal frequencies.

Finally, we address two important problems related to the implementation of
the designed controller - performance near the boundaries of the spatial do-



main, and its implementation as a low-order, spatially localized control law
with a causal time-domain update equation. The incorporation of these issues
into the design procedure avoids ad hoc adjustments to a theoretical design
when the controller is used in a real-world environment. The design procedure
described herein forms the basis of a software package that has been imple-
mented in a commercial product for tuning cross-directional controllers on
industrial paper machine systems. Field results demonstrating typical closed-
loop performance are described in [37,39,40].

The paper is organized as follows. We introduce the class of process models
and controller specifications for performance and implementation in Section
2. Section 3 presents the issues involved in making a spatially-invariant ap-
proximation of the problem. Section 3.2 reviews the properties of linear, time
and space invariant plants, making such systems attractive for controller de-
sign. Section 4 presents the main result with the two-dimensional loop shaping
controller design procedure. Section 5 illustrates the application of the design
procedure in terms of a realistic but simplified example.

1.1 Notation

This article makes extensive use of banded, symmetric matrices — Toeplitz
and circulant. A band-diagonal symmetric Toeplitz matrix of size n X n with

q < n/2 degrees of freedom @ = [ay, ..., a,)|T is denoted by,
a1 a2...aq 0 ............0
az a; az --- a; 0
as a1 as : ag
Gq a2 a1 049y
0 a - a a; 0
_ q 2 q
A=T(a,n):= (1)
0 a4 - g a;, 0
- Ay a1 G2 " Gg
N I
0 ag -~ az a1 a
0............ 0 aq...a2 a1
nxn

The related symmetric circulant matrix [7,18] is denoted by,



a; Qo ...aq O [N 0 aq SRR )
as ap az +-- ag 0
az ay Az © Qg - - . Qq
0 a - a a, 0
2 _ q 2 q
A=C(a,n) = (2)
0 a4 . Gy a; 0
0 ..o s ag o ap ag -oag
ag - - o ag - G2 a1 G
0 ag - ax a1 a
a2...aq O [N 0 a/q...a/Z a
nxn

Note that the two matrices 7 (a,n) in (1) and C(a,n) in (2) are the same
except for the upper right and lower left corners. This fact will be revisited in
Section 3.

2 Problem Statement

This section presents the process model, controller structure specifications,
and a collection of practical closed-loop performance specifications.

2.1 Process Model
We consider linear, time-invariant process models of the following form:

y(w:fziBi-u(t—z’)—iAj-yu—j) 3)

where y(t) € R" is the output vector of n sensor readings at time ¢, the
vector u(t) € R" contains the array of n actuator setpoints at time ¢, and the
coefficients in (3) are band-diagonal symmetric Toeplitz matrices in (1)

Bl:T(BZ,n), Bl:[bll,,b;bT
A;=T(a;,n), aj = [al,...,a} |, (4)



where 1 =1,...,mpand 7 =1,...,m,.

The model structure in (3), (4) is motivated by its success in representing
spatially-distributed systems. This structure has been used in practically every
study of cross-directional profile control on industrial paper machines [11,37].
This model is also common in the spatial and temporal discretization for the
explicit solutions of partial differential equations (see Appendix A and [36,41]).
Typically the matrices in (3) will have a relatively narrow non-zero band so
that ny, n, < n.

The subsequent analysis and design will benefit from the use of a transfer
matrix version of (3)—(4). The Z-transform is used to represent the time delays
in (3). Writing the factors,

B(z) = iBi 2T AR) = 214]' 2 (5)

allows the overall transfer matrix to be written as

y(z) = G(2) - u(z), where G(z)=[I+ A(2)]"'B(2) (6)

where the systems considered in this article are typically modelled with stable
transfer matrices G(z) € C"*".

At this point it is worth mentioning that we cannot assume that the transfer
matrix G(z) in (3)—(6) is well-conditioned at w = 0. In fact [9,19] each defend
an unusual case that in order to be well-designed, a distributed process is
necessarily ill-conditioned at steady-state, i.e.

> 1, for w=0 (7)

Processes described by such ill-conditioned transfer matrices require special
attention be paid to the directionality of the system when designing a feedback
controller [27,34]. This issue will be a central consideration in the development
of practical closed-loop specifications (Section 2.3) and must be incorporated
into any practical controller design technique.

2.2 Low-Order Controller Implementation

A low-order controller is preferable for practical implementation of feedback
control. The spatially-distributed processes described above may have a very



large number of actuators (an industrial example with n = 226 actuators is
presented in [37,40]). It is inconvenient or even prohibitive to design a con-
troller that links each actuator to every sensor in the array. This has led to the
consideration of ‘localized’ control for spatially-distributed systems [2,3,6].

To address this requirement, we impose the following controller structure,

u(t):?jck-v(t—k)—gfpl-u(t—z) (8)

where v(t) = y(t) — r(t) € R™ represents the deviation of measurement y(¢)
from the target r(t) and each coefficient matrix is a symmetric Toeplitz struc-
ture (1) with,

Ck:T(ék,n), Ek:[clf,... Ck T

) "M

Dl:T(dl,n), Jl == [dll,...,dibd]T, (9)

The implementation of the control law in (8)—(9), is more efficient computa-
tionally than an equivalent control law constructed from full matrix coeffi-
cients. Its implementation requires each actuator to receive information from
at most 2n. — 1 sensors and 2ny — 1 actuators (including itself). This control
law is localized and efficient if both 2n, — 1 < n and 2n,; — 1 <K n.

As with the process model in Section 2.1, the implementation in (8) may be
written in transfer matrix notation as,

K(z) = [ + D(2)] 'C(2) (10)

with the factors,

C(z) = kgj Cp-2", D(z) = gd:Dl ! (11)

Note that the form of localized control suggested by (8) is the same as the
process model (3). However, the control law in (8) is causal, while the pro-
cess model (3) is strictly causal. This is meant to reflect the typical case that
discrete time models of dynamical systems do not have a direct feedthrough
term. On the other hand, there is at least one industrial controller implementa-
tion [37,40] whose implementation is best described with a direct feedthrough
term, and the controller formulation in (8) is general enough to include it.



2.3 Closed-Loop Requirements

Here we revisit typical multivariable closed-loop performance specifications
[8,28,35,42], but with some of the usual assumptions removed. As mentioned
above, the array systems (e.g. CD control) can lead to severely ill-conditioned
process models, and performance specifications need to be modified to accom-
modate this limitation.

It is usual to specify the performance requirements on a closed-loop design in
the frequency domain. Consider the closed-loop response in the discrete-time
frequency domain and consider exciting the system with complex signals of
the form (see Section 2.6, of [30]),

d(w) = [dye’ @90 d, @) T (12)
where d; and ¢; are real scalars representing magnitude and phase respectively.
The discrete time index ¢t = {...,—1,0,1,2,...}, and d(w)T is the transpose
of d(w).

The signal norm for d(w) in (12) is then given in the frequency domain by the
2-norm,

), = Vi) i) = |3 (13)

where d(w) is the conjugate transpose of d(w) in (12). As shown in Table
1, the closed-loop characteristics of the system may be specified in terms of
these signal norms and are closely related to the singular value decomposition
of the system matrices. For example, the stability robustness to additive un-
structured model uncertainty is guaranteed by nominal stability and satisfying
the condition,

Wll, | |
ma = I - KG'K)< —— 14
55 a1 = (1= KGTK) < oo (14)

where 0G4 is a stable transfer matrix perturbing the nominal model as shown
in Table 1.

Now consider the output disturbance attenuation in Figure 1. Achieving per-
fect attenuation means that ||v||,/||dy||, = 0 in Table 1. This is often ap-
plied as a requirement for all d, in steady-state, at w = 0. However, if
the disturbance d,, aligns with the output singular vector corresponding to
(@), then perfect attenuation would require control action of magnitude
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Fig. 1. Control system in positive feedback configuration.

Closed-Loop Characteristic Signal Ratio Transfer Matrix
Output disturbance attenuation Nvlly / lldyll, [[-GK]!
Input disturbance attenuation Nolly / ldully [[ - GK]~'G
Reference tracking Nolly / 117 ly [ - GK]™!
Limited control action Nully / |ldyll, [ - KG] 'K
Robust stability for G, = (I + G )G Nylly / 1171l GK|[I - GK]™!
Robust stability for G, = G + dGa wlly / lldyll, [ - KG)'K
Table 1

Typical systems characteristics for closed-loop design specifications.

lully / ||dyll, = 1/a(G). Given the ill-conditioned nature of the transfer matrix
model in (7), this might yield unacceptably large control action u, and could
easily violate the robust stability condition (14).

Closed-loop requirements for performance and robustness are well-known to be
in conflict and are therefore typically applied at different temporal frequencies
w of the inputs d,,, d,, and r in Figure 1. This leads to the familiar open-loop
shaping condition that a controller K is to be designed such that the loop
gain o(KG) (and/or g(K)) is large at low temporal frequencies and (K G)
(and/or 6(K)) is small at high temporal frequencies w. The discussion above
demonstrates that for severely ill-conditioned plants, such as distributed array
systems, the performance and robustness specifications must also be separated
according to the directions of the inputs d,, d,, and r in Figure 1. However, a
subtle difference should be noted that while the use of linear, time-invariant
transfer matrix perturbations to represent model uncertainty does not affect
the temporal frequency of the system outputs u, v, and y, it can and will alter
their directionality. This fact is reflected in the vector-norm specifications in
Table 1 which do not rely on knowledge of the directionality of the true system
outputs u, v, and y. We will return to this issue later in this article.

The remainder of this article presents a design strategy that allows the closed-
loop specifications such as those in Table 1 to be applied appropriately accord-
ing to temporal frequency and direction.



3 Controller Design through Circulant Matrix Approximation

The performance characteristics in Table 1 are stated in traditional robust
multivariable terms, but cannot generally be solved in a straightforward way
for the problem at hand. First, the systems in question may have a large
number of inputs and outputs (cross-directional control systems may have
up to n = 300 actuators), leading to an intractable optimization problem.
Second, achieving a controller K (z) with a localized structure as in (8)—(11)
is not possible with standard design tools. Finally, the ill-conditioned nature
of the plant models G(z) in (3)—(6) requires insight into the singular value
decomposition on the part of the designer.

The spatially-distributed system outlined in Section 2 is closely related to a
class of spatially-invariant systems, for which design is greatly simplified. This
section introduces the approximation of the original problem as a spatially-
invariant system. Section 3.2 discusses the features of the spatially-invariant
system that simplify the design problem.

3.1  Circulant Approximation of Toeplitz Matrices

Section 2 uses symmetric Toeplitz matrices to describe both the process model
G(z) in (3)—(6) and the desired controller structure K (z) in (8)—(11). Systems
constructed from such matrices are almost spatially-invariant. The analysis
is simplified by replacing each of the symmetric Toeplitz matrices (5) with
related symmetric circulant matrices in accordance with (1),(2). The difference
between a Toeplitz and respective circulant matrix is written as,

6B :=C(b,n) — T(b,n) (15)

By inspection, comparing (1) and (2) shows that the matrix 6 B in (15) is zero
everywhere except in the upper-right and lower-left corners.

Transition to the circulant matrices means that we approximate the process
model in (6) using periodic boundary conditions as,

G(2) = [+ A(2)] 7' B(2) (16)

where the symmetric circulant transfer matrix factors are created according
to (15),

10



~ mp ~ ~ Ma ~
B(Z) = Z By - Z_k, A(Z) = ZA[ . Z_l (]-7)
k=1 =1

A similar operation is used to construct a controller K (2) with symmetric
circulant factors C'(z) and D(z) from the symmetric Toeplitz matrix factors
C(z) and D(z) in (11).

The corresponding ‘true’ system has band-diagonal transfer matrices A(z),
B(z), C(z), D(z) which are related to the symmetric circulant transfer ma-
trices A(z), B(z), C(z), D(z), where the transfer matrix perturbations are
each,

mp )
0B(z) => 6B;-z ", (18)
i=1

where §B; is described in (15).

Since each transfer matrix factor A(z), B(z), C(z), D(z) in (5), (11) is an
FIR polynomial in z~! (with constant matrix coefficients), then trivially each
transfer matrix is stable (although the plant model G(z) in (6) and the con-
troller K (z) in (10) may not be stable). Also, since the perturbations in (18)
are also FIR polynomials in 2!, then the circulant symmetric factors fl(z),
B(z), C(2), D(z) are stable as well. This allows the expression of the internal
stability of the closed-loop in terms of the simple transfer matrix factors [42].

The internal stability of the ‘true’ closed-loop system is equivalent to

L) = I+D(z) C(z)
| B(z) IT+A(7)]
B 1+D(z) C(z) | [oD(z) 6C(2) )
| B(z) I+A(2)] |0B(2) 0A(2)

being invertible for all |2| > 1, where the first term in (19) refers to the
circulant system and the second term contains the perturbations as in (18).

As will be discussed in Section 3.2, it is far simpler to analyze the stability of a
system composed of circulant, rather than Toeplitz, transfer matrices. A con-
servative, but computationally attractive approach may be found by appealing
to robust control theory for the stability of feedback systems with perturba-
tions. A sufficient condition for the internal stability of the true system defined
by L(z) in (19) follows from the small gain theorem. The closed-loop system
with L(z) is stable if the circulant system is stable and

11



-1

6D(2) 6C(2) | | 1+D(z) C(2) -1 (20)
_|_

0B(2) 0A(2) B(z) I+ A(z)
oo

The systems under consideration are typically described by transfer matrices
with relatively narrow non-zero bands. For example, [37] contains an industrial
example in which the Toeplitz symmetric transfer matrix B(z) is n X n with
n = 226 but has only 5 non-zero diagonals. This leads to a large number of
zero rows and columns in the perturbations (15) which may be removed to
reduce the size of the computation without affecting the result in (20). The
incorporation of spatial boundary conditions in a consistent manner is the
subject of active research and is progressing in [24,29,38].

3.2 Controller Design for a Circulant System

All symmetric circulant systems of the same size are diagonalized with the
same unitary matrix F' (defined as the real Fourier matrix in Appendix B in
(B.4)) by pre- and post-multiplication by F/(-)F”. Since F” = F~! then this is
the eigenvector matrix. This condition also implies that the same eigenvector

~

matrix /' will diagonalize symmetric circulant transfer matrices such as G/(z)
and K (z) in (16)—(17) above at all temporal frequencies w € [—7, 7.

For example, the eigenvalues of the transfer matrix G(z) in (16) are given by,

F-G(2)-FT = diag{g(1, 2),...,(vm, 2)}, (21)

where the variable v; indicates the spatial frequency of the 4 spatial mode
and is given by v; = 2m(j — 1)/n (see Appendix B). The individual SISO
subsystems (eigenvalues of G(z)) are given by,

~

_ b(l/jvz)
C1+a(y;, 2)

b3,2) = S b)) = Sonl) 2 (29

9(v;, 2) (22)

due to the fact that

F-G(z)-F'=[I+F-A(z)- FI|"'F - B(2) - FT (24)
F - B(2) FT:F<§:B,C z k) FT



= % diag{i)k (1), ..., lA)k(l/n)} L2k (25)

For a controller (10) constructed from symmetric circulant matrix factors,
then a similar operation can be used to obtain,

k(v;, z) = _olvz)
” 1+d(vj, 2)

for spatial frequencies v; € {v1,...v,}.

The simultaneous decoupling of the process model and feedback controller in
(22) and (26) provides an advantage in the design of the feedback controllers
as described next.

3.8 Analysis and Synthesis

The singular values of a symmetric circulant matrix are equal to the magnitude
of its eigenvalues [7]. This property is rare in multivariable control systems,
and has the advantage of simplifying the design problem. This section presents
results from [3,21] indicating that, for a wide variety of practical performance
criteria, the design of a large n x n multivariable controller K'(z) for the class
of symmetric circulant dynamical systems at hand, is equivalent to designing
a family of n SISO controllers k(v;, z).

The general statement of the feedback control problem is: given exogenous
inputs w(z) to a system, find a controller which uses sensor data y(z) to
calculate actuator inputs u(z) which counteract the influence of w(z) on the
signal e(z) [35]. The problem of keeping the generalized error e(z) small is
often quantified in terms of a norm on the closed-loop transfer function from
the inputs w(z) to e(z) as in Table 1. A generalized plant may be used to
describe the path from the exogenous inputs to the outputs of a feedback
control system [5,35].

A generalized plant P(z) and feedback controller are introduced such that

— P(2) o u(2) = K(2)v(2) (27)

where P(z) contains the open-loop plant G(z) in (16) and all transfer matrices
associated with disturbances and performance weights. The transfer matrix

13



K(z) describes the feedback controller where wu(z) is the control signal and
v(z) is the feedback signal.

Theorem 1 (cf. [3,21,37])(Controller Structure) If the generalized plant
P(2) in (27) is composed of symmetric circulant transfer matrices, and if there
exists a controller such that the closed-loop is any of (i) Hs optimal, or (ii)
Hoo optimal, or (iii) Heo admissible, then there exists a symmetric circulant
controller K (z) in (27) that satisfies the respective criterion.

Proof. See [3,21,37].

This existence theorem is then augmented with a constructive theorem which
greatly simplifies the synthesis of such controllers.

Theorem 2 (cf. [3,21]) (Controller Synthesis) Feedback controllers satis-
fying any one of the objectives in Theorem 1 may be synthesized as a fam-
ily of SISO controllers l%(l/j, z), independently for each spatial frequency v; €
{v1,..., v}, then constructing the multivariable controller

~

K(z) = FT - diag{k(11,2), ..., k(vn, 2)} - F (28)

Furthermore, for symmetric circulant systems, the eigenvalues occur in pairs
and we only need to design controllers for v; € {vy,...,v,} wherep = (n+2)/2
if n is even, and p = (n+1)/2 if n is odd. The remaining n — p controllers
are constructed with IAc(z/i, z) = l%(l/zﬂH-, z) forp+1<i<n.

Proof. See [3,21].

3.4 Practical Controller Implementation

The previous subsection summarized the advantages provided by symmetric
circulant systems to the designer for the synthesis of feedback controllers.
In this section we consider the implementation of the controller as a time
domain update form with a localized controller structure according to Section
2.2. Theorem 3 maps out a factorization that will result in an implementable
format. Theorem 4 presents a result that allows a localized controller to be fit
to a fully centralized controller.

Theorem 3 (Controller Implementation) If a family of causal finite-
order rational SISO transfer functions k(v;,z) for v; € {v,...,v,} has been
synthesized (for example satisfying Theorem 2), then the full MIMO controller
K(2) in (28) can be implemented in the discrete-time domain as the update,

14



) =S G vt —k) =S Dr-ult—1) (29)

with finite m. and my and real symmetric circulant matrices C’k and Dl.

Proof. Since k(v;, z) is causal and finite order then we can write,

Yheco Cr(vy) - 27 F

k Vi, z) = = 30
( J ) 1 + E?idl dl(]/]) . Z_l ( )

The matrices in (29) are constructed with an inverse Fourier transform,
ék:FT'diag{ék(yl)a---aék(’/ﬂ)}'F (31)

for k=0, ..., m.. Similar expressions hold for D, for { =1, ..., mg. {

In general, a symmetric circulant matrix that has been constructed frequency-
by-frequency in terms of its spectrum ¢é(v;) for j = 1,...,n and the inverse
Fourier transform (31) will result in full (as opposed to banded) matrices Cj,
and D, in (29). The specification in Section 2.2 states the preference for low-

order controllers, and we need to implement the control using matrix factors
in (29) where,

A

C,=C(e,n), c=lc,....cn]", (32)
with 2n, — 1 < n for a reduced order matrix in (2).

The following Theorem illustrates a result that will be used to approximate a
full circulant matrix with a low-order, banded symmetric circulant matrix.

Theorem 4 (Controller Reduction) Let ¢(vj) with j = 1,...,n be an
eigenvalue spectrum of a symmetric circulant matriz with ¢(v;) = ¢(Vayn ;)
forp+1<i<n (wherep=(n+2)/2 ifn is even, and p= (n+1)/2 if n is
odd) and eigenvector matriz F' in (B.4). Let ¢.(v;) be the spectrum of eigen-
values corresponding to a reduced matriz C. in (32). Then the least squares
approximation

n

Ji=min Y [6,(vy) — é(vy))” (33)
j=1
is achieved with Cop = [c1,. .., cn,|" in (32) with coefficients given by,

15



¢ = %znje(yj) ccosl(i=1) -], i=1,....,n (34)

Furthermore, if n. = p then the fit (34) results in J =0 in (33) and C. =C.
Proof. See Appendix C for the proof. {

The optimization index in (33) indicates that the reduced-order controller’s
matrix coefficients will approximate the coefficients of the original high-order
controller. Strictly speaking, we are interested in controller reduction tech-
niques that preserve the closed-loop stability and performance of the high-
order controller. However, this is a much more difficult problem and currently
remains the subject of active research. The advantage of the method presented
in Theorem 4 is that it is computationally efficient, results in acceptable low-
order controllers in the majority of practical cases, and will converge to the
original high-order controller if required.

Equation (33) allows the computation of the controller coefficients ¢ = [cy, . . ., ¢, T
in (32) directly from the spectra ¢(v;) synthesized using Theorem 2. Thus The-
orem 4 allows avoiding the construction of (potentially large) n x n matrices
and reduces the computational load on the design of reduced matrices as in
(32).

There is a potential tradeoff between controller performance and controller
localization in the proposed design technique. If each of the n SISO controllers
has been designed frequency-by-frequency according to Theorem 2, then the
use of a reduction technique such as Theorem 4 may degrade the closed-
loop performance from the original high-order (centralized) design. However,
the performance of the centralized controller may be recovered completely by
allowing the spatial order n. — p in Theorem 4. If this is done for each of
the coefficient matrices Cj, and D; in (29), then the controller reverts to its
full order and converges to the high performance of the original design. It
should be noted that in practice we typically get ‘acceptable’ performance
with n. < p. Section 5 provides an example with n = 101 actuators where
p = 51 and acceptable performance is achieved with spatial order n, =ngz =5
for each of the controller’s coefficients.

3.5  Physical Insight

The singular vectors of symmetric circulant matrices allow an intuitive physi-
cal interpretation as harmonic functions of the spatial variable (the rows of the
real Fourier matrix F'in (B.4)). This fact allows an intuitive physical interpre-
tation of the multivariable system considered herein in terms of its spatial and
temporal frequency response. Consider for example, the fact that the process
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models for the spatially-distributed systems describing web-forming processes
are typically ill-conditioned [11,19,23,37].

The singular values of the circulant system G(e™) are given by the magnitude
of the eigenvalues |§(v;,€™)| and a typical industrial papermaking example is
illustrated in Figure 2. The singular values are plotted in order of increasing
spatial frequency v; = 2m(j — 1)/n. Figure 2 illustrates a characteristic that
is common to the vast majority of industrial cross-directional processes - the
singular values that correspond to high spatial frequencies have a very small
gain. The gain of most CD processes rolls off as a function of both spatial and
temporal frequencies.

lg(v,e)|

1
0.8
0.6
0.4

0.2

v [cycles/metre]

o [cycles/second]

Fig. 2. Typical two-dimensional high frequency gain roll-off (data from the industrial
system described in [39,40]).

Gain roll-off at high temporal frequencies is familiar from dynamical systems
where it is now understood to be a feature of all realistic models of physical
devices. An analogous feature appears to be present in many spatially dis-
tributed systems that model physical processes [3,37]. In fact, in [9,10,19] it
is explained that gain roll-off at high spatial frequencies is an important fea-
ture required in practical control systems which are controlled by a spatially
discrete set of actuators.

[ll-conditioned multivariable plants are considered to be difficult to control
[27,34]. The advantage of interpreting the ill-conditioning as gain roll-off at
high spatial frequencies lies in the fact that frequency domain design methods
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Closed-Loop Characteristic Open-Loop Specification Typically Applied

Output disturbance attenuation |gk| large, where |g| large low w and v
Input disturbance attenuation |k:| large, where |§| large low w and v
Reference tracking |gk| large, where |g| large low w and v
Limited control action |k| small, where || small high w and v

Robust stability for G, = (I + Gy )G |gk| small, where 5(8G /) ~ 1 high w and v
and/or (6Gp) > 1
Robust stability for G, = G + 0G4 |k| small, where |§| ~ 6(6G 1) high w and v
and/or |§] < d(0GA)

Table 2
Closed-loop design specifications of Table 1 rewritten for practical two-dimensional
control.

are very well-developed for addressing gain roll-off at high temporal frequen-
cies in dynamical systems. Section 4 extends these loop shaping design tech-
niques to the two-dimensional frequency domain and presents the controller
specifications in Section 2.3 in terms of both spatial and temporal frequencies.

4 Two-Dimensional Loop Shaping

Typical closed-loop objectives imposed on the design of a feedback controller
are summarized in Table 1. It is well-known that these are in conflict and
cannot be satisfied simultaneously [35,42]. Traditionally this conflict is avoided
by the fact that these objectives are generally in different temporal frequency
ranges. The performance criteria can be satisfied for large model gain and small
relative uncertainty, typically at low frequencies w. The robustness criteria are
then required for small model gain and large relative uncertainty, typically at
high frequencies w.

In Section 3, the two-dimensional frequency decomposition of these spatially-
distributed systems was presented. This decomposition has a direct impact on
the closed-loop specifications of Table 1. Take for example the specification
on robust stability for additive unstructured uncertainty (as in (14)),

G,=G+0G,, with 5(0G,) < (35)
where the perturbation 0G 4 is unstructured and is not necessarily a symmetric

circulant matrix as is G. Robust stability with the feedback controller K is
achieved with a nominally stable closed-loop and the condition,
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foa o 1
7 (I-KG'K)<- 36
( I"'K) < 3 (36)
for all w € [—m, 7]. If the plant model G and feedback controller K are sym-
metric circulant transfer matrices, then the singular values are given by the

magnitude of the spatial frequency components and the multivariable condi-
tion (36) reduces to

~

‘ k(VJ"eiw)
1- gl%(’/ja eiw)

<l
g

for all temporal frequencies w € [—m, 7| and each spatial frequency v; €

(37)

{11, ...,vn}. Condition (37) is satisfied naturally when |k(v;, ¢*)| is large and
|§(vj,€™)| > 3 typically at low temporal and spatial frequencies. However, at
frequencies where |g(v;, )| is small,

‘ I%(l/jveiw)

2 ~ |k v;, e 38
s | ) (39)

and an upper bound must be imposed on the gain of the controller |k(v;, &*)]
in order to satisfy condition (37). Figure 2 illustrates the typical case where
the gain of the plant model |g(v;,e™)| rolls off for high spatial and temporal
frequencies.

One may apply an argument similar to (35)—(38) to each of the closed-loop
specifications in Table 1 to obtain the open-loop approximations for in Table 2
for these symmetric circulant systems. The results are analogous to traditional
loop shaping in which closed-loop specifications lead to approximate open-
loop specifications that may be summarized by achieving high loop gain and
controller gain at low temporal frequencies and low loop gain and controller
gain at high temporal frequencies. In the case of two-dimensional loop shaping,
Table 2 indicates that the specifications may be separated in terms of low and
high temporal and spatial frequencies. This design tradeoff is demonstrated
next.

Good performance requires that the loop gain and/or controller gain be lower-
bounded

G(vj, €Vk(v;, %) > wy,  andfor k(v e™)| > by (39)
typically applied at low spatial and temporal frequencies {v;,w} € €.
The robust stability and limited control action specifications require that the

loop gain and/or controller gain be upper-bounded
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G(vj, €)k(v;, )| < wp,  andjor  |k(v;,e™)| < hy (40)

typically applied at high spatial and temporal frequencies {v;,w} € €. (Note
that for practical control design, robustness and performance specifications
are separated with w;, < w; and hy, < hy in (39) and (40).)

The loop shaping conditions (39) and (40) are graphically illustrated for the
loop gain conditions in the contour plot in Figure 3. It follows that two-
dimensional loop shaping requires to design l%(uj,z) such that the contours
1G(v, €)k(v;, €%)| = w, and |§(v;, €*)k(v;, €)| = wy, avoid the shaded areas
Q; and Q. The performance condition (39) is satisfied if the [§k| = w; contour
does not intersect the set €2;. The robustness condition (40) is satisfied if the
|§k| = wy, contour does not intersect the set 2.

T

Spatia Frequency, v

Temporal Frequency, ®

Fig. 3. Contour plot in wv with sets €2; and €, represented by the shaded areas. The
contours |gk| = w; and |gk| = wy, illustrate a design that is successfully trading off
and meeting the loop gain requirements in (39) and (40).

Constructive Design Algorithm

(1) Diagonalize the problem. Motivated by Theorem 1, using Section 3, ap-
proximate the spatial boundary conditions and write G(z) and K (z) as
the decoupled family ¢(v;, z) and l%(l/j, z) for v; € {v1,..., v}

(2) Controller synthesis. According to Theorem 2, for each SISO plant g(v;, z)
synthesize a SISO controller lAc(z/j, z) in Step 1 to satisfy closed-loop re-
quirements for each v; € {v,...,v,}.

(3) Controller reduction.' Factor the family of SISO controllers such that
k(vj,2) = e(vy,2)/[1 + d(vy, 2)] with &y, 2) = Y é(vy) - 2 F and
d(v;,z) = Ll di;) - 27"

1 In [6] a synthesis technique is proposed with which one can directly design low-
order distributed controllers, potentially eliminating this reduction step.
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Select the degree of controller localization n. and ny and apply The-
orem 4 to coefficients ¢(v;) and d;(v;), to reduce the spatial order of
the controller generated in Step 2 and obtain coefficients ¢, € R"™ and
d; € R™. If necessary, increase n. and ng until the reduced-order con-
troller f(r(z) satisfies the loop shaping design requirements.

(4) Construct the reduced matrices Cj, = C(¢x,n) and D; = C(d;,n) in (9)
according to Theorem 3 using the coefficients from Step 3.

(5) Check the internal stability of the associated Toeplitz system (e.g. con-
dition (20)), and implement the control using band-diagonal Toeplitz
factors Cj, = T (G, n) and D; = T (d;,n) in (8). If internal stability is not
satisfied, the designer is obliged to return to the controller synthesis step
to achieve acceptable margins.

5 Example

A detailed account of an industrial application of this technique can be found
in [37,40]. For now we will present an abstracted example so as to concentrate
on the above concepts.

The design steps outlined above are presented in terms of a simple, but realistic
numerical example taken from the papermaking industry. To manufacture
high-quality paper for printing, it is important that variations in the caliper
(i.e. thickness) of a sheet of paper be kept as small as possible [22,37].

In this industrial process application, the caliper of a 7.85m wide sheet of paper
is controlled by feeding the paper sheet through (at least) two counter-rotating
rollers. The caliper of the paper will be altered by the pressure between these
two rollers. The pressure exerted upon the paper sheet is locally controlled by
an array of n = 101 identically designed actuators, evenly spaced on 7.6cm
centres. The induction heating actuators increase (decrease) the pressure by
locally heating (cooling) one of the rollers. The corresponding thermal ex-
pansion (shrinkage) of the roller causes the pressure to increase (decrease),
thereby decreasing (increasing) the caliper of the pressed paper. The process
model is given by,

y(t) = B-u(t=2) = A-y(t - 1) (41)

where A, B € R are symmetric Toeplitz matrices B = 7 (b,101) and
A = T(a,101) with,
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[ —0.0381 |
—0.0240 [ 0.4689
_ 0.0013 —0.2433
b= : a= (42)
0.0126 0.0024
0.0092 | 0.0196 |
| 0.0035 |

Step 1 in the loop shaping design algorithm is to form an approximation of this
system with periodic boundary conditions, B = C(b,101) and A = C(a, 101)
as shown in Section 3.1. Then we can write the eigenvalue spectrum of the
symmetric circulant process model as,

~

. b(vj)z 2
) — \Ty)m 43
g(l/],Z) 1 +€l(Vj)Z_1 ( )
for each spatial frequency v; € {vy,...,v101} we have a plant model with first

order and deadtime dynamics, the gain b(v;) and pole a(v;) are each a function
of the spatial frequency v;.

Step 2 in the design is the synthesis of a SISO controller, one for each spatial
frequency. Here we select a ‘Hy performance index,

1 2

J(v;) = ||wel(v;, 2) » —————|| + |wu(Vvj, 2)  ———— 44
(v) ‘ (v3,2) 1 — gk(v;,2) |, H (v3,2) 1 — gk(v;, 2) I, (44)
which is easily solved for a SISO controller
];‘(l/j, Z) _ ] ¢t (l/j)ZflA + ég(l/j)Zfi—i— ég(l/j)zf?i (45)
14+ dy(vj)z= + do(v) 272 + d3(vj) 272 + dy(v) 274
for each spatial frequency v; € {11, ..., s}, using the Robust Control Toolbox

[5] function dh2lqg.m. As discussed in Theorem 2, the remaining n — p = 50
controllers are constructed with k(v;, 2) = k(vayn_j, 2) for spatial frequencies
vj € {Us2,...,v101}. The low-pass filter w.(v;, 2) and high-pass filter w, (v}, 2)
are low-order transfer functions? designed to shape the frequency response of
the loop gain (see Figure 4).

2 The specific numerical values of the weights w, and w, in (44) are unimportant to
the presentation of the design algorithm and are omitted for space and continuity.
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The performance/robustness trade off may be viewed in terms of the loop
gain |gk(v;,e™)| in Figure 4. In order to guarantee attenuation of over 80%
of disturbances (i.e. |1 — gk| ! < —14dB) at low frequencies, the loop gain is
required to satisfy |gk| > 6.0 (15.6dB) for the set of low frequencies {v, w} €
as depicted in Figure 4. The robustness requirement is taken to be |gk| < 0.1
(-20dB) for the set of high frequencies {v,w} € €, as indicated in Figure 4.

Since each of the coefficient spectra ¢(v;) and dj(v;) in (45) corresponds to
a full symmetric circulant matrix, Step 3 of the design allows to reduce the
order of the controller using Theorem 4. For simplicity we let the ‘numerator’
spatial order equal the ‘denominator’ spatial order and define an overall order
ni = n. = ng. Figure 4 illustrates the results where the matrices are reduced
in turn to ny = 1 (decentralized control), n, = 5, and n, = 11. It can be
seen that the full reduction to ny = 1 results in very poor reproduction of the
optimal loop gain (indicated with the dashed lines). The optimal loop gain
is approached as the controller order n; is increased. A controller with order
ng = 11 provides close to the true optimal loop gain which has n; = 51 (see
Theorem 4).

Step 4 of the design is to create the matrix factors required for the implemen-
tation of the low-order controller according to Theorem 3

u(t) =Cy -yt —1)+...+Cs - y(t — 3)
— Dy-u(t—1)—...— Dy -u(t —4) (46)

where the n, = 5 coefficients of the symmetric circulant controller matrices in
(46) are extracted from the spectra according to Theorem 4 as

0.8760 —0.9541 0.1834 ]
0.5360 —0.5592  0.0725
{€1,e,T3} =] 0.0389 0.0432 —0.1011 |,
—0.0043  0.1387 —0.1323

0.1361 —0.0341 —0.0685

_1.6776  0.8767 —0.2099  0.0244 |
—0.0508 0.1334 —0.0987 0.0131
{di,d>,ds5,ds} =] 0.0769 —0.0898 0.0210 —0.0076 | , (47)

0.0114 —0.0181 0.0227 —0.0164
| —0.0206  0.0269 0.0037 —0.0108 |
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log(w)

Fig. 4. Contour plots of the loop gain |§l§:| = 6.0 and |§l§:| = 0.1. The original,
high-order controller is given by the dashed lines, the reduced controller is indicated
with solid lines. (a) The fully decentralized controller with nj; = 1 for all matrices
Cr and D; violates the low frequency performance constraint since the contour
|gk| = 6.0 intersects the set €, (b) Low order design ny = 5 is sufficient, (c)
High-order n; = 11 approaches original performance.
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where C, = C(é,n) for k = 1,2,3 and D, = C(dy,n) for [ = 1,...,4 in
(46),(47).

Finally, Step 5 requires that the ‘true’ spatial boundary conditions be im-
plemented, and here it is required that the closed-loop system with process
model (4) with (42) and feedback controller (9) with (47), be nominally stable
condition (19). This may be checked either using the perturbation index in
(20) or by a straightforward stability analysis of the closed-loop.

6 Conclusions

This article has presented a framework and a constructive technique for design-
ing feedback controllers for a class of practical spatially distributed systems.
The design technique incorporates recent results for the optimal synthesis of
controllers for spatially-invariant systems and extends traditional loop shaping
techniques for dynamical systems into the two-dimensional frequency domain.

This approach allows a significant reduction in the amount of computation
required for these typically large multivariable control systems and allows
a better physical insight into the problem at the time of the design. The
technique presented in this article has been used as the foundation of a software
tool for the design of robust spatially distributed controllers for paper machines
[37,40], and is currently running on several dozen industrial systems.
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A Familiar PDEs

A wide variety of discrete spatially distributed systems may be represented by
a low-order transfer function using the structure (3), (4). This representation
arises in the explicit methods of numerical solution for partial differential
equations by finite-difference approximation. For example, the explicit solution
for the heat (or diffusion) equation, dy/0t = 0*y/dz?, is often discretized with
my =1, m, = 11in (4),

y(t) =u(t—1)+ A-y(t —1), (A.1)

with homogeneous Dirichlet boundary conditions the matrix A = 7 (@, n) with
a=1[2r—1,—r]and 0 < r < 1/2 is required for a stable solution [36,41].

The explicit solution for the undamped, second order wave equation, 9%y /0t* =
k20%y/0x?, is often discretized by (3), (4) with m;, = 1 and m, = 2 in the
update equation,

y(t) = u(t — 1)+ A, - y(t — 1) + Ay - y(t — 2) (A.2)
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with homogeneous Dirichlet boundary conditions the matrices A; = T (aq,n)
and Ay = T (ag,n) with @, = [2(r — 1), —r] and @, = [1, 0] respectively. For
stability, the solution requires 0 < r <1 (see [36,41]).

B Fourier Matrices

The complex Fourier matrix may be constructed® as follows [21],

F = L my m) (B.1)

NG

where the vectors my, € C"*! are given by,

mp = [Logvl - op YT, = 2k Diln (B.2)

In other words, the k™ row of F contains the k' spatial harmonic and has
frequency vg. The complex Fourier matrix F € C™*" in (B.1) may then be
used to diagonalize any n X n circulant matrix,

A=FUy,F, ¥4 =diagl{a(v)),...,a(v,)} (B.3)

The subset of circulant symmetric matrices may be diagonalized with a pure
real Fourier matrix. The real Fourier matrix I is constructed from the complex
Fourier transform matrix F in (B.1) by the following unitary operations,

F(l,:):%[l, 1]

F(k,:)=— (Sm[F(k,:)] = Sm[F(n+2—k,:)])
_
V2
fork=2,...,p, where p = (n+1)/2if nis odd and p = n/2 if n is even. The ;"

row of F contains the j™ spatial harmonic and has frequency v; = 27(j—1)/n.
The real Fourier matrix F' is unitary, satisfying the property FTF = I,

Fn+2—k,) (Re[F(k, )] + Re[F(n +2 — k,2)]) (B.4)

More intuitively, the rows of the real Fourier matrix F' in (B.4) may be re-
written in terms of the familiar trigonometric functions,

3 The unitary, complex Fourier matrix F may be created, for example, using the
MATLAB command F = fft(eye(n))/sqrt(n).
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j=
-sin[(k = 1)y;] j=2,...,p (B.5)

e
)
=
I

ccos[(k—1)y] j=p+1,...,n

C Proof of Theorem 4

Defining the arrays,

& =[G (1), .., e ()], &= [e(r1),..., ()" (C.1)

allows (33) to be written in terms of a standard finite dimensional least squares
optimization problem with .J in (33) given by,

T =& — el (C.2)

where the vector norm ||z||, = (z7z)'/2. From [7,18] the eigenvalues of the
symmetric circulant matrix C, in (32) are given by,

ér(vj) = ¢ + i ¢; - cos[(i — 1)v;] (C.3)

1=2

and may be written using (C.1) in terms of the matrix equation

c,=A-¢ (C.4)
with ¢ = [c1,. .., ¢, )7 and
1 2cos[r] 2cos[2v1] --- 2cos[(i— 1)1]
A= : : : E (C.5)
1 2cos[v,] 2cos[2v,] -+ 2cos|[(i — 1)v,]

Combining (C.2) and (C.4) gives,
le: —ells = |4 -c—ell; (C.6)
The optimal solution of (C.6) for invertible ATA is given (for example in

Chapter 5, [13]) by,
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Copt = (ATA)1AT . ¢ (C.7)

Due to the orthogonality of the columns of A, the n, x n, matrix ATA is
diagonal with elements,

AT A = diag{n,2n,...,2n} (C.8)

The coefficients (34) are then computed from substitution of (C.1), (C.5),
(C.8), into (C.7).

¢
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