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1 Introduction and Overview

Social networks are important in many facets of our lives. Most decisions that people make,

from which products to buy to whom to vote for, are influenced by the choices of their friends

and acquaintances. For example, the decision of an individual to whether buy or not a new

product, attend a meeting, commit a crime, find a job is often influenced by the choices of

his or her friends and acquaintances (be they social or professional). The emerging empirical

evidence on these issues motivates the theoretical study of network effects.

Here, we provide an overview of literatures on the analysis of the interaction of individ-

uals who are connected via a network and whose behaviors are influenced by those around

them.1 Such interactions are natural ones to model using game theory, as the payoffs that

an individual receives from various choices depends on the behaviors of his or her neighbors.

This particular view of games on networks, where an agent chooses an action and then the

payoffs of each player is determined by those of his or her neighbors is a special perspective,

but one that applies to many different contexts including the peer effects mentioned above.

There are also other applications that involve strategic decision making and networks of

relationships, such as exchange or trade on networks (networked markets). These sorts

of analyses tend to be much more particular in their structure (e.g., following a specific

bargaining protocol or timing on interactions) whereas there are many things that can be

said about games on networks in the more basic context. We very briefly discuss other

settings, but our focus is on the canonical case.

Of course, one can view these settings as special cases of game theory more generally, and

so some results from the general literature directly apply: for example, existence of various

forms of equilibria can be deduced from standard results. The interest, therefore is instead

1As game theoretic models of network formation have been surveyed extensively elsewhere (see, for

example, Jackson (2003, 2004, 2005b, 2008a, 2011), Goyal (2007), De Mart́ı Beltran and Zenou (2011)), we

concentrate here on games on networks. We also do not survey the literature on communication structures

in cooperative games. This is another large literature, following Myerson (1977) that has been surveyed

elsewhere (see Slikker and van den Nouweland (2001) for the graph-based literature, and Jackson (2005a,

2008a) for the allocation rule literature and allocation rules). Finally, there is also a large literature on

agent-based models including networked interactions (e.g., see Tesfatsion (2006) for some references) that

is already surveyed elsewhere, and not included here. Exploiting the growing capabilities of computers,

agent-based methods have been used to analyze dynamic systems of interacting agents in cases where the

network is fixed (see Wilhite, 2006) as well as where the relationships are endogenous (Vriend, 2006).

2



in whether there is anything we can deduce that holds systematically regarding how play in a

game depends on the network structure of interactions. For example, if individuals only wish

to buy a new product if a sufficient fraction of their friends do, can we say something about

how segregation patterns in the network of friendships affects the purchase of the product?

Can we say anything about who is the most influential individual in a network where people

look to their peers in choosing an effort level in education? Thus, our discussion of the

literature focuses on investigations relating network characteristics to behavior.

The main challenge that faced in studying strategic interaction in social settings is the

inherent complexity of networks. Without focusing in on specific structures in terms of

the games, it is hard to draw any conclusions. The literature has primarily taken three

approaches to this challenge, and form the basis for our discussion. One involves looking at

games of strategic complements and strategic substitutes, where the interaction in payoffs

between players satisfies some natural and useful monotonicity properties. With strategic

complementarities, a player’s incentives to take an action (or a “higher” action) are increasing

in the number of his or her friends who take the (higher) action; and with strategic substitutes

the opposite incentives are in place. We show that the monotonicity properties of these

structured interactions have allowed the literature to deduce a number of results related to

equilibrium behavior as well as dynamics, and how those depend on network structure. A

second approach relies on looking at quite tractable “linear-quadratic” setting where agents

choose a continuous level of activity. That simple parametric specification permits an explicit

solution for equilibrium behavior as a function of a network, and thus leads to interesting

comparative statics and other results that are useful in empirical work. A third approach

considers settings with an uncertain pattern of interactions, where players make choices

(such as learning a language) without being certain about with whom they will interact.

The uncertainty actually simplifies the problem since behavior depends on anticipated rates

of interaction, rather than complex realizations of interactions. Together all of these various

approaches and models make a number of predictions about behavior, relating levels of

actions to network density, relating players’ behaviors to their position in the network, and

relating behavior to things like the degree distribution and cost of taking given actions. The

theory thus makes predictions both about how a player’s behavior relates to his/her position

in a network, as well as what overall behavior patterns to expect as a function of the network

structure.
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2 Background Definitions

We begin with a class of canonical and widely applicable games; specifically, games where

there is a fixed and given network of interactions. Links indicate which players’ strategies

affect which others’ payoffs. In particular, a given player’s payoff depends only on the play

of his or her neighbors. Of course, this results in indirect network effects since there may be

chains of influence.

We provide some basic definitions of games on networks.2

2.1 Players and Networks

We consider a finite set of players N = {1, . . . , n} who are connected in a network.

A network (or graph) is a pair (N,g), where g is a network on the set of nodes N . These

represent the interaction structure in the game, indicating the other players whose actions

impact a given player’s payoff.

We abuse notation and let g denote the two standard ways in which networks are repre-

sented: by their adjacency matrices as well as by listing the pairs of nodes that are connected.

Thus, g will sometimes be an n× n adjacency matrix, with entry gij denoting whether i is

linked to j and can also include the intensity of that relationship. At other times g denotes

the set of all relationships that are present, and so we use notation ij ∈ g to indicate that i

is linked to j.

A network is undirected if g is required to be symmetric so that relationships are nec-

essarily reciprocal and gij = gji for all i and j, and is directed if relationships can be

unidirectional.

A relationship between two nodes i and j, represented by ij ∈ g, is referred to as a link.

Links are also referred to as edges or ties in various parts of the literature; and sometimes also

directed links, directed edges, or arcs in the specific case of a directed network. Shorthand

notations for the network obtained by adding or deleting a link ij to or from an existing

network g are g + ij and g − ij, respectively.

A walk in a network (N,g) refers to a sequence of nodes, i1, i2, i3, . . . , iK−1, iK such that

2We provide terse definitions here. For a reader new to these definitions, Chapter 2 in Jackson (2008a)

provides more discussion and background.
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ikik+1 ∈ g for each k from 1 to K − 1.3 The length of the walk is the number of links in it,

or K − 1.

A path in a network (N,g) is a walk in (N,g), i1, i2, i3, . . . , iK−1, iK , such that all the

nodes are distinct.

A cycle in a network (N,g) is a walk in (N,g), i1, i2, i3, . . . , iK−1, iK , such that i1 = iK .

A network (N,g) is connected if there is a path in (N,g) between every pair of nodes i

and j.4

A component of a network (N,g) is a subnetwork (N ′,g′) (so N ′ ⊂ N and g′ ⊂ g) such

that

• there is a path in g′ from every node i ∈ N ′ to every other node j ∈ N ′, j 6= i,

• i ∈ N ′ and ij ∈ g implies j ∈ N ′ and ij ∈ g′.

Thus, a component of a network is a maximal connected subnetwork with all adjacent

links, so that and there is no way of expanding the set of nodes in the subnetwork and still

having it be connected.

The distance between two nodes in the same component of a network is the length of a

shortest path (also known as a geodesic) between them.

The neighbors of a node i in a network (N,g) are denoted by Ni(g). As we predominantly

discuss settings where N is fixed, we omit dependence on the set of nodes N , and so write

Ni(g) rather than Ni(N,g). Thus,

Ni(g) = {j|ij ∈ g}

The degree of a node i in a network (N,g) is the number of neighbors that i has in the

network, so that di(g) = |Ni(g)|.5

The kth power gk = g × (k times)... g of the adjacency matrix g keeps track of indirect

connections in g. More precisely, the coefficient g
[k]
ij in the (i, j) cell of gk gives the number

of walks of length k in g between i and j.

3Standard definitions of walks, paths, and cycles specify them as sets of nodes together with sets of links.

The definitions here simplify notation, and for the purposes of this chapter the difference is inconsequential.
4Each of these definitions has an analog for directed networks, simply viewing the pairs as directed links

and then having the name directed walk, directed path, and directed cycle. In defining connectedness for a

directed network one often uses a strong definition requiring a directed path from each node to every other

node.
5Unless otherwise stated, let us suppose that gii = 0, so that nodes are not linked to themselves.
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An independent set relative to a network (N , g) is a subset of nodes A ⊂ N for which no

two nodes are adjacent (i.e., linked). A is a maximal independent set if there does not exist

another independent, set A′ 6= A, such that A ⊂ A′ ⊂ N . A dominating set relative to a

network (N , g) is a subset of nodes A ⊂ N such that every node in A is connected to every

other node in A via a path that involves only nodes in A, and every node not in A is linked

to at least one member of A. For example, the central node in a star forms a dominating set

and also a maximal independent set, while each peripheral node is an independent set and

the set of all peripheral nodes is a maximal independent set. Any set including the central

node and some peripheral nodes is a dominating set, but not an independent set.

Let G(N) be the set of networks on the nodes N under consideration, which will often

be the set of simple6 networks unless otherwise stated.

2.2 Games on Networks

Players in N have action spaces Ai. Let A = A1 × · · ·An. In most of our discussion, the

action spaces are finite sets or subsets of a Euclidean space.

Player i’s payoff function is denoted ui : A×G(N)→ R.

Unless otherwise indicated equilibrium refers to a pure strategy Nash equilibrium:7 a

profile of actions a ∈ A = A1 × · · ·An, such that

ui(ai, a−i,g) ≥ ui(a
′
i, a−i,g)

for all a′i ∈ Ai.
A given player’s payoff depends on other players’ actions, but only on those to whom the

player is linked in the network. In fact, without loss of generality the network can be taken

to indicate the payoff interactions in the society. More formally, i’s payoff depends only on

6Simple networks are undirected, unweighted and with at most on link between any pair of nodes.
7Mixed strategy equilibria also exist in such settings, but in many cases might be less applicable. While

often modeled as a simultaneous game, many applications of games on networks are ones in which players

are able to adjust their actions over time (e.g., changing technologies). In such many (but not all) such

games mixed strategy equilibria are unstable and so would be less likely to apply well. In addition, mixed

strategy equilibria in such settings can be very difficult to characterize. For instance in games of strategic

complements, there can exist many mixed strategy equilibria that are computationally infeasible to find and

catalog, whereas extremal equilibria, which are pure strategy equilibria, are very easy to find.
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ai and {aj}j∈Ni(g), so that for any i, ai, and g:

ui(ai, a−i,g) = ui(ai, a
′
−i,g),

whenever aj = a′j for all j ∈ Ni(g).

To fix ideas, let us consider a couple of examples.

Example 1 The Majority Game.8

Players’ action spaces are Ai = {0, 1}. This covers applications where a player can choose

to either do something or not to, for instance, buying a product, attending a party, and so

forth. In this particular game, if more than one half of i’s neighbors choose action 1, then

it is best for player i to choose 1, and if fewer than one half of i’s neighbors choose action 1

then it is best for player i to choose action 0.

Specifically, the payoff to a player from taking action 1 compared to action 0 depends on

the fraction of neighbors who choose action 1, such that

ui(1, aNi(g)) > ui(0, aNi(g)) if

∑
j∈Ni(g)

aj

|Ni(g)|
>

1

2

and

ui(1, aNi(g)) < ui(0, aNi(g)) if

∑
j∈Ni(g)

aj

|Ni(g)|
<

1

2
.

There are clearly multiple equilibria in this game. For example, all players taking action 0

(or 1) is an equilibrium. Figure 1 displays another equilibrium of the majority game.

Example 2 “Best-Shot” Public Goods Games

Another canonical example of a game on a network is based on what are known as “best-

shot” public goods games (see Hirshleifer, 1983). For instance, the action might be learning

how to do something, where that information is easily communicated; or buying a book or

other product that is easily lent from one player to another. Taking the action 1 is costly

and if any of a player’s neighbors takes the action then the player is better off not taking the

8This game has been studied extensively in physics (see, e.g. Conway’s “game of life”) and in various

agent-based models that followed, such as the “voter model” (see e.g. Clifford and Sudbury (1973) and

Holley and Liggett (1975)).
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Figure 1: An Equilibrium in the Majority Game

action; but, taking the action and paying the cost is better than having nobody in a player’s

neighborhood take the action.

ui(a,g) =


1− c if ai = 1,

1 if ai = 0, aj = 1 for some j ∈ Ni(g)

0 if ai = 0, aj = 0 for all j ∈ Ni(g),

where 1 > c > 0. So, a player would prefer that a neighbor take the action than having to

do it himself or herself, but will take the action if no neighbors do.

There are many possible equilibria in the best-shot public goods game and Figure 2

displays one of them. Interestingly, the equilibria in this game correspond exactly to having

the set of players who choose action 1 form a maximal independent set of nodes in the network

(as noted by Bramoullé and Kranton (2007a)); that is, a maximal set of nodes that have no

links to each other in the network. In Figure 2, it is clear that nobody wants to deviate from

their Nash equilibrium actions. Take, for example, the central player who chooses action 1.

His/her utility is 1 − c. Since all his/her neighbors choose action 0, deviating by choosing
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action 0 would give him/her a utility of 0 < 1 − c. Similarly, for each player who chooses

action 0, his/her utility is 1 since at least one of his/her neighbors choose action 1. Choosing

action 1 would give him/her 1− c < 1.

0 

0 1 

1 

1 

0 

1 

0 
0 

1 
0 

0 

Figure 2: An equilibrium in the best-shot public good game, and a maximal independent set

3 Strategic Complements and Strategic Substitutes

Although there are many forms that games on networks can take, there are two prominent

and broadly encompassing classes of games. In fact, the two previous examples are typical

members of these two classes of games. The distinction between these types of games relates

to whether a given player’s relative payoff to taking an action versus not is increasing or

decreasing in the set of neighbors who take the action. To see the nature of the distinction, let

us take the actions in the games to be well-ordered, such as a subset of the real line (or more

generally a lattice, as detailed shortly). The first class of examples, of which coordination

games are the canonical example, are games of strategic complements. In games of strategic
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complements, an increase in the actions of other players leads a given player’s higher actions

to have relatively higher payoffs compared to that player’s lower actions. Examples of such

games include things like the adoption of a technology, human capital decisions, criminal

efforts, smoking behaviors, etc. Games of strategic substitutes are such that the opposite is

true: an increase in other players’ actions leads to relatively lower payoffs to higher actions

of a given player. Applications of strategic substitutes include, for example, local public

good provision and information gathering.

3.1 Defining Strategic Complements and Substitutes

Let us take Ai (the action space) to be a complete lattice with an associated partial order

≥i, for each i.9 Then it is easy to see that A is also complete lattice, if we define a ≥ a′ if and

only if ai ≥ a′i for every i, and where for any S ⊂ A we define inf(S) = (infi{ai : a ∈ S})i
and sup(S) = (supi{ai : a ∈ S})i.

A game exhibits strategic complements if it exhibits increasing differences; that is, for

all i, ai ≥i a′i and a−i ≥−i a′−i:

ui(ai, a−i,g)− ui(a′i, a−i,g) ≥ ui(ai, a
′
−i,g)− ui(a′i, a′−i,g).

A game exhibits strategic substitutes if it exhibits decreasing differences; that is, for all

i, j, with i 6= j, ai ≥i a′i and a−i ≥−i a′−i:

ui(ai, a−i,g)− ui(a′i, a−i,g) ≤ ui(ai, a
′
−i,g)− ui(a′i, a′−i,g).

These notions are said to apply strictly if the inequalities above are strict whenever

ai >i a
′
i and a−i ≥−i a′−i with aj >j a

′
j for j ∈ Ni(g).

The majority game (Example 1) is one of strategic complements while the best-shot

public goods game (Example 2) is one of strategic substitutes.

9Let ≥i be a partial order on a (nonempty) set Ai (so ≥i is reflexive, transitive and antisymmetric).

(Ai,≥i) is a lattice if any two elements ai and a′i have a least upper bound (supremum for i, supi, such that

supi(ai, a
′
i) ≥ ai and supi(ai, a

′
i) ≥ a′i), and a greatest lower bound (infimum for i, such that infi(ai, a

′
i) ≤ ai

and infi(ai, a
′
i) ≤ a′i), in the set. (Note that the subscript on infi, supi indicate that the sup and inf are

defined for a particular player i, not .) A lattice (Ai,≥i) is complete if every nonempty subset of Ai has a

supremum and an infimum in Ai.
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3.2 Existence of Equilibrium

3.2.1 Games of Strategic Complements

Beyond capturing many applications, games of strategic complements are well-behaved in

a variety of ways. Not only do equilibria generally exist, but they form a lattice so that

they are well-ordered and there are easy algorithms for finding the maximal and minimal

equilibria.

Theorem 1 Consider a game of strategic complements such that:

• for every player i, and specification of strategies of the other players, a−i ∈ A−i, player i

has a nonempty set of best responses BRi(a−i) that is a closed sublattice of the complete

lattice Ai,
10 and

• for every player i, if a′−i ≥ a−i, then supiBRi(a
′
−i) ≥i supiBRi(a−i) and infiBRi(a

′
−i) ≥i

infiBRi(a−i).

An equilibrium exists and the set of equilibria form a (nonempty) complete lattice.11

Variations on this theorem can be found in Topkis (1979) and Zhou (1994), and for

arbitrary sets of players in Acemoglu and Jackson (2011).

In games of strategic complements such that the set of actions is finite, or compact and

payoffs are continuous, the conditions of the theorem apply and there exists an equilibrium.

Note that the equilibria exist in pure strategies, directly in terms of the actions A with-

out requiring any additional randomizations. The same is not true for games of strategic

substitutes.

Finding maximal and minimal equilibria in a game of strategic complements is then

quite easy. Let us describe an algorithm for the case where A is finite. Begin with all players

playing the maximal action a0 = a. Let a1i = supi(BRi(a
0
−i)) for each i and, iteratively,

let aki = supi(BRi(a
k−1
−i )). It follows that a point such that ak = ak−1 is the maximal

equilibrium point, and given the finite set of strategies this must occur in a finite number

10Closure requires that supi(BRi(a−i)) ∈ BRi(a−i) and infi(BRi(a−i)) ∈ BRi(a−i)).
11The set of equilibria is not necessarily a sublattice of A (see Topkis (1979) and Zhou (1994)). That is,

the sup in A of a set of equilibria may not be an equilibrium, and so sup and inf have to be restricted to the

set of equilibria to ensure that the set is a complete lattice, but the same partial order can be used.
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of iterations. Analogously, starting from the minimal action and iterating upward, one can

find the minimal equilibrium point.12

This also means that dynamics that iterate on best response dynamics will generally

converge to equilibrium points in such games (e.g., see Milgrom and Roberts (1990)).

3.2.2 Games of Strategic Substitutes and other Games on Networks

Moving beyond games of strategic complements, existence of equilibria and the structure of

the set are no longer so nicely behaved.

Existence of equilibria can be guaranteed along standard lines: for instance equilibria

exist if Ai is a nonempty, compact, and convex subset of a Euclidean space and ui is contin-

uous and quasi-concave for every i. This covers the canonical case where Ai are the mixed

strategies associated with an underlying finite set of pure actions and ui is the expected

payoff and hence quasi-concave. Nonetheless, this means that pure strategy equilibria may

not exist unless the game has some specific structure (and we discuss some such cases below).

In addition, with the lack of lattice structure, best responses are no longer so nicely

ordered and equilibria in many network games can be more difficult to find.13

Nonetheless, some games of strategic substitutes on networks still have many important

applications and are tractable in some cases. For example, consider the best-shot public

goods game discussed above (example 2). As we showed above, best-shot public goods

games on a network always have pure strategy equilibria, and in fact those equilibria are the

situations where the players who take action 1 form a maximal independent set.

Finding all of the maximal independent sets is computationally intensive, but finding

one such set is easy. Here is an algorithm that finds an equilibrium.14 At a given step k,

the algorithm lists a set of the providers of the public good (the independent set of nodes),

12Calvó-Armengol and Jackson (2004, 2007) use this technique to calculate the maximal equilibrium in

their dynamic game with strategic complementarities. They propose an important application of this game

by looking at labor-market networks and showing that investing in human capital depends on having access

to job information.
13For results on the complexity of finding equilibria in games on networks beyond the strategic complements

and strategic substitutes cases see, for example, Kearns, Littman and Singh (2001), Kakade, Kearns and

Ortiz (2004), Daskalakis, Goldberg and Papadimitriou (2009), and Papadimitriou and Roughgarden (2008).
14This is from Jackson (2008a, pp. 304-306), based on an obvious algorithm for finding a maximal inde-

pendent set.
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Pk, and a set of non-providers of the public good (who will not be in the eventual maximal

independent set of nodes), NPk, where the eventual maximal independent set will be the

final Pk. In terms of finding an equilibrium to the best-shot game, the final Pk is the list of

players who take action 1, and the final NPk is the set of players who take action 0.

Step 1: Pick some node i and let P1 = {i} and NP1 = Ni(g).

Step k: Iterate by picking one of the players j who is not yet assigned to sets Pk−1 or NPk−1.

Let Pk = Pk−1 ∪ {j} and NPk = NPk−1 ∪Nj(g).15

End: Stop when Pk ∪NPk = N .

More generally, one might ask the question of whether it is possible to find the “best”

equilibrium in the best-shot game. Given that in every equilibrium all players get a payoff of

either 1 or 1−c, minimizing the number of players who pay the cost c would be one metric via

which to rank equilibria. As discussed by Dall’Asta, Pin and Ramezanpour (2011), finding

such equilibria can be difficult but finding them (approximately) through an intuitive class

of mechanisms that tradeoff accuracy against speed is possible.16

There are other games of strategic substitutes where at least some equilibria are also easy

to find.

Example 3 A “Weakest-Link” Public Goods Game

Another example of a local-public goods game on a network is based on what are known

as “weakest-link” public goods games (see Hirshleifer, 1983).17

Here each player chooses some level of public good contribution (so Ai = R+) and the

payoff to a player is the minimum action taken by any player in his or her neighborhood (in

contrast to the maximum, as in the best-shot game). In particular,

ui(ai, aNi(g)) = min
j∈Ni(g)∪{i}

{aj} − c(ai)

where c is an increasing, convex and differentiable cost function.

15Note that this is well-defined, since no neighbors of j can be in Pk−1 as otherwise j would have been in

NPk−1.
16See also Dall’Asta, Pin, Ramezanpour (2009) and Boncinelli and Pin (2012).
17Another example is that of anti-coordination games as in Bramoullé (2007).
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If there is a smallest a∗ such that c′(a∗) ≥ 1, and each player has at least one neighbor in

the network g, then any profile of actions where every player chooses the same contribution

ai = a∗ is an equilibrium of this game. Note that in a network in which every player has at

least one neighbor, everyone playing ai = 0 is also an equilibrium (or any common a ≤ a∗),

and so the game will have multiple equilibria when it is nondegenerate.

3.2.3 Games with Strategic Substitutes, Continuous Action Spaces and Linear

Best-Replies

We have seen that equilibria in games with strategic substitutes are difficult to character-

ize and multiple equilibria rather than unique equilibrium are the rule. If, however, the

best-reply functions are linear, then some further results can be obtained, both in terms

of characterization of equilibria and comparative statics. Bramoullé and Kranton (2007a)

and Bramoullé, Kranton, and D’Amours (2013) study these type of games. In their models,

players experiment to obtain new information and benefit from their neighbors’ experimen-

tation. Each player i selects an action ai ≥ 0, and obtains a payoff ui(a,g) that depends on

the action profile a and on the underlying network g, in the following way:

ui(a,g) = v

(
ai + φ

n∑
j=1

gijaj

)
− c ai (1)

where v(.) is an increasing, differentiable and strictly concave function on R+ and c > 0 is

the constant marginal cost of own action such that v′ (0) > c > v′ (x) for some x > 0. As in

Bramoullé and Kranton (2007a), consider the case when φ = 1. This is clearly a game with

(strict) strategic substitutes since

∂ui(a,g)

∂ai∂aj
= v′′

(
ai +

n∑
j=1

gijaj

)
< 0

Denote by a∗ the action level of a player who experiments by him/herself, i.e. a∗ = v′−1 (c).

Then, the best-reply function, for each individual i, i’s best response to a−i is linear and

given by:

a∗i =

 a∗ −
∑n

j=1 gijaj if a∗ >
∑n

j=1 gijaj

0 if a∗ ≤
∑n

j=1 gijaj

We can distinguish between two types of equilibria. An action profile a is specialized if

players actions are such that ai = 0 or ai = a∗ for every i. A player for which ai = a∗ is a
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“specialist.” An action profile a is distributed when all players choose a positive action less

than the individually optimal action level: 0 < ai < a∗, ∀i ∈ N . Hybrid equilibria are other

than these extremes.

Because actions are strategic substitutes, maximal independent sets are a natural notion

in this model (see Section 3.2.2 above). Indeed, in equilibrium, no two specialists can be

linked. Hence, specialized equilibria are characterized by this structural property of a net-

work, i.e. the specialists are equal to a maximal independent set of the network. A result of

Bramoullé and Kranton (2007a) can be stated as follows:

Proposition 1 A specialized profile is a Nash equilibrium of the above game if and only if

its set of specialists is a maximal independent set of the structure g. Since for every g there

exists a maximal independent set, there always exists a specialized Nash equilibrium.

Figure 3 illustrates this proposition for a star-shaped network with 4 players. Observe

that, in a star network, there are two maximal independent sets: the one that only includes

the central player and the one that includes all peripheral players. As a result, using Propo-

sition 1, there are two specialized equilibria: (i) the center is a specialist and provides action

a∗ while peripheral players choose actions of 0 (Figure 3, left panel); (ii) the center chooses

action 0 while peripheral players are specialists and exert effort a∗ each (Figure 3, right

panel).

Bramoullé, Kranton, and D’Amours (2013) provide more results on these types of games.

Denote by µ0(g), the lowest eigenvalue of the adjacency matrix g. They show that if φ <

−1/µ0(g), there exists a unique Nash equilibrium of this game while, when φ > −1/µ0(g),

there always exists a corner equilibrium, i.e. for some player i, a∗i = 0. In terms of com-

parative statics, they also show that any increase in φ or any additional link to the network

leads to an equilibrium with lower total actions. Thus, while some players may increase their

actions, the decreases dominate.

3.3 Two-Action Games on Networks

The class of (complete information) games on networks where players can choose one of

two actions, so that Ai = {0, 1} for all i, is an important class of games in terms of its

applications, one that has been widely studied, and one that allows us to see some general

insights. It includes coordination games, and generally all sort of games where players choose
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Figure 3: Equilibria in a local public good game

whether to do something (adopt a new technology, participate in something, provide a public

good effort) or not. These were called graphical games by Kearns, Littman and Singh (2001)

and Kakade, Kearns, and Ortiz (2004) who studied the complexity of finding equilibria in

such games.

In particular, let us concentrate on a class of such games that are referred to as “semi-

anonymous” by Jackson (2008a). These games are not fully anonymous because players are

connected in a network and only care about their neighbors’ actions, but players care about

their neighbors equally. That is, they care only about how many of their neighbors take

action 1 and how many take action 0, but not which particular neighbors choose 1 versus 0.

Thus, such games are anonymous except to the extent of the interaction patterns governed

by the network. In addition, in keeping with the semi-anonymity, we can consider payoff

functions that do not depend on a player’s identity, but only on how many neighbors that

he or she has.

Such games then have some nice properties and best responses are easily described.
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Letting d be a player’s degree, in the case of strategic complements there is a threshold

t(d) such that if more than t(d) neighbors choose action 1 then the player prefers to choose

action 1, while if fewer than t(d) neighbors choose 1 then the player prefers to choose 0.

It is possible to have situations where an individual is exactly indifferent at the threshold,

although that would not occur for generic specifications of payoff functions. Analogously,

for the case of strategic substitutes, there is also a threshold, but the best response of the

player is reversed, so that he or she prefers to take action 0 if more than t(d) neighbors take

action 1, and prefers action 1 if fewer than t(d) neighbors take action 1.

The majority game (example 1) is a game of strategic complements where the threshold

is d/2, whereas the best-shot public good game (example 2) is a game of strategic substitutes

where the threshold is anything between 0 and 1.

3.3.1 Changes in Behaviors as the Network Varies

The threshold expression of the two-action semi-anonymous games on networks allows us to

easily deduce a few useful comparative statics.

For example, as discussed by Galeotti, Goyal, Jackson, Vega-Redondo and Yariv (2010),18

it is easy to see that in games of complements where the threshold is nonincreasing in degree,

adding links will lead to (weakly) higher actions as players will have higher numbers of

neighbors taking action 1.

Proposition 2 Consider a semi-anonymous two-action game of strategic complements on

a network (N,g) and such that the threshold for taking action 1 is nonincreasing as a function

of degree (so that t(d+ 1) ≤ t(d) for each d). If g′ is obtained by adding links to the network

g (so that g ⊂ g′), then for any equilibrium a under g, there exists an equilibrium a′ under

g′ such that a′ ≥ a, so that all players play at least as high an action under a′ as under a.

The case of strategic substitutes does not lead to the same clear-cut conclusions since

adding links can change the structure of payoffs in unpredictable ways. Decreasing actions

for some players can lead to increasing actions for others in the case of strategic substitutes,

and so changing network structure leads to more complex changes in behavior (see Figure

2 in Galeotti et al. (2010), for an illustration of this, and Jackson (2008a), for additional

examples and results).

18See the working paper version, or Jackson (2008a) for details.
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The comparative statics in equilibrium behavior become clearer in games with incomplete

information, as detailed in Section 5 below.

3.3.2 Coordination Games

Perhaps one of the most important and extensively studied classes of games of strategic

complements on networks are coordination games. It is an important class of games because

of its many applications: including the choice of a language, a technology, whether to buy

a new product, adopt a particular behavior, and so forth; when there are complementarities

in actions between friends or acquaintances.

The majority game is an example of this class, but more generally the threshold for

wanting to match one’s neighbors may differ from fifty percent, depending both on the

payoff to matching versus failing to match one’s neighbors. A standard representation of

such a game would be as follows (normalizing the payoff to action 0 to zero and then keeping

track of the difference in payoffs):

1 0

1 (b, b) (−c, 0)

0 (0,−c) (0, 0)

where b and c are both strictly positive. Thus, coordinating on action 1 is overall better

for society, but involves some risk from miscoordination −c. A player has to choose either

0 or 1 and then matches against each neighbor. Here there is a threshold fraction q = c
c+b

such that action 1 is a best response for a given player if and only if at least a fraction q

of the player’s neighbors choose 1. This fraction is the same for all players independent of

their degrees. Thus, this is a game of strategic complements where the threshold in terms of

numbers of neighbors of degree d is simply qd.

Here the Pareto efficient equilibrium (and sometimes referred to as the payoff dominant

equilibrium) is for all players to play action 1. However, reaching this play will depend on

what players expect their neighbors to play. In setting where q > 1/2 (so c > b), then the

equilibrium in which players both play action 0 is said to be the “risk dominant” equilibrium

(as named by Harsanyi and Selten (1988)), in the sense that if a player had a uniform prior

over other players’ plays - so an equal chance of each other player playing 0 or 1, then action

0 would be the best expected payoff maximizing choice for the player. In a case where

18



q < 1/2, then the equilibrium in which both players play action 1 is both risk dominant and

payoff dominant (Pareto efficient).

We know from Theorem 1 that the set of equilibria form a lattice, and here the maximum

equilibrium is where all players choose action 1 while the minimum equilibrium is where all

players choose action 0.

What else can we deduce about the set of equilibria? Do there exist equilibria where some

players choose 1 and others choose 0? What happens if we start with some small initial seed

of players choosing 1 and others choosing 0, and then iterate on best replies? Morris (2000)

provides some answers to these questions.19

If we let S be the set of players who play action 1 in an equilibrium, then it is clear that

each player in S must have at least a fraction q of his/her neighbors in the set S, and also

each player outside of S must a fraction of no more than q of his/her neighbors in S, or

equivalently has a fraction of at least 1− q of his/her neighbors outside of S.

To capture this, given 1 ≥ r ≥ 0, Morris (2000) defined the set of nodes S to be r-cohesive

with respect to a network (N,g) if each node in S has at least a fraction r of its neighbors

in S. That is, S is r-cohesive relative to g if

min
i∈S

|Ni(g) ∩ S|
di(g)

≥ r, (2)

where 0/0 is set to 1.

The cohesiveness of a given set S relative to a network (N,g) is then the maximum r

such that S is r-cohesive. The following proposition of Morris (2000) follows directly:

Proposition 3 Consider a network (N,g) and a coordination game as described above.

There exists an equilibrium where action 1 is played by S ⊂ N and action 0 by N\S if and

only if S is q-cohesive and such that its complement N\S is (1− q)-cohesive.

Cohesiveness provides enough of a “separation” in a network for different behaviors to

exist on different parts of a network.

With this proposition as background, it is then easy to see how behavior might spread

in a network. In particular, start from a network (N,g) with all players choosing action

0. Next, “infect” a set of players by switching them to play action 1 (and they can never

19The analysis here follows Jackson’s (2008a) adaptation of Morris’s results to a finite population setting.

See also Ellison (1993) and Blume (1993) for some related analyses.
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switch back). Next, let players (other than the initially infected) best respond to the current

actions of their neighbors, switching players to action 1 if their payoffs are at least as good

with action 1 as with action 0 against the actions of the other players. Repeat this process

starting from the new actions, and stop at a stage where no new players change to action 1.

If there is some set of players S whose initial infection leads to all players taking action 1

under the best response dynamics, then we say that there is a contagion from S.

Define a set S to be uniformly no more than r-cohesive if there is no nonempty subset

of S that is more than r-cohesive. We then can deduce the following proposition.

Proposition 4 Consider a network (N,g) and a coordination game as described above.

Contagion from the set S occurs if and only if its complement is uniformly no more than

(1− q)-cohesive.

The proof of this proposition is straightforward: If the complement of S has a subset S ′

that is more than (1− q)-cohesive, then S ′ will all play 0 under the process above, at every

step. Thus, it is necessary for the complement to be uniformly no more than (1−q)-cohesive

in order to have contagion to all remaining players outside of S. To see that this condition

is also sufficient, note that if the complement is uniformly no more than (1 − q)-cohesive,

then the complement is no more than (1 − q)-cohesive. This means that there must be at

least one player in the complement who has at least a fraction of q of his or her neighbors

in S. So, at the first step, at least one player changes strategies. Subsequently, at each step,

the set of players who have not yet changed strategies is no more than (1− q)-cohesive, and

so some player must have at least q neighbors who are playing 1 and will change. Thus, as

long as some players have not yet changed, the process will have new players changing, and

so every player must eventually change.

The cohesion conditions used in the above results can be difficult to check in a network,

but the concept is still quite useful in terms of outlining what is necessary to maintain dif-

ferent behaviors in a society: one needs a sufficient schism between (at least) two groups.

This is closely related to homophily in the network, whereby a group’s members tend to be

relatively more connected to each other than with outsiders (see e.g. McPherson, Smith-

Lovin and Cook (2001); Currarini, Jackson, and Pin (2009, 2010); Golub and Jackson (2010,

2012a,b,c); Jackson (2008b); Jackson and Lopez-Pintado (2011); Bramoullé, Currarini, Jack-
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son, Pin, and Rogers (2012); Bramoullé, Kranton and D’Amours (2013)).20

3.3.3 Stochastically Stable Play in Coordination Games on Networks

While analyses of equilibria in complete information games on networks provide some insights

and intuitions, they often lack the randomness (and heterogeneity) that are pervasive in

many applications. In fact, in some cases adding randomness can substantially refine the

multiplicity of equilibria that exist in the complete information noiseless setting. To see how

this works, let us visit some of the literature on stochastic stability in coordination games.

Let us consider the following variation on settings considered by Kandori, Mailath and

Rob (1993) and Young (1993). Start with (N,g) being the complete network, so that each

player plays with all others and chooses strategy either 1 or 0 in the coordination game from

Section 3.3.2. Players play the game repeatedly over time. However, they are myopic: in

each period a player chooses a best reply to the play of the others in the previous period. So

far, this is similar to our analysis of the previous section except for the complete network.

Indeed, here there are two obvious trajectories of society: all playing 1 and all playing 0 in

every period. In fact, it is clear that if the starting proportion is sufficiently different from

q (at least 1/(n − 1) above or below suffices), then one of these two states is reached after

the first period, and even away from that, if q is not too close to 1/2 (at least 1/n above or

below suffices), then one of the states is reached after at most two periods.21

However, to refine the predictions of the system, let us add slight perturbations to the

choice of actions: in each period, a player’s choice is reversed (1 to 0 or 0 to 1) with a slight

probability ε > 0, and this is done independently across players. Players still best reply

20Chwe (1999, 2000) studies related classes of games, but instead where players care not only about the

behavior of their own neighborhood, but of the collective, with an application to collective actions like

participating in a large protest or revolution. His motivation is similar, in looking at the network structure

and investigating where it is possible to sustain a collective action when players can only be sure of their

neighbors’ play and worry about a failed collective action: so they will only participate if they are sure that

some quota is exceeded. Granovetter (1978) and Schelling (1978) also provide dynamic models to analyze

such issues, but avoiding a clear linkage of outcomes to the social network structure in society. In particular,

a snowball effect might be generated only if there are initially enough activists who are willing to participate,

independently of others decisions. Once these activists start the process.
21Some starting configurations that have a fraction of players sufficiently close to q playing 1, when q is

sufficiently close to 1/2, can cycle endlessly, where two approximately equal-sized groups continue to switch

back and forth between 1 and 0, each miscoordinating with the other group over time.
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to what was played in the previous period, but sometimes their chosen action is changed

by some exogenous perturbation. This dynamic process is now a Markov chain that is

irreducible and aperiodic. This process thus has very nice ergodic properties that are easy

to deduce from standard results in Markov theory. In fact, without even relying on much of

the mathematics, it is easy to see some basic properties of this process:

• Any configuration of play is possible in any period since there is at least an ε probability

of each player playing either action in every period, given that the perturbations are

independent across players.

• If ε is sufficiently small then once the population has sufficiently more or fewer than a

fraction of q playing 1, then the next period with a high probability, all players play 1

or all players play 0.

• Thus, the process will continue to exhibit all possible plays infinitely often over time,

but, as ε tends to 0, it will spend most of its time with all players choosing the same

action.

The important insight that emerged from Kandori, Mailath, and Rob (1993) and Young

(1993) is that if q is not too close to 1/2 (more than 1/(n− 1) away), then, as ε tends to 0:

• if q > 1/2+1/(n−1), then the fraction of periods where all players play action 0 tends

to one, and

• if q < 1/2−1/(n−1), then the fraction of periods where all players play action 1 tends

to one.

Thus, if q is not too close to 1/2, then stochastic stability picks out the risk dominant

action: the action that is better for a player when others play uniformly at random.

The intuition behind this result is relatively straightforward. Considering that most of

the time all players choose the same action, the important determinant of the system is how

long it takes to transition from an extreme where all play 0 to the other extreme where all

play 1, and vice versa. Here q enters. If we start with all playing 0, then we need roughly

qn “perturbations” of the best replies within a single period before the system transitions to

all playing 1, and, in the reverse direction, at least (1 − q)n perturbations are needed. For
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small ε, the probabilities of this happening are effectively on the order of εqn and ε(1−q)n,

respectively. As ε tends to 0, if q < 1/2 then the first becomes infinitely more likely than

the second, and if q > 1/2 then the reverse is true.

Thus, introducing very slight trembles to a coordination game can end up making very

stark predictions in terms of the ergodic play of a society. What are some issues with relying

on this approach to make predictions about behavior? One is that as ε tends to 0, it could

take an enormous amount of time to reach a transition. For example, suppose that q = 1/3

and we start with all players choosing 0. Even though we know that in the “long run,”

for small ε the process spends most of its time with all players choosing 1, it could take a

very long time before we leave the starting state of everybody playing 0. In a sense, the

“short run” could last a very long time in a large society, as many very unlikely simultaneous

trembles could be needed to transition.22

The more interesting case in terms of many applications is when one turns to a setting of

less than complete networks. A first work in this direction was Ellison (1993) who pointed

out that this could have important implications for the speed of transitions from one state

to another. In particular, as shown by Ellison (1993), for example, if players are connected

in a “circle” so that each player has two adjacent neighbors (so, i’s neighbors in the network

are i − 1 and i + 1, with the wrap-around convention that n is connected to 1), then the

transition can happen much more quickly. Instead of waiting for n/3 perturbations when

q = 1/3, if two adjacent players are perturbed, then that is enough to spread behavior 1 to

the whole society; something which is much more likely to happen. Thus, network structures

significantly affect the times to transition in the network.

The network structure can also have profound effects on the long-run distribution of play,

as shown by Jackson and Watts (2002a,b).

Jackson and Watts (2002b) propose a model in which the interaction pattern is an arbi-

trary network g. In each period t, a player i chooses an action ati ∈ {1, 0} and then receives

a payoff equals to

ui(a
t,g) =

∑
j 6=i

gijvi(a
t
i, a

t
j)

where vi(a
t
i, a

t
j) is a payoff that depends on the actions chosen. The dynamic process is

22Another issue is raised by Bergin and Lipman (1996) who point out that this depends on the error

structure being the same ε regardless of circumstances. If the probability of trembles is enriched arbitrarily,

then the relative probability of various transitions can be made arbitrary and the selection is lost.
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described as follows. In each period one player is chosen at random (with equal probability

across players) to update his/her strategy. A player updates his/her strategy myopically,

best responding to what the other players with whom he/she interacts did in the previous

period. There is also a probability 1 > ε > 0 that a player trembles, and chooses a strategy

that he/she did not intend to. Thus, with probability 1 − ε, the strategy chosen is ati =

arg maxai ui(ai, a
t−1
−i ,g) and with probability ε the strategy is ati 6= arg maxai ui(ai, a

t−1
−i ,g).

The probabilities of trembles are identical and independent across players, strategies, and

periods. Again, this is a well-defined Markov chain where the state is the vector of actions

at, that are played in period t. Since this process is aperiodic and irreducible, the Markov

chain has a unique stationary distribution, denoted µε(a).

If we consider the complete network where all players are connected to each other so

that each player has n− 1 links, then the analysis is as above from the models of Kandori,

Mailath and Rob (1993) and Young (1993)23 and the unique stochastically stable state is

the risk-dominant equilibrium (provided that q is not too close to 1/2).

However, instead let us consider a star network where player 1 is the at the center of the

star, connected to every other player but where other players are only connected to player

1. Jackson and Watts (2002b) show that, in this case, there are two stochastically stable

states: one where all players play 1 and the other where all players play 0; regardless of q.

Note that now peripheral players i > n care only about what player 1 is playing, and they

update to play whatever 1 played last period when called on to update. Player 1, in contrast,

cares about what all the players are doing. Thus one tremble by player 1 can lead from a

network where all play 1 to one where all play 0. Thus starting from either equilibrium of all

play 1 or all play 0, we need only one tremble to have updating lead naturally to the other

equilibrium. As the relative number of trembles is the important factor in determining the

set of stochastically stable states, both of these states are stochastically stable.

The important difference from the complete network setting is that regardless of the

starting condition, if the central player changes actions, that can change the subsequent play

of all other players. Thus, all playing 1 and all playing 0 are both more “easily” destabilized,

23The Jackson and Watts process involves changes of players’ actions one at a time, which is easier to handle

when the network is endogenized (see Section 6.1), but differs from the Kandori, Mailath and Rob (1993)

and Young (1993) where decisions and trembles are simultaneous. That difference is largely inconsequential

when applied to a fixed network.
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and the long-run distribution does not place all weight on just one equilibrium.24

This shows that network structure can influence the play of a society, even in terms of

selecting among (strict) Nash equilibria. Exactly what emerges depends on a number of

details and how the long-run play depends on the structure of the network can be quite

complex. Nonetheless, there are some clean results that emerge when one further enriches

the structure to allow players also to choose the network along with their play, as discussed

in Section 6.

4 A Model with Continuous Actions, Quadratic Pay-

offs, and Strategic Complementarities

Although models with finite numbers of actions capture many applications, there are oth-

ers that are well-approximated by continuous actions; for instance in which players have

choices of how much time or effort to exert in an activity like education or crime. In this

section, we analyze a simple model of a game with strategic complements where the utility

function is linear-quadratic. An advantage of this formulation is that it allows for an easy

characterization of equilibrium as a function of network structure.25

4.1 The Benchmark Quadratic Model

Consider a game in which players decide how much time or effort to exert in some activity,

denoted ai ∈ R+. The payoff to player i as a function of the action profile and network,

24The results on this do depend on the perturbation structure. As shown by Blume (1993) and Young

(1998), if one uses a structure in which errors are exponentially proportional to the payoff loss of making the

error, then the center makes infinitely fewer errors in moving away from 1 than away from 0 when q < 1/2

(and vice versa when q > 1/2), which can then restore the original conclusion that the risk-dominant play is

obtained. However, that then relies on some errors by individual players becoming infinitely more likely than

others, which seems implausible if errors can result from things like errors in calculation or some unmodeled

preference shock, and so forth.
25The definitions of strategic complements and substitutes apply to such games exactly as before. We

focus in this section mainly on games of strategic complements due to space constraints. For more discussion

of the case of strategic substitutes, see Bramoullé, Kranton and D’Amours (2013).
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ui(a,g), is given by

ui(a,g) = α ai −
1

2
a2i + φ

n∑
j=1

gijaiaj, (3)

where α, φ > 0. In this formulation, players are ex ante homogeneous in terms of observable

characteristics (i.e. they all have the same α, φ) and their heterogeneity stems entirely from

their position in the network. The first two terms of (3), α ai − 1
2
a2i , give the benefits and

costs of providing the action level ai. The last term of this utility function, φ
∑n

j=1 gijaiaj,

reflects the strategic complementarity between friends’ and acquaintances’ actions and own

action. This peer effect depends on the different locations of players in the network g. When

i and j are directly linked, i.e. gij = 1, the cross derivative is φ > 0 and reflects strategic

complementarity in efforts. When i and j are not direct friends, i.e. gij = 0, this cross

derivative is zero.

Ballester, Calvó-Armengol, and Zenou (2006) have analyzed this game, determining its

unique Nash equilibrium in pure strategies (when it exists, provided that φ is not too large).

The first-order necessary condition for each player i’s choice of action to maximize his or her

payoff is:
∂ui(a,g)

∂ai
= α− ai + φ

n∑
j=1

gijaj = 0,

which leads to:

a∗i = α + φ
n∑
j=1

gija
∗
j . (4)

In matrix form:

a∗ = α1 + φga∗

where 1 is the column vector of 1 and g is the adjacency matrix. Solving this leads to:

a∗ = α (I−φg)−1 1 (5)

where I is the identity matrix (and provide the inverse of (I−φg) is well-defined).

4.1.1 Katz-Bonacich Network Centrality and Strategic Behavior

The equilibrium action profile of this quadratic model is related to a centrality measure. Let

M (g, φ) = (I−φg)−1 =
+∞∑
k=0

φpgp
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As defined by Katz (1953) and Bonacich (1987),26 given w ∈ Rn
+ and φ ≥ 0, the vector

ofweighted Katz-Bonacich centralities relative to a network g is:

bw (g, φ) = M (g, φ) w = (I− φg)−1 w =
+∞∑
p=0

φpgpw. (6)

In particular, when w = 1, the unweighted Katz-Bonacich centrality of node i is b1,i(g, φ) =∑n
j=1Mij(g, φ), and counts the total number of walks in g starting from i, discounted ex-

ponentially by φ. It is the sum of all loops Mii(g, φ) from i to i itself, and of all the outer

walks
∑

j 6=iMij(g, φ) from i to every other player j 6= i, that is:

b1,i(g, φ) = Mii(g, φ) +
∑
j 6=i

Mij(g, φ).

By definition, Mii(g, φ) ≥ 1, and thus bi(g, φ) ≥ 1, with equality when φ = 0.

4.1.2 Nash equilibrium

We now characterize the Nash equilibrium of the game where players choose their effort level

ai ≥ 0 simultaneously. Let µ1(g) denote the spectral radius of g.

Proposition 5 If φµ1(g) < 1, the game with payoffs (3) has a unique (and interior) Nash

equilibrium in pure strategies given by:

a∗ = αb1 (g, φ) . (7)

This results shows that Katz-Bonacich centrality embodies the feedback calculations

that underlie equilibrium behavior when utility functions are linear-quadratic. In (3), the

local payoff interdependence is restricted to neighbors. In equilibrium, however, this local

payoff interdependence spreads indirectly through the network. The condition φµ1(g) < 1

stipulates that local complementarities must be small enough compared to own concavity,

which prevents excessive feedback which can lead to the absence of a finite equilibrium

solution.

There are different ways of proving Proposition 5. Ballester, Calvó-Armengol, and Zenou

(2006) show that the condition φµ1(g) < 1 ensures that the matrix I − φg is invertible by

Theorem III of Debreu and Herstein (1953, p. 601). Then, using (5), it is straightforward to

26For more background and discussion of this and related definitions of centrality, see Jackson (2008).
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see that the optimal efforts are equal given by Katz-Bonacich centrality. Finally, they rule

out corner solutions to establish uniqueness. Since ∂ui(a,g)
∂ai

|a=0= α > 0, then a = 0 cannot

be a Nash Equilibrium. It is also clear from the first-order condition that a deviation to

positive effort is profitable if only some subgroup S ⊂ N of players provides zero effort.27

As a result, the Nash equilibrium is unique and each a∗i is interior.

Another simple way of proving Proposition 5 is, as noted by Bramoullé, Kranton and

D’Amours (2013) and König (2013), is to observe that this game is a potential game (as

defined by Monderer and Shapley, 1996)28 with potential function:29

P (a,g, φ) =
n∑
i=1

ui(a,g)− φ

2

n∑
i=1

n∑
j=1

gijaiaj

=
n∑
i=1

α ai −
1

2

n∑
i=1

a2i +
φ

2

n∑
i=1

n∑
j=1

gijaiaj,

or in matrix form:

P (a,g, φ) = αa>1−1

2
a>a + a>

φ

2
ga

= αa>1−1

2
a> (I−φg) a.

It is well-known (see e.g., Monderer and Shapley, 1996) that solutions of the program

maxa P (a,g, φ) are a subset of the set of Nash equilibria.30 This program has a unique

interior solution if the potential function P (a,g, φ) is strictly concave on the relevant do-

main. The Hessian matrix of P (a,g, φ) is easily computed to be − (I−φg). The matrix

27From Theorem I of Debreu and Herstein (1953, p. 600), φµ1(g) < 1 also guarantees that I − φgS is

invertible for gS ⊂ g, where gS is the adjacency matrix for the subgroup S ⊂ N of players.
28A game is a potential game if there is a function P : X → R such that, for each i ∈ N , for each

x−i ∈ X−i, and for each xi, zi ∈ Xi,

ui(xi, x−i)− ui(zi, x−i) = P (xi, x−i)− P (zi, x−i)

29Here the potential P (x,g, φ) is constructed by taking the sum of all utilities, a sum that is corrected by

a term which takes into account the network externalities exerted by each player i.
30To establish uniqueness of the equilibrium, one has to show a one-to-one correspondence between the set

of Nash equilibria and the solutions to the first-order conditions of the maximization problem (see Bramoullé,

Kranton and D’Amours (2013) for details).
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I−φg is positive definite if for all non-zero a

a> (I−φg) a > 0⇔ φ <

(
a>ga

a>a

)−1
.

By the Rayleigh-Ritz theorem, we have µ1(g) = supa6=0

(
a>ga
a>a

)
. Thus a necessary and

sufficient condition for having a strict concave potential is that φµ1(g) < 1, as stated in

Proposition 5.

To illustrate the results and to describe a social multiplier, let us consider the case of a

dyad, i.e. n = 2. In that case, the utility (3) can be written as:

ui(a,g) = αxi −
1

2
a2i + φaiaj

If there were no social interactions, the unique Nash equilibrium would be:

a∗1 = a∗2 = α,

while, for a dyad where the two individuals are linked to each other (i.e. g12 = g21 = 1), the

unique Nash equilibrium is given by (if φ < 1):31

a∗1 = a∗2 =
α

1− φ
.

In the dyad, complementarities lead to an effort level above the equilibrium value for an

isolated player (a∗1 = a∗2 = α). The factor 1/(1 − φ) > 1 is often referred to as a social

multiplier.32,33

In terms of comparative statics, it is clear that, by standard strategic-complementarity

arguments, increasing the number of links of any player raises his/her effort, and for this

specification of utility functions also increases his/her payoff.

31It is straightforward to check that:

b1 (g, φ) = (I− φg)
−1

1 =

 1/ (1− φ)

1/ (1− φ)
.


32See, for instance, Glaeser, Sacerdote and Scheinkman (2003), and references therein.
33Belhaj and Deroian (2011) have extended the previous model by considering two substitute activities,

so that player i chooses both a1,i and a2,i such that a1,i + a2,i = 1. The payoff is:

ui(a1,a2,g) = α1 a1,i −
1

2
a21,i + α2a2,i −

1

2
a22,i +

n∑
j=1

gij (φ1a1,ia1,j + φ2a2,ia2,j) .

The model incorporates local synergies and both lower and upper bounds on efforts, which facilitates the

analysis of equilibrium. Belhaj and Deroian (2011) study both interior and corner solutions, and provide

comparative statics with respect to activity cost.
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4.1.3 Welfare

It is obvious that the Nash equilibrium in such a game is inefficient, as there are positive

externalities in efforts. There is too little effort at the Nash equilibrium as compared to the

social optimum outcome, because each individual ignores the positive impact of her effort

on others. As a result, there are benefits from subsidizing effort, as we now detail.

To analyze welfare, we first relate the equilibrium utility of player i to Katz-Bonacich

centrality:

ui(a
∗,g) = α a∗i −

1

2
a∗2i + φ

n∑
j=1

gija
∗
i a
∗
j

= a∗i

(
α + φ

n∑
j=1

gija
∗
j

)
− 1

2
a∗2i .

By (4) where a∗i = α + φ
∑n

j=1 gija
∗
j :

ui(a
∗,g) = a∗2i −

1

2
a∗2i =

1

2
a∗2i =

1

2
[b1,i (g, φ)]2 . (8)

The total equilibrium welfare (i.e. the sum of all equilibrium utilities) is then:

W(a∗,g) = u(a∗,g) · 1 =
1

2
b>1 (g, φ) b1 (g, φ) . (9)

Following Helsley and Zenou (2014), let us show that the Nash equilibrium (5) is not

efficient. For that, the planner chooses a1, ..., an that maximize total welfare, that is:

max
a
W(a,g) = max

a1,...,an

i=n∑
i=1

ui(a,g) = max
a1,...,an

{
i=n∑
i=1

[
α ai −

1

2
a2i

]
+ φ

i=n∑
i=1

n∑
j=1

gijaiaj

}
.

The first-order conditions are that for each i = 1, ..., n:

α− ai + φ
∑
j

gijaj + φ
∑
j

gjiaj = 0,

which implies that (since gij = gji):

aOi = α + 2φ
∑
j

gija
O
j , (10)

where the superscript O refers to the “social optimum”. In matrix form,

aO = α (I− 2φg)−1 1 = αb1 (g, 2φ) . (11)
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Examination of (7) and (11) shows that the two solutions differ and that the Nash equilibrium

effort of each individual i is inefficiently low.

Analogously to the derivation of (9), we see that

W(aO,g) =
1

2
b>1 (g, 2φ) b1 (g, 2φ) . (12)

Here a Pigouvian subsidy can lead individuals to choose the socially optimal effort levels.

Let us derive this optimal subsidy that can restore the first-best outcome (10).

The timing is as follows. First, the government announces the per-effort subsidy si(a) ≥ 0

for each individual i = 1, ..., n. Then each individual i chooses effort ai to maximize his or

her payoff accounting for the subsidy. Because of the planner’s subsidy, individual i’s utility

is now given by:

ui(a,g; si) = [α + si] ai −
1

2
a2i + φ

n∑
j=1

gijaiaj (13)

Helsley and Zenou (2014) and Ballester, Calvó-Armengol, and Zenou (2011) show the

following result:

Proposition 6 Assume that 2φµ1 (g) < 1. If subsidies that satisfy si = φ
∑

j gija
O
j are

in place, then the first-best efforts form a Nash equilibrium. In equilibrium, this per-effort

subsidy is equal to: si = 1
2

[b1,i (g, 2φ)− α]. Thus, the planner gives a higher per-effort

subsidy to more central players in the network.

This proposition does not address the financing of the subsidy. Here since the anticipated

total cost of the subsidies is calculable ex ante (knowing the network and players’ prefer-

ences), the planner can raise the value of the subsidies by any tax scheme that is independent

of a.

4.2 The model with global congestion

In some applications, in addition to local complementarities, players might experience global

competitive effects. When global competition or congestion matters (e.g., see our discussion

of applications of this model to crime, Cournot competition, etc.), we can modify the utility

function (3) to allow for global competitive effects. One such formulation is:

ui(a,g) = α ai −
1

2
a2i + φai

n∑
j=1

gijaj − γai
n∑
j=1

aj (14)
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where global congestion is captured by the factor −γ
∑n

j=1 aj that multiplies player i’s action.

Compared to the previous case without global substitutes where no player had interest in

providing zero effort (see (4)), it is now possible that corner solutions arise at the Nash

equilibrium. Ballester, Calvó-Armengol, and Zenou (2006) show that, if φµ1(g) < 1 + γ,

then there exists a unique interior Nash equilibrium given by:

a∗ =
α

1 + γ [1 + b1(g, φ/(1 + γ))]
b1 (g, φ/(1 + γ)) , (15)

where b1(g, φ/(1 + γ)) = 1>M (g, φ, γ) 1 (where M (g, φ, γ) = [(1 + γ) I−φg]−1) is the sum

of unweighted Bonacich centralities of all players, i.e.,

b1(g, φ/(1 + γ)) = b1,1(g, φ/(1 + γ)) + ....+ bn,1(g, φ/(1 + γ)).

Thus, the model is easily adapted to include such effects, provided they also fit into a linear-

quadratic form.

In terms of comparative statics, the standard complementarity argument for the bench-

mark model, which implies that equilibrium efforts increase (on a player by player basis) in

any component with in which links are added, does not apply here because of the competition

effect. However, the following result regarding total aggregate effort can be shown:

Proposition 7 Let g and g′ be symmetric and such that g′ ≥ g and g′ 6= g. If φµ1(g) < 1

and φ′µ1(g
′) < 1, then

∑
i a
∗(g′)i >

∑
i a
∗(g)i.

Proposition 7 shows that an increase in network relationships (in a partial order sense)

increases aggregate activity. This result is due to the fact that neighbors are the source of

local complementarities. As a result, players obtain more local complementarities in g′ than

in g, and equilibrium aggregate activity is thus higher in g′ than in g. Symmetry of the

adjacency is not really needed here: Using the Farkas’ Lemma, Belhaj and Deröıan (2013)

have shown that, even with asymmetric g and g′, Proposition 7 holds. They show that if

the transposed system admits a positive solution, then any perturbation of the linear system

that enhances complementarities leads to an increase of average effort.

4.3 The model with ex ante heterogeneity

So far, players were only heterogeneous due to their positions in the network. Let us now

extend the model to allow for players who are also heterogeneous in terms of characteristics;
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e.g., age, race, gender, education, etc., which is important when one would like to bring the

model to the data and to test it. One way to introduce some aspects of heterogeneity while

still maintaining tractability is to allow the utility function of player i to be given by:

ui(a,g) = αi ai −
1

2
a2i − γ

n∑
j=1

aiaj + φ

n∑
j=1

gijaiaj, (16)

where αi depends on the characteristics of player i. In many empirical applications (see e.g.

Calvó-Armengol, Patacchini, and Zenou 2009, for education, or Patacchini and Zenou, 2012,

for crime), αi could also includes the average characteristics of individual i’s neighbors, i.e.

the average level of parental education of i’s friends, etc., which are referred to as contextual

effects. In particular, assume that

αi =
H∑
h=1

βhx
h
i +

1

di(g)

H∑
h=1

n∑
j=1

γhgij x
h
j (17)

where (xhi )h is a set of H variables accounting for individual characteristics and βh, γh are

parameters.

Let bα (g, φ/(1 + γ)) = α>M (g, φ, γ)α be the weighted sum of weighted Bonacich cen-

tralities of all players, i.e. bα = α1bα,1+ ....+αnbα,n. Calvó-Armengol, Patacchini and Zenou

(2009) show the following.

Proposition 8

(i) If α = α1, then the game has a unique Nash equilibrium in pure strategies if and only

if φµ1(g) < 1 + γ. This equilibrium a∗ is interior and described by (15).

(ii) If α 6= α1, then let α = max {αi | i ∈ N} > α = min{αi | i ∈ N} > 0. In this case, if

φµ1(g) + nγ (α/α− 1) < 1 + γ, then this game has a unique Nash equilibrium in pure

strategies and it is interior and described by:

a∗ =
1

1 + γ

[
bα (g, φ/(1 + γ)))− γbα (g, φ/(1 + γ))

1 + γ + γb1 (g, φ/(1 + γ))
b1 (g, φ/(1 + γ))

]
. (18)

4.4 Some Applications of the Quadratic Model

Part of the usefulness of the quadratic model is that it can provide explicit relationships

between network structure and behavior, and thus can make sharp predictions in context.

Let us examine some specific contexts where it generates further results.

33



4.4.1 Crime

Criminal activity is, to some extent, a group phenomenon, and the crime and delinquency are

related to positions in social networks (see e.g. Sutherland, 1947, Sarnecki, 2001 and Warr,

2002). Indeed, delinquents often have friends who have committed offenses, and social ties

are a means of influence to commit crimes. In fact, the structure of social networks matters in

explaining an individual’s delinquent behavior: in adolescents’ friendship networks, Haynie

(2001), Patacchini and Zenou (2008), Calvó-Armengol, Patacchini and Zenou (2005) find

that individual Katz-Bonacich centrality together with the density of friendship links affect

the delinquency-peer association. This suggests that the properties of friendship networks

should be taken into account to better understand peer influence on delinquent behavior and

to craft delinquency-reducing policies.

Glaeser, Sacerdote and Scheinkman (1996) were among the first to model criminal social

interactions. Their model clearly and intuitively shows how criminal interconnections act

as a social multiplier on aggregate crime. They consider, however, only a specific network

structure where criminals are located on a circle. Following Calvó-Armengol and Zenou

(2004) and Ballester, Calvó-Armengol, and Zenou (2010), we examine a model that can

encompass any social network. Let us reinterpret the local-complementarity model with

global congestion described in Section 4 in terms of criminal activities. Let ai be the criminal

effort level of delinquent i. Following Becker (1968), assume that delinquents trade off the

costs and benefits of delinquent activities. The expected delinquency gains to delinquent i

are:

ui(a,g) = yi(a)︸︷︷︸
benefits

− pi(a,g)︸ ︷︷ ︸
prob.caught

f︸︷︷︸
fine

, (19)

where  yi(a) = α′i ai − 1
2
a2i − γ

∑n
j=i aiaj

pi(a,g) = p0ai max
{

1− φ′
∑n

j=1 gijaj, 0
}

The proceeds yi(a) include the global payoff interdependence. The expected cost of crim-

inal activity, pi(a,g)f , is positively related to ai as the apprehension probability increases

with one’s involvement in delinquency. The crucial assumption is that delinquents’ activity

has complementarities with their friends’ criminal activity, but a criminal also faces global

competition as well as increased expected costs as he or she increases activity.
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By direct substitution:

ui(a,g) = (α′i − p0f) ai −
1

2
a2i − γ

n∑
j=i

aiaj + p0fφ
′
n∑
j=1

gijaiaj. (20)

It should be clear that these utilities, (20) and (14), are equivalent if αi = α′i − p0f > 0

and φ = p0fφ
′. Thus, we can apply Proposition 8 (ii): if p0fφ

′µ1 (g)+nγ (α/α− 1) < 1+γ,

then there exists a unique Nash equilibrium:

a∗ =
1

1 + γ

[
bα (g, p0fφ

′/ (1 + γ))− γbα (g, p0fφ
′/ (1 + γ))

1 + γ + γb1 (g, p0fφ
′/ (1 + γ))

b1 (g, p0fφ
′/ (1 + γ))

]
.

An interesting aspect of a network analysis of criminal activity is that it allows us to

derive a key player policy: If we could choose to push one player’s activity to 0 and remove

all his/her existing links, which player’s removal would lead to the highest overall criminal

activity reduction when examining the resulting impact on others’ behaviors?34 Given that

delinquent removal has both a direct and an indirect effect on the group outcome, the choice

of the key player results from considering both effects. In particular, the key player need not

necessarily be the one with the highest criminal activity (the one with the highest Bonacich

centrality measure). Formally, the planner’s problem is :

max
i
{a∗(g)− a∗−i(g−i)},

where a∗ = a∗>1. The program above is equivalent to:

min
i
{a∗−i(g−i)} (21)

Following Ballester, Calvó-Armengol, and Zenou (2006, 2010), define a network centrality

measure dα(g, φ) that corresponds to this program. Recall that bα(g, φ) =
∑n

i=1 bα(g, φ)i.

(i) If α = α1, then the intercentrality measure of player i is:

d1(g, φ)i = b1(g, φ)− b1(g−i, φ) =
[b1(g, φ)i]

2

Mii(g, φ)
. (22)

(ii) If α 6= α1, then the intercentrality measure of player i is:

dα(g, φ)i = bα(g, φ)− bα(g−i, φ) =
bα(g, φ)i

∑n
j=1Mji(g, φ)

Mii(g, φ)
. (23)

34See Dell (2011) for related analyses of spillover effects and reactions of criminals to enforcement with

respect to Mexican drug cartels.
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The intercentrality measure dα(g, φ)i of player i is the sum of i’s centrality measures in

g, and i’s contribution to the centrality measure of every other player j 6= i also in g. The

following result establishes that intercentrality captures the two dimensions of the removal

of a player from a network: the direct effect on criminal activity and the indirect effect on

others’ criminal activities.

Proposition 9 A player i∗ is the key player who solves (21) if and only if i∗ has the highest

intercentrality in g: dα(g, φ)i∗ ≥ dα(g, φ)i, for all i = 1, ..., n.

The key player policy is such the planner perturbs the network by removing a delinquent

and all other delinquents are allowed to change their effort after the removal but the network

is not “rewired”, and so is a short-term policy.35

The individual Nash equilibrium efforts are proportional to the Katz-Bonacich centrality

network measures, while the key player is the delinquent with the highest intercentrality

measure. This difference is not surprising, as the equilibrium index derives from individual

considerations, while the intercentrality measure solves the planner’s optimality collective

concerns. The measure dα(g, φ) goes beyond the measure bα(g, φ) by keeping track of the

cross-contributions that arise.

4.4.2 Education

The influence of peers on education outcomes has been studied extensively (see e.g. Evans et

al., 1992; Sacerdote, 2001; Zimmerman, 2003; for a survey, see Sacerdote, 2011).36 Following

Calvó-Armengol, Patacchini and Zenou (2009), let us reinterpret the benchmark model of

Section 4 in terms of education: ai is an educational effort. Applying Proposition 5, if

φµ1(g) < 1, the equilibrium effort levels are a∗i = b1(g, φ)i.

35Liu, Patacchini, Zenou and Lee (2012) develop a dynamic network formation model where, once a

delinquent is removed from the network, the remaining delinquents can form new links. They do not have

a formula like the intercentrality measure here, but test the model empirically. The invariant and dynamic

models often lead to the same key player in the AddHealth data.
36For recent models of human capital investment, social mobility and networks, see Calvó-Armengol and

Jackson (2009), Jackson (2007), and Bervoets, Calvó-Armengol and Zenou (2012). The papers study the

intergenerational relationship between parents’ and offsprings’ educational outcomes. They show that a

positive correlation emerges between their education status, without any direct interaction, because of the

overlap in the surroundings that influence their education decisions.
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In practice, we are not interested in the effort per se, but in the outcome of effort; i.e.

the educational achievement obtained by each student. Let the educational achievement of

student i be denoted by β∗i and described by

β∗i = αi + a∗i

where αi is again a parameter that depends on the characteristics of student i. Thus,

β∗i = αi + b1(g, φ)i.

Calvó-Armengol, Patacchini and Zenou (2009) estimate this last equation using the Ad-

dHealth data. Estimating such an equation is useful because it allows the authors to disen-

tangle between the effects of own characteristics αi from a student’s location in the network

on the educational outcome (i.e. the grades of the student).37 In terms of magnitude, they

find that a standard deviation increase in the Katz-Bonacich centrality of a student increases

his or her performance in school by about seven percent of one standard deviation.

Again, one can ask what an optimal subsidy would be in this setting. Ballester, Calvó-

Armengol, and Zenou (2011) determine the optimal per-effort subsidy for each student in

order to maximize total output (i.e. the sum of all students’ efforts). They take the planner’s

objective to be to choose s to maximize

a∗ =
∑
i

a∗i =
∑
i

bα+s (g, φ)i = 1>M(α + s)

subject to a budget constraint:∑
i

sia
∗
i ≤ B and si ≥ 0, ∀i,

where B > 0 is the budget that the government has for this policy.

Assume that α1 < ... < αn. Ballester, Calvó-Armengol, and Zenou (2011) demonstrate

the following result.

37To evaluate the effect of Katz-Bonacich centrality, they first estimate a∗i = αi +φ
∑n

j=1 gija
∗
j . This leads

to an estimated value of φ, denoted by φ̂, for each network of friends in the AddHealth data. Remember

that φ̂ not only captures the intensity of complementarities in the utility function (3) but also the decay

factor in the Katz-Bonacich centrality, i.e. how much weight to put on distant walks in the network.
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Proposition 10 Assume φµ1(g) < 1 and αn <
√

4B+bwα

b1
. There exists a unique solution

and it is interior and described by

s∗ =
1

2

[√
4B + bwα

b1
1−α

]
. (24)

The optimal subsidy s∗ for each student depends on the heterogeneity αi and on overall

network characteristics (i.e., b1 and bwα), but not on the individual position in the network.

Ballester Calvó-Armengol, and Zenou (2011) show that

∂s∗i
∂αi

R 0⇔ b1 Q
(bα,i)

2

4 (4B + bwα)
,

implying that the planner does not always give higher per-effort subsidies to either the more

or less advantaged students in terms of background characteristics.

4.4.3 Industrial organization

Another application of the model is to collaboration between firms. Collaboration takes

a variety of forms which includes creation and sharing of knowledge about markets and

technologies (via joint research activities), setting market standards and sharing facilities

(such as distribution channels). Recent studies (see for instance Hagedoorn, 2002) suggest

that joint ventures seem to have become less popular while non-equity contractual forms of

R&D partnerships, such as joint R&D pacts and joint development agreements, have become

more prevalent modes of inter-firm collaborations. Little is known, however, about how the

structure of these collaboration networks affects the profits of firms. The linear-quadratic

model of Section 4 can be applied to this question.38

Following, König, Liu and Zenou (2014), we study competition in quantities a la Cournot

between n firms with homogeneous products and price, given the following linear inverse

market demand for each firm i:

pi = θi −
∑
j∈N

qj,

38There is a growing literature on industrial organization and networks, much of which has focused on

network formation. See, e.g., Manshadi and Johari (2009) for Bertrand competition; Goyal and Moraga

(2001), Goyal and Joshi (2003), Deroian and Gannon (2006), Goyal, Konovalov and Moraga-Gonzalez (2008),

and Westbrock (2010) for Cournot competition and R&D networks; Candogan, Bimpikis and Ozdaglar (2012)

and Bloch and Quérou (2013) for monopoly pricing.
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where θi > 0 and qj is the quantity produced by firm j. Assume throughout that θi is

assumed to be large enough for all i = 1, ..., n so that price and quantities are always strictly

positive. The marginal cost of each firm i is:

ci(g) = φ0 − φ

[
n∑
j=1

gijqj

]
, (25)

where φ0 > 0 represents the firm’s marginal cost when it has no links and φ > 0 influences

the cost reduction induced by each link formed by a firm. The marginal cost of each firm

i is a decreasing function of the quantities produced by all firms j 6= i that have a direct

link with firm i. Assume that φ0 is large enough so that ci(g) ≥ 0, ∀i ∈ N , ∀g. The profit

function of firm i in a network g is thus:

πi(q,g) = pqi − ci(g)qi = αiqi − q2i −
∑
j 6=i

qiqj + φ
n∑
j=1

gijqiqj (26)

where αi ≡ θi − φ0. We can apply Proposition 8 (ii) to obtain the following result. Let

α > α > 0. If φµ1(g) + n (α/α− 1) /3 < 1, then this game has a unique Nash equilibrium

in pure strategies q∗, which is interior and given by:

q∗ = ba (g, φ)− ba (g, φ)

1 + b1 (g, φ)
b1 (g, φ) . (27)

This characterizes the equilibrium quantities produced by firms as a function of their position

in the network (again, as measured by their Katz-Bonacich centrality).

Proposition 7 then provides comparative statics for the total activity in the industry.

Overall industry output increases when the network of collaboration links expands, irrespec-

tive of the network geometry and the number of additional links.39

4.4.4 Cities

Helsley and Zenou (2014) use the quadratic model to investigate the interaction between

the social space (i.e. the network) and the geographical space (i.e. the city). For that, they

consider a city which consists of two locations, a center, where all social interactions occur,

39For the case of a linear inverse demand curve, this generalizes the findings in Goyal and Moraga-González

(2001) and Goyal and Joshi (2003), where monotonicity of industry output is established for the case of

regular collaboration networks, where each firm forms the same number of bilateral agreements. For such

regular networks, links are added as multiples of n, as all firms’ connections are increased simultaneously.
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and a periphery. Players are located in either the center or the periphery. The distance

between the center and the periphery is normalized to one.

Let li ∈ {0, 1} represent the location of player i, defined as his/her distance from the

interaction center. Players derive utility from a numeraire good zi and interactions with

others according to the utility function:

ui(a,g) = zi + α ai −
1

2
a2i + φ

n∑
j=1

gijaiaj (28)

where ai (effort) is the number of visits that player i makes to the center. Thus, utility

depends on the visit choice of player i, the visit choices of other players and on player i’s

position in the social network g. Players located in the periphery must travel to the center

to interact with others. Letting I represent income and τ represent marginal transport cost,

budget balance implies that expenditure on the numeraire is zi = I − τ li ai. Using this

expression to substitute for zi in (28), we obtain:

ui(a,g) = I + αiai −
1

2
a2i + φ

n∑
j=1

gijaiaj, (29)

where αi = α − τ li > 0. Consider the case where location li of each player i is fixed.

Then, using Proposition 8 (ii) for γ = 0, if φµ1(g) < 1, there is a unique (and interior) Nash

equilibrium given by: a∗ = bα(g, φ). The Nash equilibrium number of visits a∗i thus depends

on position in the social network and geographic location. This implies that a player who is

more central in the social network makes more visits to the interaction center in equilibrium,

as he or she has more to gain from interacting with others and so exerts higher interaction

effort for any vector of geographic locations.

Helsley and Zenou (2014) extend this model to allow players to choose between locating

in the center and the periphery. They assume that because the center has more economic

activity, there is an exogenous cost differential C > 0 associated with locating at the center.

This cost differential might arise from congestion effects or reflect a difference in location rent

from competition among other activities for center locations. They show that, in equilibrium,

players who are most central in the social network locate at the interaction center, while

players who are less central in the social network locate in the periphery. This expresses

the salient relationship between position in the social network and geographic location. If

interaction involves costly transportation, then players who occupy more central positions

in the social network have the most to gain from locating at the interaction center.
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Applying the logic of Proposition 6, it is again clear that the Nash equilibrium outcome

is inefficient and there will be too little social interaction. The first-best outcome can be

restored if the planner subsidizes i’s activity with the optimal subsidy φ
∑

j gijaj. In this

case, it is optimal for the planner to give higher subsidies to more central players in the

social network.

4.4.5 Conformity and Conspicuous Effects

Let us consider one last application of the quadratic model, with some modifications. In

that model, it is the sum of friends’ activities that impact a player’s utility from increasing

his or her action (3). This is clearly not always the right model, as it might be some other

function of friends’ activities that matters. Patacchini and Zenou (2012) alter the model so

that it is the average effort level of friends that affects a player’s marginal utility of own

action.

Let ĝij = gij/di(g), and set ĝii = 0. By construction, 0 ≤ ĝij ≤ 1.

Let ai the average effort of individual i’s friends: given by:

ai(g) =
1

di(g)

n∑
j=1

gijaj =
n∑
j=1

ĝijaj. (30)

Player i’s payoff is described by:

ui(a,g) = α ai −
1

2
a2i −

δ

2
(ai − ai(g))2 (31)

with δ ≥ 0. The last term δ (ai− ai)2 is a standard manner of capturing conformity.40 Each

player wants to minimize the distance between his or her action and the average action of

his or her reference group, where δ is a parameter describing the taste for conformity.

First-order conditions imply that:

a∗i =
α

1 + δ
+

δ

(1 + δ)

n∑
j=1

ĝija
∗
j

40See, for instance, Kandel and Lazear (1992), where peer pressure arises when individuals deviate from a

well-established group norm, e.g., individuals are penalized for working less than the group norm; Berman

(2000), where praying is more satisfying the more average participants there are; and Akerlof (1980, 1997),

Bernheim (1994), where deviations from an average action imply a loss of reputation and status. Calvó-

Armengol and Jackson (2010) model explicit peer pressure (as a strategy in the game).
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or in matrix form

a∗ =
α

1 + δ

(
I− δ

(1 + δ)
ĝ

)−1
1 =

α

1 + δ
b1(ĝ, δ/(1 + δ))

Using the AddHealth data, Liu, Patacchini and Zenou (2012) test which model (local

average or local aggregate ) does a better job of matching behaviors with regards to effort in

education, sport, and screen activities (e.g., video games) for adolescents in the United States.

They find that peer effects are not significant for screen activities. For sports activities, they

find that students are mostly influenced by the aggregate activity of their friends; while for

education they show that both the aggregate performance of friends as well as conformity

matter, although the magnitude of the effect is higher for the latter.41

Finally, we can provide a more general function for how own action interacts with the

average of a player’s friends actions. For that, we can adapt the models proposed by Clark

and Oswald (1998) to include a network. Consider the following utility function:

ui(a,g) = α ai −
1

2
a2i + φ v(ai − ai(g))

where ai is defined by (30), v(.) is an increasing function of ai − ai and v′′ < 0. First-order

conditions imply that if there is an interior equilibrium then it must satisfy:

ai = α + φ v′(ai − ai(g))

and also that
∂ai
∂ai

=
v′′(ai − ai(g))

−1 + φ v′′(ai − ai(g))
.

If v′′ < 0, then a rise in others’ efforts leads to an increase in own effort. This is due to the

fact that if other individuals set a high ai(g), that reduces ai − ai(g), and this increases the

marginal benefit from effort ai for those with such a comparison-concave utility. If v′′ > 0,

then a rise in others’ efforts leads to a decrease in own effort.

41Ghiglino and Goyal (2010) propose an alternative model with conspicuous effects so that individuals are

happier the higher is their effort compared to that of their peers (direct links) and derive negative utility

if they effort is below that of their peers. They also compare the local aggregate and the local average

model in the context of a pure exchange economy where individuals trade in markets and are influenced by

their neighbors. They found that with aggregate comparisons, networks matter even if all people have same

wealth. With average comparisons networks are irrelevant when individuals have the same wealth. The two

models are, however, similar if there is heterogeneity in wealth.
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To illustrate this model, consider an example in which:

ui(a,g) = α ai −
1

2
a2i + φ

ai
ai(g)

, (32)

and where φ can be positive or negative. If φ > 0, then there is a conspicuous effect since

individuals increase their utility by having higher effort than their peers. If φ < 0, then

it becomes costly for individuals to differentiate themselves from their peers. First-order

conditions imply that if there is an interior equilibrium then:

a∗i = α +
φ

a∗i (g)
.

An advantage of (32) is that the characterization of the Nash equilibrium is easy.

5 Network Games with Incomplete Information

While settings with a fixed and known network are widely applicable, there are also many ap-

plications where players choose actions without fully knowing with whom they will interact.

For example, learning a language, investing in education, investing in a software program,

and so forth. These can be better modeled using the machinery of incomplete information

games.

It is also important to point out that this class of games also helps in tractability relative

to complete information games. The results on games on networks that we have outlined

so far primarily rely on either games of strategic complements or in cases with a continuum

of actions and quadratic payoff functions. The analysis of other games, and in particular

of games of strategic substitutes, even with just two actions, is difficult in the context

of complete information, but becomes much more tractable in the context of incomplete

information, as we detail below.

5.1 Incomplete Information and contagion effects

The following discussion builds on the models of Jackson Yariv (2005, 2007, 2011), Jackson

and Rogers (2007b), Sundararajan (2007), and Galeotti et al. (2010), primarily incorporating

aspects of Jackson and Yariv (2007) and Galeotti et al. (2010).
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5.1.1 A Model of Network Games with Incomplete Information

Instead of a known network of interactions, players are now unsure about the network that

will be in place in the future, but have some idea of the number of interactions that they

will have. To fix ideas, think of choosing whether to adopt a new software program that is

only useful in interactions with other players who adopt the software as well, but without

being sure of with whom one will interact in the future.

In particular, the set of players N is fixed, but the network (N,g) is unknown when

players choose their actions. A player i knows his or her own degree di, when choosing an

action, but does not yet know the realized network.

Players choose actions in {0, 1}, and we normalize the payoff to choosing 0 to be 0, and

so effectively consider the difference in payoffs between choosing action 0 and 1. Player i

has a cost of choosing action 1, denoted ci. Player i’s payoff from action 1 when i has di

neighbors and expects them each independently to choose 1 with a probability x is

v(di, x)− ci,

and so action 1 is a best response for player i if and only if ci ≤ v(di, x).

It is easy to see how this incorporates some of the games we considered earlier. For

instance, in the case of a best-shot public goods game of Example 2:42

v(di, x) = (1− x)di

In the case of our coordination game from Section 3.3.2, the payoff is

v(di, x) =

di∑
m=0

Bdi(m,x) [mb− (di −m)c]

where Bdi(m,x) is the binomial probability of having exactly m neighbors out of di play

action 1 when they independently choose action 1 with probability x.

The uncertainty about the network affects a player’s beliefs about the play of his or her

neighbors.

In particular, let us consider a case where a player’s probability distribution over the types

of neighbors that he or she faces is governed by beliefs about the distribution of other players

42We have normalized the payoff to action 0 to 0, so this is the difference between action 1 and action 0.

If no other player chooses action 1, then the difference in overall payoff is 1− ci and otherwise it is −ci.
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types. To keep things simple, let us examine a case where ci is described by an atomless

distribution F , independently across players, and independently of a players’ degree.

Let a player’s beliefs about the degree of each of his or her neighbors be described by a

degree distribution P̃ (d), independently across neighbors.43 One example, is one in which

players are matched uniformly at random, and players have degrees distributed accord-

ing to some P , in which case the probability of matching to another player of degree d is

P (d)d/EP [d] = P̃ (d). So for instance, a player is twice as likely to be matched with someone

who has two interactions as someone who has one. Galeotti et al. (2010) discuss the more

general case where the distribution of neighbors’ degrees can depend on own degree.

With this structure, we can then consider (symmetric) Bayesian equilibria: players choose

an action based on their type di, ci, and so let the strategy be denoted by σ(di, ci) ∈ {0, 1}.
Given the atomless distribution of costs, it is enough to consider pure strategy equilibria, as

at most one (probability zero) cost type is ever indifferent for any given di.

A simple equation is then sufficient to characterize equilibria. Again, letting x be the

probability that a randomly chosen neighbor chooses action 1, a player of type d, c plays

action 1 if and only if (up to ties)

v(d, x) ≥ c.

Thus, F (v(d, x)) is the probability that a random (best-responding) neighbor of degree d

chooses the action 1. A characterization of equilibrium is then that

x = Φ(x) =
∑
d

P̃ (d)F (v(d, x)). (33)

In cases where F and v are continuous, existence of equilibrium follows directly from the

fact that the right hand side is a continuous function mapping from [0, 1] into [0, 1].

It is easy to keep track of equilibria directly in terms of x since that ties down behaviors

of all types of players (up to sets of measure 0).

5.1.2 Monotonicity of Equilibria

The nice aspect of the equilibria in the incomplete information setting, is that behavior can

now be nicely ordered, depending on the properties of v. In many applications, v is either

43When fixing a size of a society, only certain configurations of degrees are possible, and so in general

there are some interdependencies in the degrees of any player’s neighbors. This is thus a limiting case.
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increasing in x (strict strategic complements) or decreasing in x (strict strategic substitutes).

It also tends to be either increasing or decreasing in d, although there are other cases of

interest (e.g., as in a game where the player cares precisely about the average payoff from

play with neighbors).

The strategic substitute or complement nature of a game imply that strategies of players

can be represented (up to indifferences) by threshold functions τ(di, ci), so that i plays 1 if

and only if x exceeds τ in the case of complements or is below it in the case of substitutes.

The monotonicity in degree affects how the thresholds behave as a function of d, as seen

in the following proposition, of which variations appear in Jackson and Yariv (2005, 2007)

and Galeotti et al (2010).

Proposition 11 If v is increasing in d for every x, then there exists a symmetric pure

strategy Bayesian equilibrium such that equilibrium strategies are increasing in the sense

that higher degree players have higher (or at least as high) probabilities of choosing action

1 compared to lower degree players, and correspondingly higher degree players have lower

thresholds given the same ci. Similarly, if v is decreasing in d for every x, then the reverse

conclusion holds.

These observations are useful in understanding dynamics of equilibria and comparative

statics of equilibria in response to various changes in the primitives of the environment.

5.1.3 A Dynamic Best Reply Process

Let us consider a more general version of the contagion/diffusion process that we discussed

in Section 3.3.2. At time t = 0, a fraction x0 of the population is exogenously and randomly

assigned the action 1, and the rest of the population is assigned the action 0. At each

time t > 0, each player44 best responds to the distribution of players choosing the action 1

in period t − 1 under the distributions described above. We work with expectations, or a

mean-field approximation of the system.45

44In contrast to our earlier discussion, in this process every player adjusts, including those assigned to

action 1 at the outset.
45A mean-field version of a model is a deterministic approximation of the statistical system where inter-

actions take place at their expected rates. See Vega-Redondo (2007) or Jackson (2008a) for some discussion

of these techniques in network analysis.
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In particular, let xt denote the expected probability that a player’s neighbor will choose

action 1 at time t as a function of xt−1:

xt = Φ(xt−1) ≡
∑
d

P̃ (d)F (v(d, xt−1)).

Equilibria are again fixed points, but now we view this as a dynamic. In a game of strategic

complements, convergence of behavior from any starting point to some equilibrium is mono-

tone, either upwards or downwards, and any player switches behaviors at most once. In a

game of strategic substitutes, convergence is not ensured from some starting points in some

cases, but there are still things that we can deduce about the equilibria.

We can see that there can exist multiple equilibria, as pictured in Figure 4.

0 

Figure 4: Best response curve and equilibria

Equilibria are points where the curve Φ intersects the 45 degree line. In games of strategic

substitutes, Φ is a decreasing function, and so the equilibrium is unique. In contrast, in games

of strategic complements, Φ is increasing and can have multiple equilibria.46

46As pointed out in Jackson and Yariv (2007), some of these equilibria are robust to small perturbations
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Galeotti et al. (2010) and Jackson and Yariv (2005, 2007) provide comparative statics

in equilibria, as a function of various changes in networks and payoffs. In particular, it

is easy to see that as one shifts a continuous Φ upwards or downwards, equilibria shift in

predictable ways. In particular, as Φ is shifted upwards (so Φ(x) > Φ(x) for all x, the

greatest equilibrium under Φ moves shifts upward (unless it was already 1), as pictured in

Figure 5:47 To understand what leads to such shifts, let us examine Φ as it is defined in (33).

0 

Φ(𝑥𝑡−1)

Figure 5: The effects of shifting Φ

First, let us consider changes in the relative costs of the actions; for instance, an increase

and others are not, depending on the shape of Φ and how it intersects the 45 degree line. In short, stable

equilibria are ones where the curve Φ cuts through the 45 degree line from the left. In cases where the

intersection is a single point, such equilibria are stable in that the dynamics from a slight perturbation

return naturally to the original equilibrium. In contrast, if Φ cuts from the right or below the 45 degree line,

then the equilibrium is unstable. For example, in Figure 4, the equilibrium corresponding to x1 is unstable

while those corresponding to 0 and x2 are stable.
47One can deduce more about the shifts in equilibria: the stable equilibria (weakly) decrease from local

shifts, and the unstable ones weakly increase from such local shifts of Φ. See Jackson and Yariv (2005, 2007)

for details.
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in the cost of adopting action 1. This can be captured by a strict first-order stochastic

dominance (FOSD) shift of the cost distribution from F to F (so F (y) ≤ F (y) for each y

with strict inequalities for some y’s in the relevant range). It then follows that

Φ(x) =
∑
d

P̃ (d)F (v(d, x)) ≤
∑
d

P̃ (d)F (v(d, x)) = Φ(x)

for every x. Thus, an increase in costs shifts the curve downwards, and so the greatest

equilibrium shifts downward (as does any stable equilibrium for small changes).48 This has a

simple explanation: increasing the cost of choosing action 1 raises the thresholds for adopting

that action and lowers the adoption.

One can also deduce how changes in network structure, here captured via the degree dis-

tribution, affect equilibrium, based on arguments developed by Jackson and Rogers (2007b)

and Jackson and Yariv (2005, 2007), and also studied extensively in Galeotti et al. (2010).

For example, consider an increase in the anticipated degree of each random neighbor that

a player has in the sense of first-order stochastic dominance. That is, suppose P̃ ′ FOSD P̃ ,

so that
∑

d≤d′ P̃
′(d) ≤

∑
d≤d′ P̃ (d) for each d′. Couple this with v(d, x) being non-decreasing

in d, so that individuals who have more interactions are at least as likely to adopt action

1 at the same level of behavior per neighbor. For instance, this holds if it is the number

of neighbors adopting action 1 that matters, or even if it is just the fraction that matters.

Then, it follows from the definition of first-order stochastic dominance that

Φ′(x) =
∑
d

P̃ ′(d)F (v(d, x)) ≥
∑
d

P̃ (d)F (v(d, x)) = Φ(x),

and, so under P ′, the greatest equilibrium increases. If we reverse things so that v(d, x) is

non-increasing in d, then the conclusion is reversed.

Again, this has an intuition related to the best replies. If v(d, x) is increasing in d, then

higher degree individuals are more likely to adopt a behavior for any given anticipated level

of activity of neighbors. Thus, starting from the maximal equilibrium, as we increase the

anticipated degrees of each player’s neighbors, we increase the activity generated for any

given x. Regardless of how players respond to this (strategic substitutes or complements),

this shifts the whole curve upwards and the new equilibrium higher.49

48One can also deduce similar statements for the least and other equilibria.
49In the case of strategic complements, all players end up with (weakly) higher activity, while in the case

of strategic substitutes, some players’ actions may increase and others decrease, but the overall effect from

the shift in φ has to be upwards.
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This sort of analysis can also be extended to other changes in anticipated network struc-

ture, such as mean preserving spreads. For example, Jackson and Yariv (2007) show that

if F (v(d, x)) is non-decreasing and convex in d, then mean preserving spreads in the degree

distributions lead to nicely ordered Φs. For example, power, Poisson, and regular degree

distributions with identical means can be ordered in terms of mean-preserving spreads and

then lead to respective Φpower,ΦPoisson, and Φregular such that

Φpower(x) ≥ ΦPoisson(x) ≥ Φregular(x)

for all x, which leads to a corresponding ranking of maximal equilibria.50

Finally, using this sort of approach, one can study the time series of adoption, since

xt − xt−1 = Φ(xt−1) − xt−1 is described by Φ(x) − x. Thus by studying the shape of this

curve as a function of x, one can deduce things about classic diffusion patterns (e.g., “S-

Shaped” rates of adoption), as shown by Jackson and Yariv (2007) as follows:

Proposition 12 Let F (v(d, x)) be twice continuously differentiable and increasing in x for

all d. If F (v(d, x)) is strictly concave (convex) in x for all d, then there exists x∗ ∈ [0, 1]

such that Φ(x)− x is increasing (decreasing) up to x∗ and then decreasing (increasing) past

x∗ (whenever Φ(x) 6= 0, 1).

The idea is that as x increase, the concavity of F (v(d, x)) initially leads high feedback

effects of changes in x leading to greater changes in Φ(x), but then it eventually slows down.

5.2 Incomplete information about Payoffs

The previous analysis was centered on uncertainty about the interaction patterns. Instead,

one might also consider situations where the network of interactions is fixed and known, but

there is some uncertainty about payoffs.

Consider the payoff function from (3). De Mart́ı Beltran and Zenou (2012) analyze the

quadratic game when the parameter α is common to but unknown by all players. Players

know, however, the value of the synergy parameter φ.51 Let α take two possible values:

50The welfare effects of changes in equilibria depend on changes in the overall population utilities, which

require a bit more structure to discern. See Galeotti et al. (2010) and Jackson and Yariv (2005, 2007) for

discussion.
51We can also analyze a game where φ is unknown. The results are similar.
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αH > αL > 0. All individuals share a common prior, which is Pr(α = αH) = p ∈ (0, 1).

Each player receives a private signal, si ∈ {h, l}, such that Pr (si = h|αH) = Pr (si = l|αL) =

q ≥ 1/2.

There is no communication between players. Player i chooses an action ai (si) ≥ 0 as a

function of the signal si ∈ {h, l}. Let ai = ai (l) and ai = ai (h). The expected utility of

player i is thus equal to:

Ei [ui(a,g) | si] = Ei [α | si] ai −
1

2
a2i + φ

n∑
j=1

gijaiEi [aj | si] .

Let α̂L = Ei [α | si = l] and α̂H = Ei [α | si = h]. The best-reply functions are thus:

a∗i = α̂L + φ
n∑
j=1

gij
[
Pr (sj = l|si = l) a∗j + Pr (sj = h|si = l) a∗j

]

a∗i = α̂H + φ
n∑
j=1

gij
[
Pr (sj = l|si = h) a∗j + Pr (sj = h|si = h) a∗j

]
De Mart́ı Beltran and Zenou (2012) show that if φµ1(g) < 1, then there exists a unique

Bayesian-Nash equilibrium of this game where equilibrium efforts are given by:

a∗ = α̂b1 (g, φ)−
(

1−γH
2−γH−γL

)
(α̂H − α̂L) b1 (g, (γH + γL − 1)φ)

a∗ = α̂b1 (g, φ) +
(

1−γH
2−γH−γL

)
(α̂H − α̂L) b1 (g, (γH + γL − 1)φ)

where

α̂ =
(1− γH) α̂L + (1− γL) α̂H

2− γH − γL
.

Here, the equilibrium efforts become a combination of two Katz-Bonacich centralities,

b1 (g, φ) and b1 (g, (γH + γL − 1)φ), reflecting the uncertainty between the two values that

the parameter could take. Thus, the model can be adapted to incorporate some uncertainty,

and that ends up mitigating the effort levels.

5.3 Incomplete information with communication in networks

When players desire to coordinate their behaviors, and they face some uncertainty, it is

natural for them to communicate. This has interesting implications for who talks to whom

in a network setting.

For example, Hagenback and Koessler (2011) develop an interesting model in which

players have to take actions and care about how those actions relate to three things: (i)
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some private parameter, (ii) a state of nature common to all players, and (iii) other players’

actions. The private information that players’ have about the state of nature motivates

communication. Players would like to convey information to others, but their private biases

may mean that revealing information to others could move those players’ actions in the

wrong directions. The tension is due to the fact that a player wishes to have other players’

choose actions similar to his or her action, which involves matching the state of nature; but

those players have different desires in terms of how close they wish to be to the state of

nature, based on their private parameters.52

This is a challenging setting to analyze, as even settings with two players are complex

(e.g., Crawford and Sobel, 1982). Nonetheless, Hagenback and Koessler (2011) find some

very interesting features of equilibria. They find that there are multiple equilibria, in terms

of which players reveal their information to which others, and that players can only talk

to people whose private biases are similar enough to their own. However, communication

patterns between any two players depend not only on the private biases of the two players, but

also on the relative private biases of the other players with whom each of them communicates,

as that affects how information translates into actions. This leads to the multiplicity of

equilibria.

There are a variety of other related models, including Calvó-Armengol and de Mart́ı Bel-

tran (2009), Galeotti, Ghiglino, Squantini (2013), Acemoglu et al. (2011), Calvó-Armengol,

de Mart́ı Beltran and Prat (2012). Also related is a literature on updating and learning

originating from DeGroot (1974), with some earlier roots. That literature examines whether

behavior converges over time, how quickly it converges, whether a consensus opinion or be-

havior is reached, and what the limit is (e.g., Bala and Goyal, 1998; DeMarzo, Vayanos

and Zwiebel, 2003; Golub and Jackson, 2010, 2012a,b,c; see Jackson 2008a, 2011 for more

background). The DeGroot model can be interpreted as one where players wish to behavior

in ways similar to their neighbors, and they myopically best respond.

52This is also related to Chwe (2000), who analyzes a game in which players want to coordinate their

binary decisions and guess the action of others based on the local information that players communicate to

their neighbors in the network about their preferences.
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6 Choosing both actions and links

An important aspect of strategic behavior in network settings that has been looked at but

is far from being completely understood is the coevolution of networks and behavior. Much

of the literature that we have discussed to this point focused primarily on the influence of

a network on behavior. On the other side, there is also a large literature that we have not

discussed here that analyzes network formation taking the payoffs from forming links as a

given.53 It is clear, however, that there is feedback: People adjust their behaviors based

on that of their friends and they choose their friends based on behaviors. Kandel (1978)

provides interesting evidence suggesting that both effects are present in friendship networks,

so that over time players adjust actions to match that of their friends and are more likely to

maintain and form new friendships with other individuals who act similarly to themselves.

Bringing the formation and behavior literatures together is thus important. In this section,

we therefore study models where players choose both actions and links. In particular, we

would like to see (i) how this changes the conclusions one gets from analyzing the choices

separately, and (ii) whether this produces some interesting patterns/dynamics.

6.1 Coordination games

Let us return to consider the widely applicable class of coordination games, such as those

examined in Sections 3.3.2 and 3.3.3.

We slightly re-normalize the game structure so that payoffs from any pairwise interaction

are given by

1 0

1 (b, b) (z, y)

0 (y, z) (x, x)

where x > z and b > y. This allows for a coordination game with arbitrary payoffs.54

53For example, see Jackson and Wolinsky (1996), Dutta and Mutuswami (1997), Bala and Goyal (2000),

Dutta and Jackson (2000), and the overview in Jackson (2008a). Those models can allow for the equilibrium

of a game on a network to generate payoffs as a function of the network, but do not explicitly include such

an analysis.
54In the previous analysis, it was fine to normalize payoffs of one of the actions to 0. Here, since there are

also costs of links to consider, absolute payoffs of actions matter (not just relative differences), and so we

keep track of the value all possible combinations of actions.
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The threshold fraction q = x−z
x−z+b−y is such that action 1 is a best response for a given

player if and only if at least a fraction q of the player’s neighbors choose 1. Here, the Pareto

efficient equilibrium (payoff dominant equilibrium) depends on whether x or b is larger. The

risk dominant equilibrium is governed by the size of q. If q > 1/2 (so x − z > b − y), then

action 0 is risk dominant, and if q < 1/2, then action 1 is both risk dominant and payoff

dominant (Pareto efficient).

As we saw in Section 3.3.3, in an evenly matched society, the stochastically stable equi-

librium was the risk dominant profile of actions, as it takes more trembles to move away

from the risk dominant profile than to it. We also saw that the network structure of inter-

actions can matter: for instance, in a star network all playing 0 and all playing 1 are both

stochastically stable.

An important question emerges as to how this all depends on choice of partners. A basic

intuition arises that it is better to choose partners who are playing an action that leads to

a higher payoff. However, this is complicated by history: if one has many friends choosing a

low payoff action, how easy is it to change partners and get to better play?

Ely (2002)55 provides an analysis of this by allowing players to choose both actions and

neighborhoods (i.e. with whom they want to interact by choosing a location). In other

words, when a revision opportunity arises, a player simultaneously chooses a strategy and

location in order to maximize his/her expected payoff. In the model of Ely (2002), if some

player randomly moves to an unoccupied location and plays the efficient strategy, then other

players would like to move to that location and play the efficient strategy rather than staying

at a location where they play the inefficient strategy. As a result, Ely shows that the limit

distribution (with small trembles) places probability one on the efficient outcome, so that

risk-dominance ceases to play a role in determining long-run play.

This result depends on the locational aspect of the interaction patterns, and caring about

average play rather than numbers of interactions. In particular, in changing locations, players

can sever all old ties, form new ties, and switch technologies simultaneously, and the number

of new versus old ties is not important to the players.

Jackson and Watts (2002b) instead propose a model which is not a location one, but

rather one where players choose their interaction patterns on an individual-by-individual

basis. In other words, they model the interaction pattern as a network where individuals

55See also Mailath, Samuelson, and Shaked (2001).
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periodically have the discretion to add or sever links to other players.

In each period t, a player i chooses an action ati ∈ {1, 0} and then receives a payoff of

ui(a
t,gt) =

∑
j 6=i

gtij
[
vi(a

t
i, a

t
j)− k(di(g

t))
]

where vi(a
t
i, a

t
j) is a payoff that depends on the actions chosen, the network gt, and a cost

k(di(g
t)) of having di(g

t) links.

The full version of the Jackson and Watts (2002b) dynamic process is as follows.

• Period t begins with network gt−1 in place.

• One link ijt is chosen at random with probability pij. If the link is not in gt−1 then it

is added if both players weakly benefit from adding it and at least one strictly benefits,

under the myopic assumption that the rest of the network stays fixed and actions will

be at−1. If the link is in gt−1 then it is deleted if either player strictly benefits from

deleting it, under the myopic assumption that the rest of the network stays fixed and

actions will be at−1. With a probability γ, 1 > γ > 0, the decision to add or delete the

link is reversed. This results in a new network gt.

• Next, one player i is randomly chosen with some probability qi. That player chooses

ati to maximize ui(a
t
i, a

t−1
−i ,g

t). With a probability ε, 1 > ε > 0, the action of player i

is reversed. This results in a new action profile at.56

The probabilities of trembles are identical and independent across players, strategies, and

periods. This is well-defined Markov chain where the state is the vector of actions at, that

are played in period t. Since this process is aperiodic and irreducible, the Markov chain has

a unique stationary distribution, denoted µγ,ε(g, a).

Jackson and Watts (2002b) analyze a variety of different cost structures, but let us just

consider one of those and refer the reader to the paper for other details.

Consider a cost of link structure k(d) that is equal to kd for d ≤ D and infinite if d > D.

So, players have a constant marginal cost of links up to some level degree D, and then

the cost of maintaining additional costs is arbitrarily large, so that they effectively have a

capacity constraint on friendships.

56Disconnected players choose a best response to the last period distribution of play of the others.
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Stochastic stability now involves looking at the limit of the process µγ,ε(g, a) as γ and ε

both go to zero (at similar rates, so take γ = fε for some constant f). Jackson and Watts

(2002b) show:57

Proposition 13 Let D be even and such that n > D > 1. Also, let 1 − 2/D > q > 2/D

and q 6= 1/2.

(i) If x − k > 0 and b − k < 0, then the set of stochastically stable states involve all

players playing 0; and, analogously, if x − k < 0 and b − k > 0, then the set of

stochastically stable states involve all players playing 1. There can be a variety of

network configurations in stochastically stable states.

(ii) If y − k > 0 and z − k > 0, then in any stochastically stable state each player has D

links and plays the risk dominant action.

(iii) If y − k < 0 and/or z − k < 0, and x − k > 0 and b − k > 0, then in stochastically

stable states involve all players playing 0 as well as all players playing 1. There can be

a variety of network configurations in stochastically stable states.

Although the proof of the proposition is quite involved, some of the intuitions are rela-

tively easy to see. In case (i), there is only one of the actions that can lead to a positive

payoff and so links can only exist in the long run between players playing the action leading

to a positive payoff, and indeed that turns out to be stochastically stable as if players ran-

domly start playing the action that leads to a positive payoff then they end up linking to

each other, and so only a couple of trembles can start growing a network of people playing

the action that leads to positive payoffs. In case (ii), both actions are lead to positive payoffs

(up to the capacity constraint) regardless of what ones neighbors do. Here, standard risk

dominance arguments take over as players form the full number of D links, and then trembles

in actions play the leading role in determining the outcome. Case (iii) is perhaps the most

subtle and interesting one. It addresses the situation where at least one of the actions leads

to sufficiently poor payoffs from miscoordination, that it is better to sever a link to a player

with whom one is not coordinating when playing that action, than to maintain that link. In

57Jackson and Watts (2002b) provide more analysis of this model, and Goyal and Vega-Redondo (2005)

find similar results for a model with unilateral link formation. There is also an analysis by Droste, Gilles

and Johnson (2000) for the case of geographic link costs.
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this situation, trembles in actions can lead to changes in network structure, which then aids

in changes in behavior. For example, suppose that all players are initially playing the risk

dominant action. A tremble can lead a player who changes action to be disconnected from

the network. With two such trembles, two disconnected players can then form a component

playing the other action, which continues to grow as trembles accumulate. This process

moves symmetrically between all playing the risk dominant action, and the other case (and

each intermediate equilibrium with some mixture of play is destabilized by a single tremble).

There are also questions as to the relative rates at which actions change compared to

network structure, and that can affect the overall convergence to equilibrium, as one sees

in Ehrhardt, Marsili, and Vega-Redondo (2006), as well as Holme and Newman (2006) and

Gross and Blasius (2008). There are also analyses of equilibrium play in games when players

are matched in heterogeneous roles (e.g., firms and workers, husbands and wives, etc.) as in

Jackson and Watts (2010).

While the details can be complicated, the main message is that endogenizing the interac-

tion structure between players can have a profound impact on the way in which play evolves

in a society. Thus, the endogeneity of relationships cannot be ignored when trying to make

robust predictions about behaviors in a society, despite the complexity that endogenous

relationships introduce.

6.2 Network Formation in Quadratic Games

In addition to the models discussed above, there are other models that have combined action

and link choices. For example, Bloch and Dutta (2009) proposed a model with both link

intensities and communication.

We expose two models, one static (Cabrales, Calvo-Armengol and Zenou, 2011) and one

dynamic (König, Tessone and Zenou, 2010, 2014), which both use the quadratic model from

Section 4.

Consider a simultaneous move game of network formation (or social interactions) and

investment. T = {1, . . . , t} is a finite set of types for the players. We let n be a multiple of

t: n = mt for some integer m ≥ 1, and there is the same number of players of each type.

The case where n = t is referred to as the baseline game and the case where n = mt as the

m−replica of this baseline game. Let τ (i) ∈ T be player i’s type.
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Let c > 0. Player i’s payoff is described by:

ui(a, s) = ατ(i) ai + φ
n∑

j=1,j 6=i

gij (s) ajai −
1

2
c a2i −

1

2
s2i (34)

where ai ≥ 0 is the action (productive investment) taken by player i while si ≥ 0 is the

socialization effort of player i, with s = (s1, ..., sn). The returns to the investment are

the sum of a private component and a synergistic component. The private returns are

heterogeneous across players and depend on their type.

The network of interactions gij (s) between players i and j are determined by

gij(s) = ρ (s) sisj (35)

where

ρ (s) =

 1/
∑n

j=1 sj, if s 6= 0

0, if s = 0
(36)

so that gi(s) = si. That is, players decide upon their total interaction intensity.

This sort of approach to network formation appears in the models of Curarrini, Jackson

and Pin (2009, 2010) and has also been used by Golub and Levne (2011), among others.

An important aspect is that the synergistic effort s is generic within a community −a

scalar decision. Network formation is not the result of an earmarked socialization process.

Using (35) and (36), one can see that the probability of forming a link, gij(s), is equal to

sisj/
∑n

j=1 sj. This means that the more time two players i and j spend socializing, the

more likely they form a link together.

Let

φ(α) = φ

∑t
τ=1 α

2
τ∑t

τ=1 ατ
. (37)

Cabrales, Calvó-Armengol, and Zenou (2011) demonstrate the following result:

Proposition 14 Suppose that 2 (c/3)3/2 > φ(α) > 0. Then, there exists an m∗ such that

for all m−replicas with m ≥ m∗, there are two (stable) interior pure strategy Nash equilibria.

These pure strategy Nash equilibria are such that for all players i of type τ , the strategies

(si, ai) converge to (s∗τ(i), a
∗
τ(i)) as m goes to infinity, where s∗τ(i) = ατ(i)s, a

∗
τ(i) = ατ(i)a, and

(s, a) are positive solutions to  s = φ(α)a2

a [c− φ(α)s] = 1
(38)
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When φ(α) is small enough compared to the infra-marginal cost for a productive invest-

ment, the system of two equations (38) with two unknowns has exactly two positive solutions.

As m gets large, each such solution gets arbitrarily close to a pure strategy Nash equilib-

rium of the corresponding m−replica game. The multiplicity reflects complementarities in

socialization and in actions.

The approximated equilibria characterized in Proposition 14 display important features.

First, the level of socialization per unit of productive investment is the same for all players,

that is, s∗i /a
∗
i = s∗j/a

∗
j , for all i, j. This is equivalent to having a marginal rate of substitution

of socialization versus action uniform across all players. Second, differences in actions reflect

differences in idiosyncratic traits. More precisely, a∗i /a
∗
j = ατ(i)/ατ(j), for all i, j. Third, in

the presence of synergies, actions are all scaled up (compared to the case without synergies)

by a multiplier. This multiplier, which is homogeneous across all players, is a decreasing

function of the cost c, and an increasing function of the second-order average type φ(α).

Figure 6 plots equations (38).

1/ϕ(α) s (synergy) 

a (production) 

0 

a[1-ϕ(α)s] = 1 

1/ϕ(α) 
s = ϕ(α)a2 

ϕ(α) 

(a*,s*) 

(a**,s**) 
1 

Figure 6: Multiple equilibria when players choose actions and socialization
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From this figure, it is clear that the system (38) need not always have a positive solution.

The upper bound on φ(α) in Proposition 14 is a necessary and sufficient condition for the

two graphs to cross in the positive orthant of the space (s, a). When φ(α) is too large, the

synergistic multiplier operates too intensively and there is no intersection: there is a feedback

where increases in socialization lead to increase actions and vice versa..

The equilibrium actions can be ranked component-wise, and the equilibrium payoffs can

be Pareto-ranked accordingly. There is a Pareto-superior approximate equilibrium ((s∗, a∗)

in Figure 6) and a Pareto-inferior approximate equilibrium ((s∗∗, a∗∗) in Figure 6) while the

socially efficient outcome lies in between the two equilibria.58 Formally, (s∗, a∗) ≥
(
sO, aO

)
≥

(s∗∗, a∗∗) and u
(
sO, aO

)
≥ u (s∗, a∗) ≥ u (s∗∗, a∗∗).

Another model based on the quadratic model where players choose with whom they want

to interact is that of König, Tessone and Zenou (2014). At each period of time, players play

a two-stage game: in the first stage, players play their equilibrium actions in the quadratic

game, while in the second stage a randomly chosen player can update his/her linking strategy

by creating a new link as a best response to the current network. Links do not last forever

but have an exponentially distributed life time. A critical assumption is that the most

valuable links (i.e. the ones with the highest Bonacich centrality) decay at a lower rate than

those that are less valuable. As in the literature on evolutionary models described in Section

6.1, the authors introduce some noise to this model. Indeed, there is a possibility of error,

captured by the stochastic term in the utility function. The authors then analyze the limit

of the invariant distribution, the stochastically stable networks, as the noise vanishes.

The network generated by this dynamic process is a nested split graph when the noise

tends to zero. The authors also show that the stochastically stable network is a nested split

graph. These graphs, known from the applied mathematics literature (see, in particular,

Mahadev and Peled, 1995), have a simple structure that make them tractable. In order to

define nested split graphs, we first have to define the degree partition of a graph.

Let (N,g) be a graph whose distinct positive degrees are d(1) < d(2) < . . . < d(k), and let

d0 = 0 (even if no player with degree 0 exists in g). Further, define Di = {j ∈ N : dj = d(i)}
for i = 0, . . . , k. Then the set-valued vector D = (D0,D1, . . . ,Dk) is the degree partition of

g.

A network (N,g) is a nested split graph if it satisfies the following. LetD = (D0,D1, . . . ,Dk)
58The superscript O refers to the “social optimum” outcome.
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be its degree partition. Then the nodes N can be partitioned into independent sets Di,
i = 1, . . . ,

⌊
k
2

⌋
and a “dominating” set

⋃k
i=b k2c+1

Di in the network (N\D0,g
′), where g′ is

the corresponding subnetwork.59 Moreover, the neighborhoods of the nodes are nested: for

each node j ∈ Di, i = 1, . . . , k,

Nj(g) =


⋃i
j=1Dk+1−j if i = 1, . . . ,

⌊
k
2

⌋
,⋃i

j=1Dk+1−j \ {j} if i =
⌊
k
2

⌋
+ 1, . . . , k.

(39)

Figure 7 illustrates a (path-connected) nested split graph. From the stepwise property of

the adjacency matrix it follows that a connected nested split graph contains at least one

spanning star, that is, there is at least one player that is connected to all other players.

Figure 7: Representation of a connected nested split graph (left) and the associated adjacency

matrix (right) with n = 10 agents and k = 6 distinct positive degrees. A line between Di and

Dj indicates that every node in Di is linked to every node in Dj. The solid frame indicates

the dominating set and the nodes in the independent sets are included in the dashed frame.

Next to the set Di the degree of the nodes in the set is indicated. The neighborhoods

are nested such that the degrees are given by d(i+1) = d(i) + |Dk−i+1| for i 6=
⌊
k
2

⌋
and

d(i+1) = d(i) + |Dk−i+1|−1 for i =
⌊
k
2

⌋
. In the corresponding adjacency matrix A to the right

the zero-entries are separated from the one-entries by a stepfunction.

Let us give some more intuition of the result that the stochastically stable network is a

nested split graph. In this model, because of complementarities, players always want to link

to others who are more central since this leads to higher actions (as actions are proportional

59dxe denotes the smallest integer larger or equal than x (the ceiling of x). Similarly, bxc denotes the

largest integer smaller or equal than x (the floor of x).
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to centrality) and higher actions raise payoffs. Similarly, links decay to those with lower

centrality as these players have lower actions and hence lower payoff effects. Notice moreover

that, once a player loses a link, he/she becomes less central and this makes it more likely that

another link decays. Thus link gains and losses are self reinforcing. This intuition suggests

that if the probability of adding links is large then the process should approximate complete

network while if it is small then the process should approximate the star network. The key

insight of this model is that, for intermediate values of this probability, the network is a

nested split graph.

König, Tessone and Zenou (2014) also explicitly characterize the degree distribution P (d)

in the stochastically stable networks. Instead of relying on a mean-field approximation of

the degree distribution and related measures as some dynamic network formation models do,

because of the nature of nested split graphs, the authors are able to derive explicit solutions

for network statistics of the stochastically stable networks (by computing the adjacency

matrix). They find that, as rates at which linking opportunities arrive and links decay, a

sharp transition takes place in the network density. This transition entails a crossover from

highly centralized networks when the linking opportunities are rare and the link decay is

high to highly decentralized networks when many linking opportunities arrive and only few

links are removed.

Interstingly, some aspect of nestedness is seen empirically. For example, the organization

of the New York garment industry (Uzzi (1996)), the trade relationships between countries

(De Benedictis and Tajoli (2011)) and of the Fedwire bank network (Soramaki et al. (2007))

show some nested features in the sense that their organization is strongly hierarchical. If we

consider, for example, the Fedwire network, it is characterized by a relatively small number

of strong flows (many transfers) between banks with the vast majority of linkages being weak

to non-existing (few to no interbank payment flows). In other words, most banks have only

a few connections while a small number of interlinked-“hub nodes” have thousands.

6.3 Games with strategic substitutes

We now turn to discuss network formation in the context of games with strategic substitutes.

Let us extend the model of Bramoullé and Kranton (2007a) exposed in Section 3.2.3 to intro-

duce link formation. Remember that in a game with no link formation, there were specialized

equilibria in which the set of players exerting full effort forms a maximal independent and
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vice versa.

Galeotti and Goyal (2010) consider a variation in which the utility function of player i is

given by:

ui(a,g) = v

(
ai + φ

n∑
j=1

gijaj

)
− c ai − k di(g), (40)

where v(.) is a strictly increasing and strictly concave function on R+ and c > 0 is the

constant marginal cost of own action such that v′ (0) > c > v′ (x) for some x, and k > 0 is

the cost of linking with an other player.

Consider directed networks, in which a player can unilaterally form a link with another

player without his/her consent and pays the cost of forming this link. As in Section 3.2.3,

let a∗∗ be the effort level of an individual who experiments by him/herself, i.e. v′(a∗∗) = c.

Assume k < c a∗∗ so that it is cheaper to link to another player who exerts effort than to

exert effort directly. This ensures that some players form links with others. Every (strict)

equilibrium of this game has a core-periphery architecture so that the players in the core

acquire information personally, while the peripheral players acquire no information personally

but form links and get all their information from the core players. Galeotti and Goyal (2010)

also show that, under some conditions, the socially optimal outcome is a star network in

which the hub chooses some positive level of effort while all other players choose 0.60

López-Pintado (2008) presents an interesting dynamic network formation model with

strategic substituabilities. She assumes that players make a binary decision, whether or not

to exert effort, rather than exerting a continuous effort. In each period, a player, uniformly

selected at random from the population, updates his/her strategy and chooses a myopic

best response. In other words, taking as given the behavior of others, the player chooses

the action that maximizes his/her current benefits. López-Pintado (2008) shows that this

dynamic process converges to a Nash equilibrium of the static model. She then studies

a mean-field version of the myopic best response dynamics and considers the asymptotic

properties of the equilibria in (general) random networks when the network size becomes

large. In this model, López-Pintado shows that the dynamics converge to a unique, globally

stable fraction of free-riders. She also demonstrates that the higher is the degree of players in

a homogeneous network, the higher is the proportion of players free-riding and the proportion

60The equilibrium and socially optimal networks are similar to those obtained by König, Tessone and

Zenou (2014) in the context of a dynamic network formation model with strategic complementarities (see

Section 6.2) since nested-split graphs have clearly a core-periphery structure.
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of links pointing to a free-rider. Under additional conditions on the degree distribution,

she shows that the proportion of links pointing to a free-rider increases under a first-order

stochastic dominance (FOSD) shift of the degree distribution and decreases under a mean

preserving spread (MPS) of the degree distribution. These results suggest that there tends

to be more free-riding in denser or more equal networks.

7 Repeated Games and Network Structure

Several papers have provided a theoretical analysis of a repeated games in network settings.

This includes Raub and Weesie (1990), Vega Redondo (2006), Ali and Miller (2009, 2012),

Lippert and Spagnolo (2011), Mihm, Toth and Lang (2009), Jackson, Rodriguez-Barraquer,

Tan (2011), Fainmesser (2012), Dall’Asta, Pin and Marsili (2012).61

There are several ideas that emerge from this literature. One relates to network structure

and information travel. The basic idea is that to enforce individual cooperation in prisoner’s

dilemma sorts of games, other players have to be able to react to a given player’s deviations.

Raub and Weesie (1990) and Ali and Miller (2009) show how completely connected networks

shorten the travel time of contagion of bad behavior which can quicken punishment for

deviations. Players only observe their own interactions, and so punishments travel through

the network only through contagious behavior, and the challenge to enforcing individual

cooperation is how long it takes for someone’s bad behavior to come to reach their neighbors

through contagion.62

A second idea relates to heterogeneity. Haag and Lagunoff (2006) show how heterogeneity

can also favor cliques. They allow for preference differences that can preclude cooperative

behavior within a repeated game, and so partitioning society into homogeneous subgroups

can enable cooperative behavior that might not be feasible otherwise.

A third idea relates to robustness of networks, which favor networks that look like “quilts”

61There is also a related literature in evolutionary game theory where this some structure to interactions,

such as Nowak and May (1992) and Eshel, Samuelson and Shaked (1998).
62See Lippert and Spagnolo (2011) for more discussion on optimal strategies with word-of-mouth commu-

nication. Contagion strategies are costly, and can deter truthful communication as players may not wish to

have the contagion occur. Other strategies that only result in punishment of the initial deviator can improve

in some environments. More generally, the issue of incentives for communication is a complex one in such

settings, as also discussed in Ali and Miller (2012).
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of small cliques pasted together. Jackson, Rodriguez-Barraquer, and Tan (2012) examine

self-enforcing favor exchange, where players can periodically do favors for their friends but

at a cost. In order to ensure that a player performs a favor when called upon, the player

fears losing several friendships and thus many future favors. There are many such networks

that can enforce favor exchange, by threatening to sever links to players who fail to perform

favors when they are asked to. However, as Jackson, Rodriguez-Barraquer, and Tan (2012)

show, only very special networks are “robust”. Robustness requires two things: a form of

renegotiation so that the punishments are really credible, and immunity to large contagions

- the only people who end up losing links are friends of the player failing to do a favor. These

networks consist of (many) small cliques of players, where if a player fails to perform a favor

then a particular clique disintegrates, but that does not lead to further contagion. Other

networks experience further contagions where society loses more of its links.

The many settings of repeated interactions between friends makes understanding repeated

games on networks essential. This literature is still at its beginning and many open questions

remain.

8 Concluding Remarks and Further Areas of Research

The settings where social network structure has profound implications for human behavior

are quite numerous. Thus, it is not surprising that the literature that relates to this subject

is enormous. We have focused mainly on the central theoretical underpinnings of games

played on networks.

Networks are inherently complex, and so much of the progress that has been made re-

quired some focus on specific game structures. There are three main ways in which progress

has been made. One involves looking at games of strategic complements and strategic sub-

stitutes, where the interaction in payoffs between players satisfies some natural and useful

monotonicity properties. That monotonicity provides a basis for understanding how patterns

of behaviors relate to network structure. A second approach relies on looking at a simple

parametric specification of a game in terms of a quadratic form that permits an explicit

solution for equilibrium behavior as a function of a network. A third approach considers

settings where the specific pattern of interactions is uncertain, in which case equilibrium can

be expressed nicely as a function of the number of interactions that players expect to have.
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These models make a number of predictions about behavior, relating levels of actions

to network density, relating players’ behaviors to their position in the network, and relating

behavior to things like the degree distribution and cost of taking given actions. Thus, we end

up both with predictions about how a specific player’s behavior relates to his/her position in

a network, as well as what overall behavior patterns to expect as a function of the network

structure. While much progress has been made, the inumerable applications and importance

of the subject cry out for additional study.

Let us close with a brief discussion of various areas of research that are closely related,

but we have not covered due to space constraints.

8.1 Bargaining and Exchange on Networks

An important area in terms of applications to economics concerns bargaining and exchange on

networks. Many business relationships are not centralized, but take place through networks

of interactions. A standard modeling technique in the literature that has modeled this is to

have only pairs of players connected in the network can trade. The key questions addressed

by this literature are: How does the network structure influence market outcomes? How

does a player’s position in the network determine his/her bargaining power and the local

prices he/she faces? Who trades with whom and on what terms? Are trades efficient? If

players can choose their links, do the efficient networks form? How does this depend on the

bargaining protocol and the costs of links?

The literature on this subject includes the early experimental investigations of Cook and

Emerson (1978), and what followed in the literature on “exchange theory.”63 That literature

documents how positions in a network influence terms of trade, testing theories of power and

brokerage.

The theoretical analyses of this subject later emerged using models of trade based on tools

including auction theory, noncooperative analyses of bargaining games, and use of the core.

Much of that literature assumes that buyers have unit demands and sellers have unit supply,

and that these are pre-identified. For example, Kranton and Minehart (2001) considered a

setting where prices are determined by an ascending-bid auction mechanism. They showed

that the unique equilibrium in weakly undominated strategies leads to an efficient allocation

63Early writings on exchanges in networks include Homans (1958, 1961), Blau (1964), and eventually

included explicit consideration of social network structure as in Emerson (1962, 1976).
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of the goods. They found that the network formation was also efficient in a setting where

buyers pay the cost of connection. Jackson (2003) shows that this result does not generalize,

but is special to buyers bearing the entire connection cost, and that cost being born before

buyers know their valuations for the good. He shows that both under-connection (in cases

where some players see insufficient shares of the gains from trade) and over-connection (as

players try to improve their bargaining position) are possible sources of inefficiency.

The literature that followed explored a variety of different exchange mechanisms and

settings in terms of valuations. Calvó-Armengol (2003) explores the power of a position in

a network, in a context of pairwise sequential bargaining with neighbor players. Polanski

(2007) assumes that a maximum number of pairs of linked players are selected to bargain

every period. Corominas-Bosch (2004) considered an alternating offer bargaining game. One

of the most general analyses is by Elliott (2011) who allows for general valuations among

pairs of players and then characterizes the core allocations. Using that as a basis, he then

documents the inefficiencies that arise in network formation, showing how under-connection

and over-connection depend on how costs of links are allocated. Elliott also documents the

size of the potential inefficiencies, and shows that small changes in one part of a network

can have cascading effects. Manea (2011) and Abreu and Manea (2012) provide a non-

cooperative models of decentralized bargaining in networks when players might not be ex

ante designated as buyers or sellers, but where any pair may transact. Condorelli and

Galeotti (2012) provide a look at a setting where there is incomplete information about

potential valuations and possibilities of resale.

Related models include those studying oligopoly games that are played by networked

firms as in Nava (2009), who analyzes when it is that competitive outcomes are reached,

and Lever (2011) who examines network formation. Blume et al (2009) examine the role of

middlemen in determining profits and efficient trade, Fainmesser (2011) examines a repeated

game with reputations concerning past transactions, and Campbell (2013) examines the role

of selling products in the presence of network word-of-mouth effects.

There are also studies, such as Kakade, Kearns and Ortiz (2004) and Kakade et al.

(2005), that examine exchange on random networks. One finding is that if the network is

sufficiently symmetric so that buyers have similar numbers of connections, as well as sellers,

then there are low levels of price dispersion, while sufficient asymmetry allows for more price

dispersion.
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The literature to date provides some foundations for understanding how networks influ-

ence terms of trade. Still largely missing are empirical tests of some of the theory with field

data. Some experimental evidence (e.g., Charness, Corominas-Bosch, and Frechette, 2005)

validates some of the bargaining predictions in lab settings.

8.2 Risk-sharing networks

Another important application where networks play a prominent role in shaping behavior is

in terms of risk-sharing. In much of the developing world, people face severe income fluctua-

tions due to weather shocks, diseases affecting crops and livestock, and other factors. These

fluctuations are costly because households are poor and lack access to formal insurance mar-

kets. Informal risk-sharing arrangements, which help cope with this risk through transfers

and gifts, are therefore widespread.64,65

Again, this is an area where simple game theoretic models can add substantial insight.

Some studies to date include Bramoullé and Kranton (2007b), Bloch, Genicot and Ray

(2008), Karlan et al (2009), Belhaj and Deroian (2012), Jackson, Rodriguez-Barraquer, and

Tan (2012), and Ambrus, Mobius and Szeidl (2013). This is an area where rich repeated

game studies should help deepen our understanding of the relationship between networks of

interactions and the (in)-efficiency of risk-sharing.

8.3 Dynamic games and network structure

Most of our discussion has focused on static games or else simple variations on dynamics with

perturbations. Beyond those, and the repeated games mentioned above, another important

area where networks can have profound implications is in terms of the dynamics of patterns

that emerge. Just as an example, Calvó-Armengol and Jackson (2004) study the dynamics

of labor markets: the evolution over time of employment statuses of n workers connected

by a network of relationships where individuals exchange job information only between di-

64Rosenzweig (1988) and Udry (1994) document that the majority of transfers take place between neighbors

and relatives (see also Townsend, 1994). Other empirical work confirms this finding with more detailed social

network data (Dercon and De Weerdt, 2006; Fafchamps and Gubert, 2007; Fafchamps and Lund, 2003).
65Although this is clearly vital in the developing world, substantial sharing of risks is also prevalent in the

developed world.
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rect neighbors.66 Accounting for the network of interactions can help explain things like

the duration of unemployment of each worker. A worker whose friends are unemployed has

more difficulty in hearing about job openings and this leads to increased spells of unemploy-

ment, as well as decreased incentives to invest in human capital. The complementarities in

that setting, coupled with the network structure, helps provide an understanding of various

empirical observations of employment. Calvó-Armengol and Jackson (2004) also show that

education subsidies and other labor market regulation policies display local increasing re-

turns due to the network structure. Subsidies and programs are more tightly clustered with

network structure in mind can then be more effective.

That is just an example of an area where the coupling of game theoretic analysis and

network structure can have important implications for dynamics and for policy. This is an

important and still under-studied area.

8.4 More Empirical Applications based on Theory

Part of the reason that accounting for networks in studying behavior is so essential, is that

understanding the relationship can shape optimal policy. For example, in Section 4.4.1, we

discussed the idea of key player in crime, i.e. the criminal who once removed generates the

highest reduction in crime. Liu et al. (2012) examined this idea using data on adolescent

youths in the US (AddHealth) and show that, indeed, a key player policy reduces crime more

than a random-targeted policy. In other words, targeting nodes or players in a network can

have snow-ball effects because of the interactions between players in the network. This is

the idea of the social multiplier developed in Section 4.1.

Other examples of areas where models of games on networks help inform policy and learn

from field work include financial networks, diffusion of innovations, and political interactions.

For example, financial markets can be considered as a network where links are transactions

of dependencies between firms or other organizations (Leitner, 2005; Cohen-Cole, Patacchini

and Zenou 2011, Elliott, Golub and Jackson (2012)). Network analyses in financial settings

can enhance our understanding of the interactions and optimal regulation and policy. It is

also clear that networks influence adoption of technologies. There is indeed empirical evi-

dence of social learning (e.g., Conley and Udry, 2010). Theory (e.g., Section 5.1.3) tells us

66See also the model of Calvó-Armengol, Verdier and Zenou (2007) who study the importance of weak ties

in crime and employment.
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that the adoption of a new technology is related to network structure. In a recent paper,

Banerjee, Chandrasekhar, Duflo and Jackson (2013) study the adoption of a microfinance

program in villages in rural India. They find that participation to the program is higher

in villages when the first set of people to be informed are more important in a network

sense in that they have higher diffusion centrality (a new centrality measure). As a last

example, there is evidence that personal connections amongst politicians have a significant

impact on the voting behavior of U.S. politicians (Cohen and Malloy, 2010). Here there is a

need for both theory and additional empirical work, that helps us understand how the net-

work of interactions between politicians shapes legislation and a host of other governmental

outcomes.

As the theory of games on networks continues to develop, the interaction with field work

will continue to become richer and more valuable.

8.5 Lab and Field Experiments

While our knowledge of peer effects is growing, the complexities involved mean that there

is still much to be learned. Given the enormous difficulty of identifying social effects in the

field, essential tools in this area of research are laboratory and field experiments, where one

can control and directly measure how players’ behaviors relate to network structure.

Experiments have been used to study strategic network formation (e.g., Callander and

Plott, 2005; Pantz and Zeigelmeyer; 2003; Falk and Kosfeld, 2003; Goeree, Riedl and Ule,

2009; and Charness and Jackson 2007), learning in network settings, (e.g., Choi, Gale

and Kariv, 2012; Celen, Kariv and Schotter, 2004; Möbius, Phan and Sziedl, 2010; Chan-

drasekhar, Larreguy, and Xandri, 2011) as well as games played on networks (see Kosfeld,

2004, and Jackson and Yariv, 2011, for additional background).67

For instance, Goeree et al. (2007) and Leider et al. (2009) find that play in games is

related to social distance in a network, with players being more cooperative or generous to

those who are direct friends or close in a social distance sense compared to those who are

more distant in the network. Kearns et al. (2009) find that a society’s ability to reach a

consensus action in a game of complementarity depends on network structure.

Moreover, experiments can be very useful in directly testing some of the theoretical

67There are also various field experiments that effectively involve games on networks, such as Centola

(2010).
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predictions given above. For example, Charness, Feri, Melendez-Jimenez and Sutter (2013)

test games of networks by looking at two important factors: (i) whether actions are either

strategic substitutes or strategic complements, and (ii) whether subjects have complete or

incomplete information about the structure of a random network. They find that subjects

conform to the theoretical predictions of the Galeotti et al. (2010) model that we exposed

in Section 5.1. They also find some interesting selections of equilibria that suggest that

additional theory would be useful.
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[12] Ballester, C., Calvó-Armengol, A. and Y. Zenou (2010), “Delinquent networks,” Jour-

nal of the European Economic Association 8, 34-61.
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price-setting agents,” Games and Economic Behavior 67, 36-50.

[29] Bonacich P. (1987), “Power and centrality: A family of measures,” American Journal

of Sociology 92, 1170-1182.

[30] Boncinelli, L. and P. Pin (2012) “Stochastic Stability in the Best Shot Network Game,”

Games and Economic Behavior 75, 538-554.
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