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1 The Consumer Problem

Consumer theory is concerned with how a rational consumer would make consump-

tion decisions. What makes this problem worthy of separate study, apart from the

general problem of choice theory, is its particular structure that allows us to de-

rive economically meaningful results. The structure arises because the consumer’s

choice sets sets are assumed to be defined by certain prices and the consumer’s

income or wealth. With this in mind, we define the consumer problem (CP) as:

max
x∈Rn+

u(x)

s.t. p · x ≤ w

The idea is that the consumer chooses a vector of goods x = (x1, ..., xn) to maximize

her utility subject to a budget constraint that says she cannot spend more than

her total wealth.

What exactly is a “good”? The answer lies in the eye of the modeler. Depending

on the problem to be analyzed, goods might be very specific, like tickets to different

world series games, or very aggregated like food and shelter, or consumption and

leisure. The components of x might refer to quantities of different goods, as if

all consumption takes place at a moment in time, or they might refer to average

rates of consumption of each good over time. If we want to emphasize the roles of

quality, time and place, the description of a good could be something like “Number
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2 grade Red Winter Wheat in Chicago.” Of course, the way we specify goods can

affect the kinds of assumptions that make sense in a model. Some assumptions

implicit in this formulation will be discussed below.

Given prices p and wealth w, we can write the agent’s choice set (which was X

in the general choice model) as the budget set :

B(p, w) =
©
x ∈ Rn

+ : p · x ≤ w
ª

The consumer’s problem is to choose the element x ∈ B(p,w) that is most preferred

or, equivalently, that has the greatest utility. If we restrict ourselves to just two

goods, the budget set has a nice graphical representation, as is shown in Figure 1.
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Figure 1: The budget set at different prices.

Let’s make a few observations about the model:

1. The assumption of perfect information is built deeply into the formulation

of this choice problem, just as it is in the underlying choice theory. Some

alternative models treat the consumer as rational but uncertain about the

products, for example how a particular food will taste or a how well a clean-

ing product will perform. Some goods may be experience goods which the

consumer can best learn about by trying (“experiencing”) the good. In that

case, the consumer might want to buy some now and decide later whether

to buy more. That situation would need a different formulation. Similarly,
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if the agent thinks that high price goods are more likely to perform in a

satisfactory way, that, too, would suggest quite a different formulation.

2. Agents are price-takers. The agent takes prices p as known, fixed and ex-

ogenous. This assumption excludes things like searching for better prices or

bargaining for a discount.

3. Prices are linear. Every unit of a particular good k comes at the same price

pk. So, for instance, there are no quantity discounts (though these could be

accommodated with relatively minor changes in the formulation).

4. Goods are divisible. Formally, this is expressed by the condition x ∈ Rn
+,

which means that the agent may purchase good k in any amount she can

afford (e.g. 7.5 units or π units). Notice that this divisibility assumption, by

itself, does not prevent us from applying the model to situations with discrete,

indivisible goods. For example, if the commodity space includes automobile of

which consumers may buy only an integer number, we can accommodate that

by specifying that the consumer’s utility depends only on the integer part of

the number of automobiles purchased. In these notes, with the exception of

the theorems that assume convex preferences, all of the results remain true

even when some of the goods may be indivisible.

2 Marshallian Demand

In this section and the next, we derive some key properties of the consumer prob-

lem.

Proposition 1 (Budget Sets) For all λ > 0, B(λp, λw) = B(p, w). Moreover,

if pÀ 0, then B(p,w) is compact.

Proof. For λ > 0, B(λp, λw) = {x ∈ Rn
+|λp · x ≤ λw} = {x ∈ Rn

+|p · x ≤ w} =
B(p,w). Also, if p À 0, then B(p, w) is a closed and bounded subset of Rn

+.

Hence, it is compact. Q.E.D.
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Proposition 2 (Existence) If u is continuous, and p À 0, then (CP ) has a

solution.

Proof. ...because a continuous function on a compact set achieves its maximum.

Q.E.D.

We call the solution to the consumer problem, x(p,w), the Marshallian (or

Walrasian or uncompensated) demand. In general, x(p, w) is a set, rather than a

single point. Thus x : Rn
+ × R+ ⇒ Rn

+ is a correspondence. It maps prices p ∈ Rn
+

and wealth w ∈ R+ into a set of possible consumption bundles. One needs more
assumptions (we’re getting there) to ensure that x(p,w) is single-valued, so that

x(·, ·) is a function.

Proposition 3 (Homogeneity) Marshallian demand is homogeneous of degree

zero: for all p,w and λ > 0, x(λp, λw) = x(p, w).

Proof. This one’s easy. Since B(λp, λw) = B(p, w), x(λp, λw) and x(p,w) are

solutions to the same problem! Q.E.D.

The upshot of this result is that if prices go up by a factor λ, but so does wealth,

the purchasing pattern of an economic agent will not change. Similarly, it does

not matter whether prices and incomes are expressed in dollars, rupees, euros or

yuan: demand is still the same.

Proposition 4 (Walras’ Law) If preferences are locally non-satiated, then for

any (p, w) and x ∈ x(p,w), p · x = w.

Proof. By contradiction. Suppose x ∈ x(p,w) with p · x < w. Then there is

some ε > 0 such that for all y with ||x − y|| < ε, p · y < w. But then by local

non-satiation, there must be some bundle y for which p · y < w and y Â x. Hence

x /∈ x(p,w) – a contradiction. Q.E.D.

Walras’ Law says that a consumer with locally non-satiated preferences will

consume her entire budget. In particular, this allows us to re-express the consumer

problem as:
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max
x∈Rn+

u(x)

s.t. p · x = w

where the budget inequality is replaced with an equality.

The next result speaks to our earlier observation that there might be many

solutions to the consumer problem.

Proposition 5 (Convexity/Uniqueness) If preferences are convex, then x(p,w)

is convex-valued. If preferences are strictly convex, then the consumer optimum is

always unique, that is, x(p, w) is a singleton.

Proof. Suppose preferences are convex and x, x0 ∈ x(p,w). For any t ∈ [0, 1],
tx + (1 − t)x0 ∈ B(p,w) because p · (tx + (1 − t)x0) = tp · x + (1 − t)p · x0 ≤
tw + (1 − t)w = w. Then, since x º x0 and preferences are convex, we also have

tx + (1 − t)x0 º x0. Hence, tx + (1 − t)x0 ∈ x(p,w). If preferences are strictly

convex, the same construction leads to a contradiction. Suppose x, x0 ∈ x(p,w)

with x 6= x0. Then strict convexity means that for any t ∈ (0, 1), tx+(1−t)x0 Â x0.

Hence, x0 /∈ x(p,w). Q.E.D.

Thus, assuming the consumer’s utility is continuous and locally non-satiated,

we have established four properties of the Marshallian demand function: it “exists”,

is insensitive to proportional increases in price and income, exhausts the consumer’s

budget, and is single-valued if preferences are strictly convex. The next result uses

these properties to derive restrictions on the derivatives of the demand function.

Proposition 6 (Restrictions on the Derivatives of Demand) Suppose pref-

erences are locally non-satiated, and Marshallian demand is a differentiable func-

tion of prices and wealth. Then

1. A proportional change in all prices and income doesn’t affect demand. For

all p,w and i = 1, ..., n,

nX
j=1

pj
∂

∂pj
xi(p, w) + w

∂

∂w
xi(p,w) = 0
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2. A change in the price of one good won’t affect total expenditure. For all p,w

and i = 1, ...., n,
nX

j=1

pj
∂

∂pi
xj(p,w) + xi(p, w) = 0.

3. A change in income will lead to an identical change in total expenditure. For

all p,w,
nX
i=1

pi
∂

∂w
xi(p, w) = 1.

Proof. (1) This follows directly from homogeneity. For all i, xi(λp, λw) = xi(p,w)

by homogeneity. Now differentiate both sides by λ and evaluate at λ = 1 to

obtain the result. (2) This follows from Walras’ Law. For non-satiated preferences,

p · x(p,w) = w holds for all p and w. Differentiating both sides by pi gives the

result. (3) This also follows from Walras’ Law. For non-satiated preferences,

p · x(p,w) = w for all p,w. Differentiating both sides by w gives the result.Q.E.D.

3 Indirect Utility

The indirect utility function v(p, w) is defined as:

v(p,w) = maxu(x) subject to p · x ≤ w.

So v(p, w) is the value of the consumer problem, or the most utility an agent can

get at prices p with wealth w.

Proposition 7 (Properties of v) Suppose u is a continuous utility function rep-

resenting a locally non-satiated preference relation º on Rn
+. Then v(p, w) is

1. homogenous of degree zero: for all p,w and λ > 0, v(λp, λw) = v(p,w);

2. continuous on {(p, w)|pÀ 0, w ≥ 0};

3. nonincreasing in p and strictly increasing in w;

4. quasi-convex (i.e. the set {(p,w) : v(p, w) ≤ v} is convex for any v).
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Proof. (1) Homogeneity follows by the now-familiar argument. If we multiply

both prices and wealth by a factor λ, the consumer problem is unchanged.

(2) Let pn → p and wn → w be sequences of prices and wealth. We must show

that limn→∞ v(pn, wn) = v(p,w), which we do by showing that lim infn v(p
n, wn) ≥

v(p, w) ≥ lim supn v(p
n, wn) ≥ lim infn v(p

n, wn). The last inequality is true by

definition, so we focus attention on the first two inequalities.

For the first inequality, let x ∈ x(p,w), so that v(p,w) = u(x) and let an =

wn/(pn ·x). Then, anx ∈ B(pn, wn), so v(pn, wn) ≥ u(anx). By local non-satiation,

p ·x = w, so limn a
n = limwn/(pn ·x) = w/(p ·x) = 1. Hence, using the continuity

of u, lim infn v(p
n, wn) ≥ lim inf u(anx) = u(x) = v(p, w), which implies the first

inequality.

For the second inequality, let xn ∈ x(pn, wn) so that v(pn, wn) = u(xn). Let nk

be a subsequence along which limk→∞ u(xn
k
) = lim supn v(p

n, wn). Since pn À 0,

the union of the budget sets defined by (pn
k
, wnk) and (p, w) is bounded above

by the vector b whose ith component is bi = (supw
n)/(inf pni ). Since the sequence

{xnk} is bounded, it has some accumulation point x. Since pn
k · xnk ≤ wnk , it

follows by taking limits that p · x ≤ w. Thus, v(p,w) ≥ u(x) = limk→∞ u(xn
k
) =

lim supn v(p
n, wn), which implies the second inequality.

(3) For the first part, note that if p > p0, then B(p, w) ⊂ B(p0, w), so clearly

v(p, w) ≤ v(p0, w). For the second part, suppose w0 > w, and let x ∈ x(p,w).

By Walras’ Law, p · x = w < w0, so by a second application of Walras’ Law,

x /∈ x(p,w0). Hence, there exists some x0 ∈ B(p,w0) such that u(x0) > u(x).

(4) Suppose that v(p,w) ≤ v and v(p0, w0) ≤ v. For any t ∈ [0, 1], consider
(pt, wt) where pt = tp + (1 − t)p0 and wt = tw + (1 − t)w0. Let x be such that

pt ·x ≤ wt. Then, wt ≥ pt ·x = tp ·x+(1− t)p0 ·x, so either p ·x ≤ w or p0 ·x ≤ w0

or both. Thus, either u(x) ≤ v(p,w) ≤ v or u(x) ≤ v(p0, w0) ≤ v, so u(x) ≤ v.

Consequently, v(pt, wt) = maxx:pt·x≤wt u(x) ≤ v. Q.E.D.
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4 Demand with Derivatives

How does one actually solve for Marshallian demand, given preferences, prices

and wealth? If the utility function is differentiable,1 then explicit formulae can

sometimes be derived by analyzing the Lagrangian for the consumer problem:

L(x, λ, µ; p,w) = u(x) + λ [w − p · x] +
nX
i=1

µixi,

where λ is the Lagrange multiplier on the budget constraint and, for each i, µi is

the multiplier on the constraint that xi ≥ 0. The “Lagrangian problem” is:

min
λ≥0,µ≥0

max
x
L(x, λ, µ) = min

λ≥0,µ≥0
max
x

u(x) + λ [w − p · x] +
nX
i=1

µixi,

The first order conditions for the maximization problem are:

∂u

∂xk
= +λpk − µk, (1)

and λ ≥ 0 and µi ≥ 0 for all i. The solution must also satisfy the original

constraints:

p · x ≤ w and x ≥ 0,

as well as the complementary slackness conditions:

λ (w − p · x) = 0 and µkxk = 0 for k = 1, ..., n.

These conditions, taken together are called the Kuhn-Tucker conditions.

The Lagrangian L is a linear function of the multipliers (λ, µ), so maxx≥0L(x, λ, µ; p, w)
is a convex function of (λ, µ). The first order conditions for this problem are that

(i) the derivative with respect to each multiplier is non-negative and (ii) that when

1There are mixed opinions about the differentiability assumption. On one hand, there is

no natural restriction on the underlying preference relation º that guarantees differentiability.

Purists claim that makes the assumption of dubious validity. On the other, there exists no

finite set of observed choices C(X,%) from finite sets X that ever contradicts differentiability.

Pragmatists conclude from this that differentiability of demand is empirically harmless and can

be freely adopted whenever it is analytically useful.
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the derivative is positive, the multiplier is zero. By the envelope theorem, the first

condition is equivalent to the condition that the constraints are satisfied and the

second is complementary slackness. So the Kuhn-Tucker conditions imply that

(λ, µ) solves the minimization problem if x solves the maximization problem.

Suppose we find a triplet (x, λ, µ) that satisfies the Kuhn-Tucker conditions.

Does x solve the maximization problem, so that x ∈ x(p,w)? Conversely, if x ∈
x(p,w) is a solution to the consumer problem, will x also satisfy the Kuhn-Tucker

conditions along with some (λ, µ)?

The Kuhn-Tucker Theorem tells us that if x ∈ x(p,w), then (subject to a

certain “regularity” condition) there exist (λ, µ) such that (x, λ, µ) solve the Kuhn-

Tucker conditions. Of course, there may be other solutions to the Kuhn-Tucker

conditions that do not solve the consumer problem. However, if u is also quasi-

concave and has an additional property, then the solutions to the consumer problem

and the Kuhn-Tucker conditions coincide exactly – the Kuhn-Tucker conditions

are necessary and sufficient for x to solve the consumer problem.

Proposition 8 (Kuhn-Tucker) Suppose that u is continuously differentiable and

that x ∈ x(p,w) is a solution to the consumer problem. If the constraint qualifi-

cation holds at x, then there exists λ, µ1, ..., µn ≥ 0 such that (x, λ, µ) solve the

Kuhn-Tucker conditions. Moreover, if u is quasi-concave and has the property that

[u(x0) > u(x)] =⇒ [∇u(x) · (x0 − x) > 0], then any x that is part of a solution to

the Kuhn-Tucker conditions is also a solution to the consumer problem.

Proof. See the math review handouts. Q.E.D.

We can use the Kuhn-Tucker conditions to characterize Marshallian demand.

First, using (1), we may write:

∂u

∂xk
≤ λpk with equality if xk > 0.

From this, we derive the following important relationship: for all goods j and k

consumed in positive quantity:

MRSjk =
∂u/∂xj
∂u/∂xk

=
pj
pk
.
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This says that at the consumer’s maximum, the marginal rate of substitution be-

tween j and k equals the ratio of their prices.

Figures 2 and 3 give a graphical representation of the solution to the consumer

problem. In Figure 2 both goods are consumed in positive quantities, so µ1 =

µ2 = 0, and the marginal rate of substitution along the indifference curve equals

the slope of the budget line at the optimum.
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Figure 2: Marshallian demand: interior solution.

In Figure 3, we have a corner solution, so µ1 > 0 while µ2 = 0. Here the MRS

does not equal the price ratio.
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Figure 3: Marshallian demand: corner solution.
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We also have a nice characterization of the Lagrange multiplier λ.

Proposition 9 (Marginal utility of income or wealth) Suppose that u is con-

tinuous and quasi-concave, that p À 0, and that there exists a unique solution

(x, λ, µ) to the Lagrangian consumer problem when prices and wealth are given by

(p,w). Then, v is differentiable at (p,w) and

∂v(p,w)

∂w
= λ ≥ 0.

Proof. DefineΦ(λ, µ; p,w) = maxxL(x, λ, µ; p,w). Then, v(p,w) = minλ≥0,µ≥0Φ(λ, µ; p,w).
Since the Lagrange multipliers are unique, by the envelope theorem, ∂v(p,w)/∂w =

∂Φ(λ, µ; p,w)/∂w evaluated at the minimum (λ, µ). But Φ is itself a maximum

value function, so another application of the envelope theorem establishes that

∂Φ(λ, µ; p,w)/∂w = ∂L(x, λ, µ; p,w)/∂w = λ. The construction itself requires

that λ ≥ 0. Q.E.D.

The Lagrange multiplier λ gives the value (in terms of utility) of having an

additional unit of wealth. Because of this, λ is the sometimes called the shadow

price of wealth or the marginal utility of wealth (or income). In terms of the

history of thought, the terms marginal utility of income or and marginal utility of

wealth were important, because utilitarians thought that such considerations would

guide the choice of public policies that redistribute of wealth or income. However,

nothing in the consumer theory developed so far suggests any basis for using the

marginal utility of income or wealth, as we have defined it, to guide redistribution

policies.

For our next calculations, it will be useful to have λ > 0. One might think that

adding an assumption of local non-satiation would imply that strict inequality,

since it certainly implies that v is increasing in w. However, neither local non-

satiation nor any other condition on consumer preferences % is sufficient for the

desired conclusion.2 However, if there is everywhere at least one good j for which

∂u/∂xj > 0, then one can infer that ∂v/∂w ≥ (∂u/∂xj)/pj > 0.
2This is a purely technical point, but it serves to remind us that the same preferences can

be represented in quite different ways. Suppose a representation u is selected so that the corre-

sponding indirect utility satisfies ∂v(p,w)
∂w > 0. Suppose v(p,w) = v and consider the alternative

representation bu(x) = (u(x) − v)3. This utility function represents the same preferences as u
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Proposition 10 (Roy’s Identity) Suppose that v is differentiable at (p, w)À 0

and that ∂v/∂w > 0. Then, x(p,w) is a singleton and

xi(p, w) = −
∂v(p,w)/∂pi
∂v(p,w)/∂w

.

Proof. Appealing again to the envelope theorem, ∂v(p, w)/∂pi = −λxi. Combin-
ing that with the previous proposition establishes the identity. Q.E.D.

5 Hicksian Demand

We now make what will prove to be a very useful detour in consumer theory

and one that highlights the similarities between consumer theory and producer

theory. In close parallel to the firm’s cost minimization problem, we introduce the

consumer’s expenditure minimization problem (EMP ).

min
x∈Rn+

p · x

s.t.u(x) ≥ u,

where u ≥ u(0) and p À 0. This problem finds the cheapest bundle at prices p

that yields utility at least u.3

We record the following basic fact.

Proposition 11 (Existence) If pÀ 0, u is continuous and there is some x such

that u(x) ≥ u, then (EMP ) has a solution.

and has corresponding indirect utility function bv(p,w) = bu(x(p,w)) = (v(p,w) − v)3. Applying

the chain rule leads to ∂bv(p,w)
∂w = 0. Thus, whether the marginal utility of income is positive or

zero at a point is not just a property of the preferences themselves, but is a joint property of the

preferences and their representation.
3This problem is sometimes called the dual consumer problem, but that terminology suggests

incorrectly that “duality” results always apply. In general, duality results will apply to this

problem only when u is quasi-concave, but that property plays no role in most of our analysis.

It is more accurate to refer to this problem as the expenditure minimization problem.
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Proof. Let u(bx) ≥ u. Let S = {x|p·x ≤ p·bx}∩{x|u(x) ≥ u}. By construction,
the first set in the intersection is non-empty and compact and by continuity of u,

the second set is closed, so S is a compact set. Hence, the continuous function p ·x
achieves its minimum at some point x∗ on S. By construction, for every x /∈ S

such that u(x) ≥ u, p · x > p · bx ≥ p · x∗, so x∗ solve =s the EMP . Q.E.D.

The solution x = h(p, u) of the expenditure minimization problem is called the

Hicksian (or compensated) demand. We define the expenditure function to be the

corresponding value function:

e(p, u) = min
x∈Rn+

p · x subject to u(x) ≥ u.

Thus, e(p, u) is the minimum expenditure required to achieve utility u at prices p,

andh(p, u) is the set of consumption bundles that the consumer would purchase

at prices p if she wished to minimize her expenses but still achieve utility u.

What is the motivation for introducing the expenditure minimization problem,

when we have already analyzed the “actual” consumer problem? We take this

detour to capture two main advantages. First, we will use the expenditure func-

tion to decompose the effect of a price change on Marshallian demand into two

corresponding effects. On one hand, a price reduction makes the consumer wealth-

ier, just as if she had received a small inheritance, and that could certainly affect

demand for all goods. We will call that the wealth effect (or income effect). In

addition, even if the consumer were forced to disgorge her extra wealth, the price

reduction would cause the optimizing consumer to substitute the newly cheaper

good for more expensive ones and perhaps to make other changes as well. That

is called the substitution effect. Because the expenditure function is the optimal

value of a cost minimization problem holding the utility level constant, it is closely

analogous to the cost minimization problem in producer theory (in which the level

of output that is held constant). The substitution effect in consumer theory is

similar to the substitution effect in the producer’s cost minimization problem.

This detour leads to a second important advantage as well: the expenditure

function turns out to play a central role in welfare economics. More about that

later in these notes. With these advantages lying ahead, we first introduce three
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propositions to identify, respectively, the properties of Hicksian demand, those of

the expenditure function, and the relationship between the two functions.

Proposition 12 (Properties of Hicksian Demand) Suppose u is a continu-

ous utility function representing a preference relation % on Rn
+. Then

1. (Homogeneity) h(p, u) is homogeneous of degree zero in p. For any p, u and

λ > 0, h(λp, u) = h(p, u).

2. (No Excess Utility) If u ≥ u(0) and pÀ 0, then for all x ∈ h(p, u), u(x) = u.

3. (Convexity/Uniqueness) If preferences are convex, then h(p, u) is a convex

set. If preferences are strictly convex and pÀ 0, then h(p, u) is a singleton.

Proof. (1) Note that the constraint set, or choice set, is the same in the expendi-

ture problem for (λp, u) and (p, u). But then

min
{x∈Rn+:u(x)≥u}

λp · x = λ min
{x∈Rn+:u(x)≥u}

p · x,

so the expenditure problem has the same solution for (λp, u) and (p, u).

(2) Suppose to the contrary that there is some x ∈ h(p, u) such that u(x) >

u ≥ u(0). Consider a bundle x0 = tx with 0 < t < 1. Then p ·x0 < p ·x, and by the
intermediate value theorem, there is some t such that u(x0) ≥ u, which contradicts

the assumption that x ∈ h(p, u).

(3) Note that h(p, u) =
©
x ∈ Rn

+ : u(x) ≥ u
ª
∩ {x|p · x = e(p, u)} is the inter-

section of two convex sets and hence is convex. If preferences are strictly convex

and x, x0 ∈ h(p, u), then for t ∈ (0, 1), x00 = tx + (1 − t)x0 satisfies x00 Â x and

p · x00 = e(p, u), which contradicts “no excess utility”. Q.E.D.

Proposition 13 (Properties of the Expenditure Function) Suppose u is a

continuous utility function representing a locally non-satiated preference relation

º on Rn
+. Then e(p, u) is

1. homogenous of degree one in p: for all p, u and λ > 0, e(λp, u) = λe(p, u);
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2. continuous in p and u;

3. nondecreasing in p and strictly increasing in u provided pÀ 0;

4. concave in p.

Proof. (1) As in the above proposition, note that

e(λp, u) = min
{x∈Rn+:u(x)≥u}

λp · x = λ min
{x∈Rn+:u(x)≥u}

p · x = λe(p, u).

(2) We omit this proof, which is similar to proving continuity of the indirect

utility function.

(3) Let p0 > p and suppose x ∈ h(p0, u). Then u(h) ≥ u, and e(p0, u) = p0 · x ≥
p · x. It follows immediately that e(p, u) ≤ e(p0, u).

For the second statement, suppose to the contrary that for some u0 > u,

e(p, u0) ≤ e(p, u). Then, for some x ∈ h(p, u), u(x) = u0 > u, which contradicts

the “no excess utility” conclusion of the previous propostion.

(4) Let t ∈ (0, 1) and suppose x ∈ h(tp + (1− t)p0). Then, p · x ≥ e(p, u) and

p0 ·x ≥ e(p0, u), so e(tp+(1− t)p0, u) = (tp+(1− t)p0) ·x ≥ te(p, u)+(1− t)e(p0, u).
Q.E.D.

Finally, we apply the envelope theorem to recover Hicksian demands from the

expenditure function.

Proposition 14 (Relating Expenditure and Demand) Suppose that u(·) is
a continuous utility function representing a locally non-satiated preference rela-

tion º and suppose that h(p, u) is a singleton. Then the expenditure function is

differentiable in p, and for all i = 1, ..., n,

∂e(p, u)

∂pi
= hi(p, u).

By analogy with the corresponding result for the firm’s cost function, some

writer’s call this Shepard’s lemma as well. Thought question: What is ∂e/∂u?
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6 Hicksian Comparative Statics

Comparative statics are statements about how the solution to a problem will

change with parameters. In the consumer problem, the parameters are (p,w),

so comparative statics are statements about how x(p, w), or v(p, w) will change

with p and w. Similarly, in the expenditure problem, the parameters are (p, u), so

comparative statics are statements about how h(p, u) or e(p, u) will change with p

and u.

Our first result gives a comparative statics statement about how a change in

price changes the expenditure required to achieve a given utility level u. The “law

of demand” formalizes to the idea when the price of some good increases, the

(Hicksian) demand for that good decreases.

Proposition 15 (Law of Demand) Suppose p, p0 ≥ 0 and let x ∈ h(p, u) and

x0 ∈ h(p0, u). Then, (p0 − p) (x0 − x) ≤ 0.

Proof. By definition u(x) ≥ u and u(x0) ≥ u. So, by optimization, p0 · x0 ≤ p0 · x
and p · x ≤ p · x0. We may rewrite these two inequalities as p0 · (x0 − x) ≤ 0 and
0 ≥ −p · (x0 − x), and the result follows immediately. Q.E.D.

The Law of Demand can be applied to study how demand for a single good

varies with its own price. Thus, suppose that the only difference between p0 and

p is that, for some k, p0k > pk, but p
0
i = pi for all i 6= k. Then, with single-valued

demand,

(p0k − pk) [hk(p
0, u)− hk(p, u)] ≤ 0.

This means that hk(p, u) is decreasing in pk. Or in words, Hicksian demand curves

slope downward.

A simple way to see this graphically is to note that the change in Hicksian

demand given a change in price is a shift along an indifference curve:

In constrast, Marshallian demand xk(p, w) need not be decreasing in pk (though

this is typically the case). To see why, consider Figure 5. We will come back to how

Marshallian demand reacts to a change in price, and to the relationship between

the change in Marshallian and Hicksian demand, in a minute.
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If the Hicksian demand function h(p, u) is singleton-valued and continuously

differentiable, we can use derivatives to describe how this demand responds to price

changes. The next result is closely related to corresponding results that we have

previously discussed concerning a firm’s input demands.

Consider the matrix:

Dph(p, u) =

⎛⎜⎝
∂h1(p,u)

∂p1

∂hn(p,u)
∂p1

· · · · · ·
∂h1(p,u)
∂pn

∂hn(p,u)
∂pn

⎞⎟⎠ .

Recall the definition that an n × n symmetric matrix D is negative semi-definite

if for all z ∈ Rn, z ·Dz ≤ 0.

Proposition 16 Suppose that u(·) is represents a preference relation % and that

h(p, u) is singleton-valued and continuously differentiable at (p, u), where p À 0.

Then Dph(p, u) is symmetric and negative semi-definite.

Proof. By Shephard’s Lemma, hi(p, u) =
∂e(p,u)
∂pi

, so ∂hi(p,u)
∂pj

= ∂2e(p,u)
∂pi∂pj

We may

rewrite this as:

Dph(p, u) = D2
pe(p, u).

For symmetry, recall that Young’s Theorem from calculus tells us that for any

twice continuously differentiable function f(x, y), fxy = fyx. Applying this result

shows us that

∂hi(p, u)

∂pj
=

∂2e(p, u)

∂pi∂pj
=

∂2e(p, u)

∂pj∂pi
=

∂hj(p, u)

∂pi

and hence Dp(p, u) is symmetric.

For negative semi-definiteness, recall that e(p, u) is a concave function of p.

This implies that D2
pe(p, u) is negative semi-definite (see the appendix of MWG

for a proof. Q.E.D.

What is most surprising here is the symmetry of the demand matrix: the effect

of a small increase in the price of good i on the quantity demanded of good j

is identical to effect of a similar increase in the price of good j on the quantity
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demand of good i. Thus, the derivative of the Hicksian demand for butter, say in

kilograms, with respect to the price of compact disks, say in $/disk, is the same as

the derivative of the Hicksian demand for compact disks with respect to the price

of butter in $/kilogram.

The proposition also encompasses within it a differential form of the law of

demand. For, the rate of change of the Hicksian demand for good j as the price

pj increases is ∂hj/∂pj = ∂2e(p, u)/∂p2j , which is a diagonal element of the matrix

Dph. The diagonal elements of a negative semi-definite matrix are always non-

positive. To see why, let z = (0, ...0, 1, 0, ..., 0) have a 1 only in its jth place. Then

since Dph(p, u) is negative semi-definite, 0 ≥ zDph(p, u) · z = ∂hj/∂pj, proving

that the jth diagonal element is non-positive. That is, the Hicksian demand for

good j is weakly decreasing in the price of good j.

7 The Slutsky Equation

Next, we bring the theory together by relating Marshallian and Hicksian demand

and using that relationship to derive the Slutsky equation, which decomposes the

effect of price changes on Marshallian demand.

Proposition 17 (Relating Hicksian & Marshalian Demand) Suppose u is

a utility function representing a continuous, locally non-satiated preference rela-

tion º on Rn
+. Then,

1. For all pÀ 0 and w ≥ 0, x(p, w) = h(p, v(p,w)) and e(p, v(p,w)) = w.

2. For all pÀ 0 and u ≥ u(0), h(p, u) = x(p, e(p, u)) and v(p, e(p, u)) = u.

Proof. First, fix prices pÀ 0 and wealth w ≥ 0 and let x ∈ x(p, w). Since u(x) =

v(p, w) and p · x ≤ w, it follows that e(p, v(p, w)) ≤ w. For the reverse inequality,

we use the hypothesis of local non-satiation. It implies Walras’ Law, so for any x0

with p · x0 < w, it must be that u(x0) < v(p,w). So, e(p, v(p, w)) ≥ w. Combining

these implies that e(p, v(p,w)) = w and hence that h(p, v(p,w)) = x(p,w).

Next, fix prices p À 0 and target utilty u ≥ u(0) and let x ∈ h(p, u). Since

u(x) ≥ u, it follows that v(p, e(p, u)) ≥ u(x) ≥ u. By the “no excess utility”
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proposition, for any x0 with u(x0) > u, p·x0 > p·x = e(p, u). Thus, v(p, e(p, u)) ≤ u.

So, v(p, e(p, u)) = u and it follows that x(p, e(p, u)) = h(p, u). Q.E.D.

This result is quite simple and intuitive (at least after one understands the

local non-satiation condition). It says that if v(p,w) is the most utility that a

consumer can achieve with wealth w at prices p, then to achieve utility v(p, w) will

take wealth at least w. Similarly, if e(p, u) is the amount of wealth required to

achieve utility u, then the most utility a consumer can get with wealth e(p, u) is

exactly u.

Our next result is the promised decomposition of price effects in Marshallian

demand.

Proposition 18 (Slutsky Equation) Suppose u is a continuous utility function

representing a locally non-satiated preference relation º on Rn
+ and let p À 0

and w = e(p, u). If h(p, u) and x(p,w) are singleton-valued and differentiable at

(p, u, w), then for all i, j,

∂xi(p,w)

∂pj
=

∂hi(p, u)

∂pj
− ∂xi(p, w)

∂w
xj(p,w).

Proof. Starting with the identity,

hi(p, u) = xi(p, e(p, u))

letting w = e(p, u) and differentiating with respect to pj gives:

∂hi(p, u)

∂pj
=

∂xi(p,w)

∂pj
+

∂xi(p, w)

∂w

∂e(p, u)

∂pj
.

Substituting in for the last term using Shephard’s lemma and the identity hi(p, u) =

xi(p,w) gives the result. Q.E.D.

The Slutsky equation is interesting for two reasons. First, it gives a (fairly

simple) relationship between the Hicksian and Marshallian demands. More impor-

tantly, it allows us to analyze the response of Marshallian demand to price changes,

breaking it down into two distinct effects:

∂xi(p,w)

∂pi| {z }
total effect

=
∂hi(p, u)

∂pi| {z }
substitution effect

− ∂xi(p,w)

∂w
xi(p,w)| {z }

wealth effect
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An increase in pi does two things. It causes the consumer to substitute away from i

toward other relatively cheaper goods. And second, it makes the consumer poorer,

and this wealth effect also changes his desired consumption – potentially in a way

that counteracts the substitution effect.

Figure 6 illustrates the Slutsky equation, decomposing the demand effect of a

price change into substitution and wealth effects. Fixing wealth w, when the price

drops from p = (p1, p2) to p
0 = (p

0
1, p2) with p

0
1 < p1, the demand changes from x to

x0. Letting u = v(p, w) and u0 = v(p0, w), note that x = h(p, u), and x0 = h(p, u0).

Then the shift from x to x0 can be decomposed as follows. The substitution effect

is the consumer’s shift along her indifference curve from x = h(p, u) to h(p0, u) and

a wealth effect or income effect is the consumer’s shift from h(p0, u) to x(p0, w).

Why is this second effect a wealth effect? Because h(p0, u) = x(p0, e(p0, u)) the

move corresponds to the change in demand at prices p0 from increasing wealth

from e(p0, u) to w = e(p0, u0).
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Figure 6: Wealth and Substitution Effects

The Slutsky equation contains within it a suggestion about how to test the

subtlest prediction of consumer choice theory. Given enough data about x(p,w),

one can derive the matrix of derivatives Dpx and add to each term the correspond-

ing wealth effect to recover the matrix of substitution effects, which corresponds

to Dph. If consumers are maximizing, then the matrix obtained in that way must

be symmetric (and negative semi-definite).
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Many economists have regarded this analysis and its symmetry conclusion as

a triumph for the use of formal methods in economics. The analysis does demon-

strate the possibility of using theory to derive subtle, testable implications that

had been invisible to researchers using traditional verbal and graphical methods.

Historically, that argument was quite influential, but its influenced has lessened

over time. Critics typically counter it by observing that formal research has gener-

ated few such conclusions and that the maximization hypothesis on which all are

based fares poorly in certain laboratory experiments.

Now consider the following definitions.

Definition 1 Good i is a normal good if xi(p,w) is increasing in w. It is an

inferior good if xi(p, w) is decreasing in w.

Definition 2 Good i is a regular good if xi(p,w) is decreasing in pi. It is a

Giffen good if xi(p,w) is increasing in pi.

Definition 3 Good i is a substitute for good j if hi(p, u) is increasing in pj. It

is a complement if hi(p, u) is decreasing in pj.

Definition 4 Good i is a gross substitute for good j if xi(p,w) is increasing in

pj. It is a gross complement if xi(p,w) is decreasing in pj.

Figure 7 gives a graphical depiction of what happens when income increases.

As income increases from w to w0 to w00, the budget line shifts out and Marshallian

demand increases from x to x0 to x00. In the figure, both goods are normal. If we

plot x(p,w) for each possible income level w, and connect the points, the resulting

curve is called an Engel curve or Income expansion curve.4

Figure 8 shows what happens to Marshallian demand when prices change. Here,

as the price of the first good decreases, Marshallian demand shifts from x to x0 to

x00. In this picture, the first good is regular – as its price decreases, the demand

4An important question in development economics is how to estimate these curves empirically.

The basic approach is to estimate the demands for major budget items – food, shelter, clothing

– as a function of prices and income, and then ask how these demands have changed and will

change as the country becomes richer.
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for it increases. Note also that as the price of good one decreases, the Marshallian

demand for the second good also increases: so goods i and j are gross complements.
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Figure 8: Offer Curves or Price Expansion Path

Traditional economics textbooks call a pair of goods substitutes or complements

based on their Hicksian demands and reserve the terms “gross substitutes” and

“gross complements” for the relations based on Marshallian demands. Perhaps

the reason for this is that the Hicksian language is easier, because the Hicksian

substitutes condition is a symmetric one, so one can simply say that “goods i and
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j are substitutes” without needing to specify which is a substitute for the other.

The condition is symmetric because, as previously shown:

∂hi(p, u)

∂pj
=

∂hj(p, u)

∂pi
.

In contrast, the gross substitute condition is not generally symmetric, because the

wealth effect on xi(p, w) caused by an increase in pj is not generally the same as

the wealth effect on xj(p,w) caused by an increase in pi:

∂xi(p,w)

∂w
xj(p,w) 6=

∂xj(p,w)

∂w
xi(p,w).

In common practice, when one says that two or more goods are “gross substitutes,”

one means that each good is a gross substitute for each other good.

Keep in mind that even if goods are substitutes in one range of prices, they

may still be complements for another range. When tight logical arguments are

required, best practice is to describe assumptions in precise mathematical terms

and to use terms like substitutes and complements as ways to describe and explicate

the precise formal argument.

8 Consumer Welfare: Price Changes

We now turn to a particularly beautiful part of consumer theory: the measurement

of consumer welfare. We assume throughout that consumer preferences are locally

non-satiated and investigate the question: how much better or worse off is the

consumer as the result of a change in prices from p to p0?

This question is much less narrow than it may seem. For purposes of deter-

mining welfare effects, many changes in the economic environment can be viewed

as price changes. Taxes and subsidies are obvious cases: they add to or subtract

from the price someone pays for a good. If we want to study the welfare effects

of technical change, such as the introduction of a new product, we can formulate

that as a change in price from p =∞ to some finite price p0.

Let (p,w) be the consumer’s status prior to the price change, and (p0, w) the

consumer’s status after the price change. A natural candidate for measuring the
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change in welfare is to look at the change in the consumer’s utility, i.e. at v(p0, w)−
v(p, w). Of course, the problem is that this measure depends on which utility

function we choose to represent the consumer preferences. While all give the same

qualitative answer to the question of whether the consumer is better or worse off,

they give different answers to the question of by how much she is better or worse

off. In addition, the answer they give is in utils, which have no real meaning.

While there is no complete solution to this problem, there is an elegant partial

solution. We can use the expenditure function to measure welfare changes in

dollars. Essentially, we ask: how much money is required to achieve a certain level

of utility before and after the price change? To answer this, we need to choose

a level of utility as a reference point for making this comparison. There are two

obvious candidates: the level of utility achieved by the consumer prior to the

change and the level achieved after the change. We refer to these two measures

as compensating and equivalent variation. Both are constructed to be positive for

changes that increase welfare and negative for changes that reduce welfare.

Compensating variation specifies how much less wealth the consumer needs to

achieve the same maximum utility at prices p0 as she had before the price change.

Letting u = v(p, w) be the level of utility achieved prior to the price change,

Compensating Variation = e(p, u)− e(p0, u) = w − e(p0, u).

That is, if prices change from p to p0, the magnitude of compensating variation

tells us how much we will have to charge or compensate our consumer to have her

stay on the same indifference curve.

Equivalent variation gives the change in the expenditure that would be required

at the original prices to have the same (“equivalent”) effect on consumer as the

price change had. Letting u0 = v(p0, w) be the level of utility achieved after the

price change.

Equivalent Variation = e(p, u0)− e(p0, u0) = e(p, u0)− w.

That is, equivalent variation tells us how much more money the consumer would

have needed yesterday to be as well off as she is today.

Figure 9 illustrates compensating variation for a situation where only a single

price – that of the first good – changes. In this figure, think of the second good
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as a composite good (i.e. “expenditures on all other items”) measured in dollars.5

Prices change from p to p0 where p01 > p1 and p02 = p2 = 1 and the budget line

rotates in. To identify compensating variation, we first find the wealth required to

achieve utility u at prices p0, i.e. e(p0, u), then find the difference between this and

w = e(p, u), the starting level of wealth.
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Figure 9: Compensating Variation

Figure 10 displays equivalent variation for the same hypothetical price change.

Here, the first step is to find the wealth required to achieve utility u0 at the original

prices p.

Generally speaking, compensating and equivalent variation will not be the

same, since they are the answers to different questions. There is, however, one

case for which they will coincide. If preferences are quasi-linear, then equivalent

and compensating variation are identical. Demonstrating this is left as a homework

assignment.

If the price change affects only a single good i, we can relate equivalent and

compensating variation to the Hicksian demand in this simple way:

CV = e(p, u)− e(p0, u) =

Z pi

p0i

∂e(p, u)

∂pi
dpi =

Z pi

p0i

hi(p, u)dpi,

5Formally, this means we are working with the two-argument utility function û(x1, y) =

max(x2,...,xn)∈Rn−1+
u(x1, ...xn) subject to p2x2 + ...+ pnxn = y.
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Figure 10: Equivalent Variation

and similarly

EV = e(p, u0)− e(p0, u0) =

Z pi

p0i

∂e(p, u0)

∂pi
dpi =

Z pi

p0i

hi(p, u
0)dpi

Figure 11 shows the Hicksian demand curves for a single good (good one) at two

utility levels u > u0, assuming that the good is normal. To identify CV, we need

to integrate the area to the left of the h1(·, u) curve between p1 and p01. Similarly,

EV corresponds to the area to the left of the h1(·, u0) between p1 and p01.
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Figure 11: Relating Welfare to Demand
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By construction, w = e(p, u) = e(p0, u0). This allows us to conclude that

x(p,w) = h(p, u) and x(p0, w) = h(p0, u0). This relation is plotted in Figure 12.
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Figure 12: Relating Welfare to Demand

Figure 12 suggests that another measure of consumer welfare might be obtained

by integrating to the left of the Marshallian demand curve. We define this – the

area to the left of the Marshallian demand curve – as consumer surplus.

Consumer Surplus =

Z pi

p0i

xi(p, w)dpi.

In empirical work, where the regressions typically provide direct estimates of

a Marshallian demand curve, Marshallian consumer surplus is a very common

measure of consumer welfare. There is a long-standing debate in industrial organi-

zation as to when Marshallian Consumer Surplus is a good welfare measure (with

important papers by Willig (1976, AER) and Hausman (1981, AER)). Consumer

surplus has an important drawback – it does not have an immediate interpretation

in terms of utility theory, as do EV and CV. However, one nice feature – which

is apparent in the figure – is that Consumer Surplus is typically an intermediate

measure that lies between compensating and equivalent variation. More precisely,

on any range where the good in question is either normal or inferior,6 we have the

6These are not the only logical possibilities: it is also possible that the good is normal on part

of the relevant domain and inferior on another part of the domain. Only in that case can the

inequality fail.
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following relationship:

min{CV,EV } ≤ CS ≤ max{CV,EV }.

This typical relationship is sometimes used to justify consumer surplus as a welfare

measure.

The most problematic part of using these concepts—equivalent variation, com-

pensating variation, and consumer surplus—is the practice of simply adding up these

numbers across individuals to compare overall welfare from two policies. Taken

literally, this practice implies that one should be indifferent, in terms of overall

welfare, between policies that redistribute benefits from the rich to the poor or

from the poor to the rich. Because they omit distributional issues, these various

measures can do no more than give an index of the equivalent or compensating

changes in the total wealth of a society.

9 Consumer Welfare: Price Indices

In practice, perhaps the most important problem in the measurement of consumer

welfare is obtaining correct measures of the growth of the economy. There are

many subtleties involved in this measurement, depending on the goods that one

includes in deciding about welfare. For example, there are important questions

about how to measure public goods including environmental amenities, safety, and

so on. One subtle issue concerns how to adjust for changes in the cost of living.

That is, suppose one wants to know how much better off people are from one year

to the next, given that economic growth has increased people’s incomes (that is,

has increased GDP). Once we have measured this increase in income, we need to

account also for any changes in prices over the same period. Thus, to measure

growth in consumer welfare, we need to “adjust” nominal income by a measure

of the cost of living and use this adjusted measure (of “real income”) to calculate

growth.

This brings us to the topic of price indices. To define a price index (and this is

essentially what the BLS does to measure inflation), one defines a “market basket”

of goods – goods 1, 2, ..., n– and then compare their prices from period to period
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(quarterly, yearly, whatever). Let p be the prices of these goods “before” and p0

the prices “after”. There are basically two well—known ways to proceed. One way

is to look at the quantities of the goods purchased in the “before” period, x, and

compare the price of this basket at the two price levels. This is called a Laspeyres

index :

Laspeyres Index :
p0 · x
p · x ,

Alternatively, one can look at the quantities of the goods purchased in the “after”

period, x0. This is called a Paasche Index.

Paasche Index :
p0 · x0
p · x0

In practice, cost of living is computed using some variant of a Laspeyres or

Paasche index. In theory, there is a better alternative, which is to use what is

called an ideal index. Similar to the idea of EV or CV, an ideal index chooses some

base level of utility, and asks how much more expensive it is to achieve this utility

at prices p0 than at prices p.

Ideal Index :
e(p0, u)

e(p, u)
,

where u is a “base” level of utility – typically either the utility in the “before” or

“after” period.

Generally speaking, neither the Paasche or the Laspeyres Index are “ideal”. To

see why, let u be the utility in the before period. Then

Laspeyres =
p0 · x
p · x =

p0 · x
e(p, u)

≥ e(p0, u)

e(p, u)
= Ideal (u).

The problem is that at prices p0, the consumer will not choose to consume x. Most

likely, there is a cheaper way to get utility u. This is called the substitution bias

because the Laspeyres index does not account for the fact that when prices change,

consumers will substitute to cheaper products.

The Paasche index also suffers from substitution bias:

Paasche =
p0 · x0
p · x0 =

e(p0, u0)

p · x0 ≤
e(p0, u0)

e(p, u0)
= Ideal (u0).
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In the last decade, the Bureau of Labor Statistics measure of inflation (the

Consumer Price Index or CPI) has come under criticism. One of the main criticisms

is that it suffers from substitution bias. There is also concern over the CPI for

several other reasons, which include the following biases.

• “New Good Bias”. When new products are introduced, we only have a price
in the “after” period, but not in the before period (or if products disappear,

we have the opposite problem). The CPI deals with this by waiting 5—10 years

to add these products (eg cellular telephones, rice krispies treats cereal) to

the index. But these products make us better off, meaning that the CPI

tends to underestimate how much better off we really are. A substantial

body of recent research is focused on measuring the welfare impact of new

goods.

• “Outlet Bias”. The BLS goes around and measures prices in various places,
then takes an average. Over the last 20 years, people have started buying

things cheaply at places like Wal-Mart and Costco. Thus, the BLS may tend

to over-estimate the prices people actually pay.

Besides price indices for all goods, it is sometimes useful to construct price

indices for categories of goods based solely on the prices of the goods in that

category. For example, one might hope to be precise about statements like “en-

tertainment goods have become 10% more expensive” without having to refer to

non-entertainment goods like food, housing, and transportation.

Ideally, we would like our price index to stand in for more detailed information

in various calculations and empirical studies, especially calculations about con-

sumer welfare and demand studies. With those intuitive goals in mind, we turn to

a formal treatment.

We divide the goods 1, ..., n be divided into two groups. Let goods 1, ..., k be

the ones in the category of interest, which here we call “entertainment goods,”

while goods k + 1, ..., n denote the other, non-entertainment goods. We make

two assumptions and impose three requirements. The assumptions are (1) that

consumer preferences are locally non-satiated and (2) that there exist some prices
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at which the consumer prefers to make a positive expenditure on entertainment

goods. The second assumption rules out trivial cases.

The first requirement is that the entertainment price index should depend only

on the prices (p1, ..., pk) of the entertainment goods and should be homogeneous of

degree 1, so that doubling all the prices doubles the index. The second requirement

is that if the prices of entertainment goods change in a way that leaves the index

unchanged and if the consumer’s income and the prices of non-entertainment goods

remain unchanged, then consumer welfare should also remain unchanged. We

formulate this as the requirement that the two conditions (1) P (p) = P (p0) and

(2) pj = p0j for j = k + 1, ..., n imply that for all u, e(p;u) = e(p0, u). Third,

one should be able to compute the demands for non-entertainment goods from

the prices for those goods and the price index for entertainment goods. This is

formalized by the requirement that conditions (1) and (2) above should also imply

hj(p) = hj(p
0) for j = k + 1, ..., n.

The second requirement above is a separability requirement, reminiscent of

the one we analyzed in the note on choice theory. In choice theory, separability

was used to decompose choices: we required that the decision maker’s ranking

of choices from one set does not depend on the choices specified from another

set. Here, separability is used to decompose the price vector: we require that

the welfare ranking of entertainment price vectors should not depend on non-

entertainment prices. As in choice theory, this separabililty implies a particular

structure for the ranking function—there a utility function, here the expenditure

function. Separabilility implies that there exist two functions P : Rk → R andbe : R2+n−k → R, with be increasing in its first argument, such that for all p and u,

e(p, u) = be(P (p), pk+1, ..., pn, u).
We leave the proof as an exercise. By Shepard’s lemma, when separability applies,

we may further conclude that for j = k + 1, ..., n,

hj(p, u) =
∂

∂pj
e(p, u) =

∂

∂pj
be(P (p), pk+1, ..., pn, u) ≡ bhj(P (p), pk+1, ..., pn, u).

where the last equality defines the function bhj.
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Notice that the isoquants of P are the same as the “restricted” isoquants of

e, where the restriction is to changes in the prices of the first k goods. If P is

differentiable with non-zero derivatives, then we can characterize the slopes of the

isoquants of P as follows. Applying the chain rule for any 1 ≤ i < j ≤ k,

∂e/∂pi
∂e/∂pj

=
∂be/∂P
∂be/∂P · ∂P/∂pi

∂P/∂pj
=

∂P/∂pi
∂P/∂pj

.

The construction so far guarantees the existence of a function P , but not one

that is homogeneous of degree one. The next step is to convert the function P

into an index bP that is homogeneous of degree 1. To that end, fix an arbitrary

positive price vector prices pÀ 0 and normalize the index by setting bP (p) = 100.
For any price vector p0 À 0, there is a unique α > 0 such that P (p0) = P (αp):

define bP (p0) = 100α. The index bP defined in this way is homogeneous of degree

one. (We leave it as an exercise to derive the existence of such a unique α and

the homogeneity of bP using our assumptions and the properties of the expenditure
function.)

To summarize, a price index satisfying all the requirements set out above exists

if and only if the expenditure function is separable, that is, if and only if there

exist functions be and P as described above. The separability of the expenditure

function described here is different from the separability of the consumer’s utility

function. Neither separability condition implies the other, and both conditions can

be useful for creating tractable models for both theoretical and empirical inqueries.
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