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Abstract: This paper considers the problem of fitting regression models to historical fleet
data with mixed effects, which arises in the context of statistical monitoring of data from a
fleet (population) of similar units. A fleet-wide extension of the multivariable statistical process
control approach is used to monitor for three different types of faults: a performance anomaly,
a performance shift, and an anomalous unit. Our formulation requires the solution of a least-
squares problem with very large numbers of both regressors (variables) and data measurements.
For problems of interest, this least-squares problem cannot be solved using standard methods.
We propose a method for solving the problem that is scalable to extremely large datasets,
even ones that do not fit in to the memory of a single computer system. Our method can be
parallelized, but also works serially on a single processor. This approach is demonstrated in a
simulated example for monitoring a fleet of aircraft from historical cruise flight data.

1. INTRODUCTION

1.1 Population monitoring problems

This paper considers statistical monitoring of data gen-
erated by a population of N homogeneous units such as
vehicles or aircrafts. We have a dataset

{

{xi(t), yi(t)}
Ti

t=1

}N

i=1

, (1)

where i numbers the unit in the population, and the
integer t is the occasion (time) when the data from unit
i is collected. For each unit i, there are Ti occasions
(time samples). The independent variables xi(t) ∈ Rn

are the input measurements; these can be thought of as
measurements of the operating conditions of unit i at
some time t. The dependent variables yi(t) ∈ Rm are
the output measurements; these can be thought of as
measurements of the performance (quality) of unit i at
time t.

This paper discusses population-wide statistical monitor-
ing. The goal is to detect and report three types of
anomalies in the data (1). These anomalies are:

A1 a performance anomaly in unit i at time t,
A2 a performance shift in unit i at time t,
A3 an anomalous unit, i.e., one that consistently per-

forms differently from the rest of the population.

The entire historical dataset (1) is used for the monitoring
computations.

In the special case of N = 1 (a single unit in the
population), anomalies A1 and A2 are addressed by well
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known methods of multivariable statistical process control
(MSPC) such as Hotelling T 2 statistics (also known as a
multivariable Shewhart chart) and multivariate exponen-
tially weighted moving average (EWMA) methods, e.g.,
see NIST [2010].

The special case of Ti = 1 (a single measurement for each
unit) can be addressed by computing the T 2 statistics for
each unit. The standard monitoring approach is to build a
regression model from the series of the input/output data
and then use MSPC methods to monitor model prediction
residuals.

This paper extends the MSPC approach to the entire
population. One challenge is to monitor the data simul-
taneously in time and across the population. Another
challenge is that population-wide multivariable data sets
can be very large and impossible to keep and process in
computer memory. The main contribution of this paper
is in addressing these two challenges and presenting a
scalable statistical monitoring approach for population-
wide data.

Section 4 demonstrates the proposed approach in the
aircraft fleet monitoring example. In this motivating ex-
ample, subscript i refers to the tail number of an aircraft
in the fleet; t is the consecutive flight number when the
data is collected; and Ti is the total number of flights in
the database for aircraft i. In this context, anomaly A1
means that an abnormal event occurred in aircraft i dur-
ing flight t. Anomaly A2 means that a shift of the aircraft
performance persists through the recent flights. Anomaly
A3 means that performance of aircraft i is consistently
different from the rest of the fleet.

1



18th World IFAC Congress, Italy, Milan, August 2011

1.2 Regression formulation

Population-wide monitoring uses a linear regressionmodel
that relates the inputs xi(t) and outputs yi(t) in (1) by
the equation

yi(t) = βixi(t) + ai(t) + ri(t), (2)

where βi ∈ Rm×n and ai(t) ∈ Rm are parameters of
the regression model, and ri(t) ∈ Rm is the residual for
the model for unit i at time t. The parameter matrix βi

(which does not depend on time) gives the specialized
regression model for unit i. The parameter vectors ai(t)
can describe offsets (also called biases or fixed effects),
and presumably are chosen to be slowly varying; time-
variation in ai(t) models shifts or trends in performance.
Finally, ri(t) is the residual, which can be interpreted as
noise or model fit error. Our regression model (2) is linear
in xi(t); but as in all regression applications, components
of the regressor vector xi(t) can be nonlinear functions of
some ‘raw’ explanatory parameters.

In this paper, we choose the regression parameters so as
to minimize a quadratic objective function,

minimize J res + κJ shift + µJunit, (3)

where κ and µ are positive weights, and the objective
terms are as follows:

J res =

N
∑

i=1

Ti
∑

t=1

‖ri(t)‖
2

2

is the total square residual,

J shift =

N
∑

i=1

Ti
∑

t=2

‖ai(t)− ai(t− 1)‖22

is the sum of squares of the change in offset, and

Junit =

N
∑

i=1

‖βi − β̄‖2F

is the variance of the parameter matrices. Here, ‖ · ‖F de-
notes the Frobenius norm, which is the square root of the
sum of the squares of the entires: ‖A‖F = (

∑

i,j A
2
ij)

1/2,

and β̄ = (1/N)
∑N

i=1
βi is the average of the parameter

matrices. The variables in this optimization problem are
the parameter matrices βi ∈ Rm×n, i = 1, . . . , N , and the
offsets ai(t) ∈ Rm, t = 1, . . . , Ti, i = 1, . . . , N .

We will denote the solution to (3) as β̄⋆, β⋆
i , and a⋆i (t),

t = 1, . . . , Ti and i = 1, . . . , N . We denote the associated
residuals as r⋆i (t).

The three objective terms are directly related to the three
types of anomalies we wish to detect.

• If r⋆i (t) is large, then we have anomaly A1.
• If a⋆i (t) is large, then we have anomaly A2.
• If β⋆

i − β̄⋆ is large, then we have anomaly A3.

We will later say more precisely what ‘large’ means.

The problem (3) involves a large number of measurements
and variables. The dataset (1) contains a total number of
(scalar) output measurements

M tot = m

N
∑

i=1

Ti.

In the regression problem (3), there are mnN (scalar)

unknowns in βi, and m
∑N

i=1
Ti (scalar) unknowns in the

offsets ai(t). The total number of (scalar) variables is
therefore

N tot = m

(

nN +

N
∑

i=1

Ti

)

.

Note that the number of measurements and variables can
become very large for problems of interest.

The focus of this paper is on efficiently solving problem (3)
for large values of M tot and N tot and using the regression
results to monitor the three different anomalies.

1.3 Previous work

The above formulation is a slight variation on standard
mixed effect regression for longitudinal data. In a fixed
effects regression problem, the main regression model is
assumed to be the same across the population so that
βi = βj for all i, j; in addition, the offsets ai(t) are
constant for each unit i but vary across the population.

The regression models that involve cross-sectional data
depending on time and on unit (individual) in a pop-
ulation are well known and used in econometrics, so-
ciology, agriculture, biology, and medicine. Analysis of
longitudinal data is discussed in the books Sayrs [1989],
Hsiao [1986], and Greene [2007]. Multilevel regression is
discussed in the texts Goldstein [1999] and de Leeuw and
Meijer [2007].

Several computational tools exist for solving these types
of regression problems. These include the software pack-
ages GLLAMM and RRGibbs which uses Gibbs sampling to
approximate the posterior density of the regressors and
reduce the scale of the regression solution [Rabe-Hesketh
et al., 2008, Meyer, 2007, 2002]. The commercial analytics
software package SAS has the ability to perform fixed
effects regression [Allison, 2006]. There are statistical
functions in R for solving mixed-effects regression [R,
2010, Fox, 2002].

While these packages can solve mixed regression problems
of moderate size, they do not scale well to large problems.
For least-squares regression with a relatively small num-
ber of parameters, large amounts of data can be processed
by employing iterative least squares, yet problems with
large number of regression parameters might be hard to
scale. For several hundreds or thousands of regressors,
the normal equations of the least square problem can
be solved using standard linear algebra codes. For more
regressors and a sparse problem, an iterative method such
as LSQR [Paige and Saunders, 1982] might be a solution.
These methods can be scaled to an extent via brute
force—by use of powerful computers with more memory.
For example, SAS takes about an hour to solve a problem
with 100, 000 regressors on a custom computer system.

In all these cases, it is required that the regression pa-
rameters fit in to the memory of a single computer. In the
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more general case, if the parameters do not fit in memory,
scalability is achieved by distributing the data, regression
parameters, and computations over several computers or
over several iterations on the same computer, or both.
Though there is much work on distributed computing,
there seems to be little prior work on a scalable solution
of mixed regression problems with longitudinal data. Dis-
tributed regression algorithms are considered in Guestrin
et al. [2004], Bhaduri and Kargupta [2008], and Bazerque
et al. [2010]. These algorithms are motivated by sensor
networks and the need to distribute the estimation com-
putations over the network, rather than scalability needs.

There seems to be little related work on population-
wide monitoring. Our formulation is related to data
monitoring methods known as profile monitoring that
have been used with two-level regression models. Profile
monitoring involves fitting parametric or nonparametric
models to longitudinal or profile data and monitoring
these models. Some applications are discussed in Wang
and Tsung [2005], Shiau et al. [2009], Jensen et al. [2006],
and Mosesova et al. [2006]. In Wang and Tsung [2005],
the authors propose an SPC method to monitor processes
with large amounts of data. Their motivation is related
to ours, yet they only consider problems with a relatively
small number of regression variables.

This paper proposes a scalable, distributed formulation
to solve the two-level, mixed-effects regression problem
for a large-scale problem. In Section 4, we apply it in
an example with M tot = 1, 000, 000 (1 million pieces of
data) and N tot = 1, 000, 800 (about 1 million regression
parameters). The data can be easily distributed over
multiple computers and a fast solution of the regression
problem is provided. Interestingly enough, the proposed
approach is fast even when used on a single machine that
iteratively reads and processes in-memory chunks of a
large dataset on the disk. For this example a solution
is computed in about two seconds on a single machine,
much faster and beyond the scale allowed by the existing
software packages.

While most previous monitoring work has focused on
problems with large datasets, our algorithm is able to
solve problems with large datasets and many regressors.
Computing the regression parameters quickly over the
large population-wide datasets enables monitoring of the
residuals and trends for the fitted models.

The contribution of this paper, then, is a scalable regres-
sion algorithm with mixed effects and longitudinal data
that can be used for fleet-wide monitoring.

2. SCALABLE SOLUTION

Since the objective in (3) is quadratic, the regression
parameters β̄, βi, and ai(t), t = 1, . . . , Ti and i = 1, . . . , N
can be found by solving the linear system of normal
equations

µ(βi − β̄)T +XiX
T
i β

T
i +Xiα

T
i = XiY

T
i (4a)

XT
i β

T
i + αT

i + κDT
i Diα

T
i = Y T

i , (4b)

for i = 1, . . . , N , where Di is an appropriately sized finite

difference matrix and β̄ = (1/N)
∑N

i=1
βi.

The data matrices Xi and Yi, i = 1, . . . , N , and the
regression parameter matrix αi, i = 1, . . . , N are defined
as follows:

Xi = [ xi(1) xi(2) · · · xi(Ti) ] ,
Yi = [ yi(1) yi(2) · · · yi(Ti) ] ,
αi = [ ai(1) ai(2) · · · ai(Ti) ] .

The normal equations (4) have a block sparsity structure.
If the equations fit into computer memory, their solution
can be found directly using a sparse solver. However, if N
is large enough, we can no longer simultaneously solve for
βi and αi.

Note that the normal equations for the N units are only
coupled through the average parameter matrix, β̄. If β̄
were known, the solutions could be found independently
for each unit as

βT
i = Q−1

i (Xi(I − P−1

i )Y T
i + µβ̄T ) (5a)

αT
i = P−1

i (Y T
i −XT

i β
T
i ) (5b)

where matrices Pi ∈ RTi×Ti and Qi ∈ Rn×n for unit i
are defined through the data Xi, Yi, and the bi-diagonal
time-difference operator Di as

Pi = I + κDT
i Di

Qi = µI +Xi(I − P−1

i )XT
i .

(6)

For smaller problems, the system of normal equations
in (4) can be solved on a single machine. For larger
regression problems, the sizes of the regression variables
ai(t) and βi and of the problem data can make solving (4)
computationally intensive.

For example, consider the dataset of section 4 with
M tot = 1, 000, 000 and N tot = 1, 000, 800. A naive
approach to solving (3) requires forming the normal
equations in (4), which costs O((N tot)2M tot) flops, and
solving the equations, which requires O((N tot)3) flops.
Since M tot ≈ N tot, solving (4) requires O((N tot)2M tot)
flops.

For other applications, m and n might be larger, and N
and Ti might be significantly larger, with the data stored
in a large database system. Therefore, there is a need for
an algorithm that solves (3) and scales with the data.

A scalable solution can be obtained by observing that (5)
expresses αi and βi as affine functions of β̄. Substituting

(5) into the equation β̄ = (1/N)
∑N

i=1
βi and solving for

β̄ yields

β̄T = R−1

N
∑

i=1

Q−1

i Xi(I − P−1

i )Y T
i , (7)

where the matrix R is defined as

R = NI − µ

N
∑

i=1

Q−1

i .

The proposed scalable solution method works as follows.

Step 1. For each unit i, local data Xi and Yi are used
to compute the matrices Q−1

i ∈ Rn×n, as described in
3
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(6), and Q−1

i Xi(I − P−1

i )Y T
i ∈ Rn×m. The matrix Qi is

invertible since it is symmetric positive definite. Forming
Qi requires approximately (4n2 + 4nk2)T flops, where
k = 3 is the bandwidth of Pi, and we assume Ti = T
for i = 1, . . . , N . Since Pi is tridiagonal and positive
definite, it is quickly invertible. Computing Q−1

i will be
dominated by the factorization step which costs (1/3)n3

flops. Once we have Q−1

i , computing the second matrix
reduces to matrix multiplies and costs approximately
2mn2 + (4mn + 4mk2)T flops. These operations have
linear cost in T (in fact, these matrices can be formed
by running sums). The total flop count for this step is
multiplied by the number of units N . Since each unit
computes the matrices independently, this step can be
implemented iteratively or in parallel without the need to
access all unit data simultaneously. If each unit computes
these matrices locally and in parallel, we amortize the
factor of N across the population, and this step takes on
the order of n3 + T flops (assuming n3, T , and N are of
the same order).

Step 2. We gather the matrices computed in the previous
step, Q−1

i and Q−1

i Xi(I − P−1

i )Y T
i , in a central process;

a total of n(n + m) matrix entries for each unit i.
These matrices are used to compute β̄ in accordance with
(7). This step is dominated by inverting R, which costs
(1/3)n3, and computing sums of the gathered matrices.
Since we collect sums of the matrices obtained for different
units in (7), computing

∑N
i=1

Q−1

i Xi(I − P−1

i )Y T
i has

linear cost in the population size N . This step takes on
the order of n3 +N flops.

Step 3. In the last step, β̄ is broadcast (scattered) by
the central computational process. It is used to compute
αi and βi independently for each unit in accordance
with (5). These computations can be distributed and
performed in parallel for each unit and only require matrix
multiplication. This step takes on the order of T flops (if
parallelized).

The main computational bottleneck of the described
algorithm might be inverting Qi for a large number n
of input regressors (say, over 100, 000). The main data
transfer bottleneck could be in gathering n(n+m) matrix
entries for each unit, which could be a large number if n
is large. Most practical applications, however, have n, the
number of input regressors, on the order of 100.

Instead of the naive O((N tot)2M tot) flops needed to solve
for β̄⋆, β⋆

i , and a⋆i (t), i = 1, . . . , N , a distributed regression
scheme allows the solution to be found on the order of
n3+T +N flops—linear in the size of the data, assuming
n is not too large.

3. MONITORING APPROACH

This section describes the monitoring approach that ex-
tends standard multivariate statistical process control
(MSPC) to fleet data.

The proposed population-wide monitoring formulation
is an extension of standard process control methods.
Our method provides three data monitors to detect the
anomalies A1, A2, A3 introduced in section 1.1.

A1: Performance anomaly in unit i at time t.
To detect abnormal performance of unit i at time t, we
compute the Hotelling T 2 statistic for the residual for unit
i at time t:

T res = (r⋆i (t)− r̄⋆)T (Σres)−1(r⋆i (t)− r̄⋆), (8)

where

r̄⋆ = (1/N res)

N
∑

i=1

Ti
∑

t=1

r⋆i (t)

is the empirical average residual of the training set,

Σres = (1/N res)

N
∑

i=1

Ti
∑

t=1

(r⋆i (t)− r̄⋆)(r⋆i (t)− r̄⋆)T

is the empirical residual covariance matrix of the training

set, and N res =
∑N

i=1
Ti. Since we can shift ai(t) by a

constant r̄⋆ without changing the objective value of (3),
then r̄⋆ = 0.

The standard monitoring approach is to use the F -
distribution to find the threshold that corresponds to a
particular confidence level [NIST, 2010]. This threshold is
given by

Lres =
m(N res + 1)(N res − 1)

N res(N res −m)
Fα(m,N res −m), (9)

where Fα(m,N res−m) is the F -distribution with param-
eters m and N res−m and α is the desired confidence level.
If T res > Lres, then we guess that a performance anomaly
has occurred in unit i at time t.

A2: Performance shift in unit i at time t. To detect
a performance shift in the offset ai(t), we compute the
Hotelling T 2 statistic for a⋆i (t):

T shift = (a⋆i (t)− ā⋆)T (Σshift)−1(a⋆i (t)− ā⋆), (10)

where

ā⋆ = (1/N shift)

N
∑

i=1

Ti
∑

t=1

a⋆i (t)

is the empirical average of a⋆i (t), and

Σshift = (1/N shift)

N
∑

i=1

Ti
∑

t=1

(a⋆i (t)− ā⋆)(a⋆i (t)− ā⋆)T

is the empirical covariance matrix. The scalar value N shift

is defined as N shift =
∑N

i=1
Ti. The threshold Lshift is

computed as in (9) but with N shift in place of N res. If
T shift > Lshift, we guess that a performance shift has
occurred in unit i at time t.

A3: An anomalous unit i. To detect an anomalous
unit that is performing differently than the population,
we compute the Hotelling T 2 statistic for β⋆

i :

T unit =
(

vec(β⋆
i − β̄⋆)

)T
(Σunit)−1

(

vec(β⋆
i − β̄⋆)

)

,
(11)

where

Σunit = (1/Nunit)

N
∑

i=1

(

vec(β⋆
i − β̄⋆)

) (

vec(β⋆
i − β̄⋆)

)T

is the empirical covariance of vec(β⋆
i − β̄⋆) and Nunit =

N . The vec operation vectorizes a matrix by stacking
its columns together. The threshold Lunit is computed
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as in (9) but with Nunit and mn in place of N res and
m, respectively. If T unit > Lunit, we guess that unit i is
anomalous.

4. EXAMPLE AND RESULTS

To demonstrate the power of the proposed approach, we
apply it to simulated aircraft fleet data. The motivation
behind this example is to monitor a fleet of aircraft for
incipient anomalies. The simulated data closely resembles
the flight operations quality assurance (FOQA) data that
is collected by airlines to improve fleet safety and main-
tenance.

Linear regression modeling for monitoring aircraft FOQA
data is discussed in Chu et al. [2010], where a detailed
nonlinear simulation is used to generate the data. In
a follow-on to this paper we plan to report results of
applying linear regression models with fixed effects in
monitoring actual FOQA data for a fleet of many aircraft
making hundreds of flights.

The example we discuss below describes a realistic model
for monitoring the angle-of-attack channel in many flights
of different aircraft. The variables have been scaled and
do not correspond to particular engineering measurement
units.

From aircraft dynamics, we know that the angle-of-attack
in the cruise regime can be approximately explained by
the balance between the aircraft weight moment and the
moment of aerodynamic forces with respect to a fixed
aircraft center. The varying component of the weight mo-
ment is created by the aircraft mass deviating (varying)
from the mean because of fuel consumption during the
flight and also because of flight-to-flight load variation.

Assuming that the center of gravity of the varying com-
ponent of the mass is fixed, the weight moment is propor-
tional to the mass variation. For small angle-of-attack,
the aerodynamic pitching moment is proportional to the
dynamic pressure. The aerodynamic coefficient combines
the fixed part, the part proportional to the angle-of-
attack, and the parts proportional to the deflections of
elevator and stabilizer flight control surfaces.

The linear regression model of the channel has angle-
of-attack times dynamic pressure as the scalar output
yi(t). It is explained using four regressors: mass variation,
dynamic pressure, the stabilizer deflection angle times
dynamic pressure, and the elevator deflection angle times
dynamic pressure. These regressors are components of
the vector xi(t) ∈ R4. Our model considers the average
values of the regression variables in the cruise segment of
the flight: the scalar output value yi(t) and the regressor
vector xi(t).

We simulate the angle-of-attack channel with

yi(t) = βixi(t) + ai(t) + ri(t),

where βi = β̄ + ∆i with vec(∆i) ∼ N (0,Σ∆), xi(t) is
drawn from the distributionN (x̄,Σx), ri(t) is noise drawn
from the distribution N (r̄,Σr), and ai(t) = 0 for flights
without faults. Note that the index t does not refer to
time, but rather to a single flight.

Our simulations used the following parameters

β̄ = [ 0.80 −2.70 −0.63 0.46 ] ,

Σ∆ =







0.04 0.12 −0.02 0.02
0.12 0.84 −0.09 0.10

−0.02 −0.09 0.03 0.00
0.02 0.10 0.00 0.05






,

x̄ =







0.95
−1.22
−2.79
7.11






, Σx =







0.25 −0.02 0.12 −0.04
−0.02 0.45 0.03 −0.52
0.12 0.03 1.05 −1.26

−0.04 −0.52 −1.26 3.89






,

r̄ = −0.03, Σr = 0.83.

We used the above model to simulate a fleet of N =
200 aircraft with Ti = 5000 flights for each aircraft
and generate m = 1 output measurements and n = 4
input measurements for each aircraft and each flight. This
simulated data corresponds to M tot = 1, 000, 000 (scalar)
measurements in the dataset (components of all yi(t)) and
N tot = 1, 000, 800 variables.

In our simulation experiments, we seed three types of
faults for selected aircraft i:

(1) anomaly A1—a performance anomaly, where ri(t) is
large at the last flight t of aircraft i,

(2) anomaly A2—a performance shift, where ai(t) ramps
up to some large value over successive flights of
aircraft i,

(3) anomaly A3—an anomalous aircraft, where βi has a
large deviation ∆i = βi − β̄.

The fault magnitudes for these anomalies are chosen to
be approximately two times larger than the respective
T 2 decision boundary, which is found by evaluating Lres,
Lshift, and Lunit using the appropriate parameters and
α = 0.99. We seed anomalies in 6 of the 200 aircraft, two
anomalies of each type.

We use the quadratic formulation of (3) to demonstrate
the capabilities of the proposed fleet monitoring approach
highlighted in section 3; the parameters κ = 50 and
µ = 0.3 are used. (These are empirically chosen to give
the best results.)

Monitoring for performance anomaly, A1. While
we could compute (8) for all flights t, we only compute
T res (the Hotelling T 2 statistic) for the last flight of
each aircraft in this example. The top plot in Figure 1
shows the values of T res (8) evaluated at the last flight
for all 200 aircraft. The dashed line indicates Lres. The
(green) circles indicate aircraft with seeded performance
anomalies; they are above the decision boundary, which
means the anomalies have been detected.

Monitoring for a performance shift, A2. The middle
plot in Figure 1 shows the values of T shift (10) evaluated at
the last flight for all 200 aircraft. The dashed line indicates
Lshift. The (red) squares indicate aircraft with seeded
performance shifts; these are also successfully detected.

Monitoring for an anomalous aircraft i, A3. The
bottom plot in Figure 1 shows the values of T unit (11) eval-
uated for all 200 aircraft. The dashed line indicates Lunit.
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Fig. 1. Hotelling T 2 values for 200 aircraft. The (green)
circles show seeded A1 anomalies; (red) squares show
seeded A2 anomalies; (blue) triangles show seeded A3
anomalies.

The (blue) triangles indicate aircraft with seeded perfor-
mance offsets and are well above the decision boundary.

5. CONCLUSION

We have presented an approach to monitor a population
of similar units from their historical performance data.
Central to the approach is a large-scale regression fit of
similar models to data from the units taking into account
variation between the individual units and in time. It can
be thought of as a form of collaborative filtering.

The regression fit problem (3) can be solved efficiently
in one iteration by partial minimizations and Gaussian
elimination. This solution can be carried for each unit
in parallel (or sequentially) and is scalable to very large
datasets for unlimited number of units. This approach is
also distributed and fully scalable (computational com-
plexity grows linearly with the amount of data).

We have demonstrated how the regression problem so-
lution allows us to perform population-wide monitoring
and detect three types of anomalies in the data: per-
formance anomalies, performance shifts, and anomalous
units behaving differently from the rest of the population.
The formulated approach effectively allows simultaneous
monitoring of an infinite number of units.
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