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CHAPTER

3 N-gram Language Models

“You are uniformly charming!” cried he, with a smile of associating and now
and then I bowed and they perceived a chaise and four to wish for.

Random sentence generated from a Jane Austen trigram model

Predicting is difficult—especially about the future, as the old quip goes. But how
about predicting something that seems much easier, like the next few words someone
is going to say? What word, for example, is likely to follow

Please turn your homework ...

Hopefully, most of you concluded that a very likely word is in, or possibly over,
but probably not refrigerator or the. In this chapter we formalize this intuition by
introducing models that assign a probability to each possible next word.

Models that assign probabilities to upcoming words, or sequences of words
in general, are called language models or LMs. Why would we want to predictlanguage model

LM upcoming words? It turns out that the large language models that revolutionized
modern NLP are trained just by predicting words!! As we’ll see in chapters 7-10,
large language models learn an enormous amount about language solely from being
trained to predict upcoming words from neighboring words.

Language models can also assign a probability to an entire sentence. For exam-
ple, they can predict that the following sequence has a much higher probability of
appearing in a text:

all of a sudden I notice three guys standing on the sidewalk

than does this same set of words in a different order:

on guys all I of notice sidewalk three a sudden standing the

Why does it matter what the probability of a sentence is or how probable the
next word is? In many NLP applications we can use the probability as a way to
choose a better sentence or word over a less-appropriate one. For example we can
correct grammar or spelling errors like Their are two midterms, in which There was
mistyped as Their, or Everything has improve, in which improve should have been
improved. The phrase There are will be much more probable than Their are, and has
improved than has improve, allowing a language model to help users select the more
grammatical variant. Or for a speech recognizer to realize that you said I will be back
soonish and not I will be bassoon dish, it helps to know that back soonish is a much
more probable sequence. Language models can also help in augmentative and
alternative communication systems (Trnka et al. 2007, Kane et al. 2017). People
often use such AAC devices if they are physically unable to speak or sign but canAAC

instead use eye gaze or other specific movements to select words from a menu. Word
prediction can be used to suggest likely words for the menu.
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In this chapter we introduce the simplest kind of language model: the n-gramn-gram

language model. An n-gram is a sequence of n words: a 2-gram (which we’ll
call bigram) is a two-word sequence of words like “please turn”, “turn your”, or
”your homework”, and a 3-gram (a trigram) is a three-word sequence of words like
“please turn your”, or “turn your homework”. But we also (in a bit of terminological
ambiguity) use the word ‘n-gram’ to mean a probabilistic model that can estimate
the probability of a word given the n-1 previous words, and thereby also to assign
probabilities to entire sequences.

In later chapters we will introduce the much more powerful neural large lan-
guage models, based on the transformer architecture of Chapter 10. But because n-
grams have a remarkably simple and clear formalization, we begin our study of lan-
guage modeling with them, introducing major concepts that will play a role through-
out language modeling, concepts like training and test sets, perplexity, sampling,
and interpolation.

3.1 N-Grams

Let’s begin with the task of computing P(w|h), the probability of a word w given
some history h. Suppose the history h is “its water is so transparent that” and we
want to know the probability that the next word is the:

P(the|its water is so transparent that). (3.1)

One way to estimate this probability is from relative frequency counts: take a
very large corpus, count the number of times we see its water is so transparent that,
and count the number of times this is followed by the. This would be answering the
question “Out of the times we saw the history h, how many times was it followed by
the word w”, as follows:

P(the|its water is so transparent that) =
C(its water is so transparent that the)

C(its water is so transparent that)
(3.2)

With a large enough corpus, such as the web, we can compute these counts and
estimate the probability from Eq. 3.2. You should pause now, go to the web, and
compute this estimate for yourself.

While this method of estimating probabilities directly from counts works fine in
many cases, it turns out that even the web isn’t big enough to give us good estimates
in most cases. This is because language is creative; new sentences are created all the
time, and we won’t always be able to count entire sentences. Even simple extensions
of the example sentence may have counts of zero on the web (such as “Walden
Pond’s water is so transparent that the”; well, used to have counts of zero).

Similarly, if we wanted to know the joint probability of an entire sequence of
words like its water is so transparent, we could do it by asking “out of all possible
sequences of five words, how many of them are its water is so transparent?” We
would have to get the count of its water is so transparent and divide by the sum of
the counts of all possible five word sequences. That seems rather a lot to estimate!

For this reason, we’ll need to introduce more clever ways of estimating the prob-
ability of a word w given a history h, or the probability of an entire word sequence
W . Let’s start with a little formalizing of notation. To represent the probability of a
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particular random variable Xi taking on the value “the”, or P(Xi = “the”), we will use
the simplification P(the). We’ll represent a sequence of n words either as w1 . . .wn
or w1:n. Thus the expression w1:n−1 means the string w1,w2, ...,wn−1, but we’ll also
be using the equivalent notation w<n, which can be read as “all the elements of w
from w1 up to and including wn−1. For the joint probability of each word in a se-
quence having a particular value P(X1 = w1,X2 = w2,X3 = w3, ...,Xn = wn) we’ll
use P(w1,w2, ...,wn).

Now, how can we compute probabilities of entire sequences like P(w1,w2, ...,wn)?
One thing we can do is decompose this probability using the chain rule of proba-
bility:

P(X1...Xn) = P(X1)P(X2|X1)P(X3|X1:2) . . .P(Xn|X1:n−1)

=

n∏
k=1

P(Xk|X1:k−1) (3.3)

Applying the chain rule to words, we get

P(w1:n) = P(w1)P(w2|w1)P(w3|w1:2) . . .P(wn|w1:n−1)

=

n∏
k=1

P(wk|w1:k−1) (3.4)

The chain rule shows the link between computing the joint probability of a sequence
and computing the conditional probability of a word given previous words. Equa-
tion 3.4 suggests that we could estimate the joint probability of an entire sequence of
words by multiplying together a number of conditional probabilities. But using the
chain rule doesn’t really seem to help us! We don’t know any way to compute the
exact probability of a word given a long sequence of preceding words, P(wn|w1:n−1).
As we said above, we can’t just estimate by counting the number of times every word
occurs following every long string, because language is creative and any particular
context might have never occurred before!

The intuition of the n-gram model is that instead of computing the probability of
a word given its entire history, we can approximate the history by just the last few
words.

The bigram model, for example, approximates the probability of a word givenbigram

all the previous words P(wn|w1:n−1) by using only the conditional probability of the
preceding word P(wn|wn−1). In other words, instead of computing the probability

P(the|Walden Pond’s water is so transparent that) (3.5)

we approximate it with the probability

P(the|that) (3.6)

When we use a bigram model to predict the conditional probability of the next word,
we are thus making the following approximation:

P(wn|w1:n−1)≈ P(wn|wn−1) (3.7)

The assumption that the probability of a word depends only on the previous word is
called a Markov assumption. Markov models are the class of probabilistic modelsMarkov

that assume we can predict the probability of some future unit without looking too
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far into the past. We can generalize the bigram (which looks one word into the past)
to the trigram (which looks two words into the past) and thus to the n-gram (whichn-gram

looks n−1 words into the past).
Let’s see a general equation for this n-gram approximation to the conditional

probability of the next word in a sequence. We’ll use N here to mean the n-gram
size, so N = 2 means bigrams and N = 3 means trigrams. Then we approximate the
probability of a word given its entire context as follows:

P(wn|w1:n−1)≈ P(wn|wn−N+1:n−1) (3.8)

Given the bigram assumption for the probability of an individual word, we can com-
pute the probability of a complete word sequence by substituting Eq. 3.7 into Eq. 3.4:

P(w1:n)≈
n∏

k=1

P(wk|wk−1) (3.9)

How do we estimate these bigram or n-gram probabilities? An intuitive way to
estimate probabilities is called maximum likelihood estimation or MLE. We get

maximum
likelihood
estimation

the MLE estimate for the parameters of an n-gram model by getting counts from a
corpus, and normalizing the counts so that they lie between 0 and 1.1normalize

For example, to compute a particular bigram probability of a word wn given a
previous word wn−1, we’ll compute the count of the bigram C(wn−1wn) and normal-
ize by the sum of all the bigrams that share the same first word wn−1:

P(wn|wn−1) =
C(wn−1wn)∑

w C(wn−1w)
(3.10)

We can simplify this equation, since the sum of all bigram counts that start with
a given word wn−1 must be equal to the unigram count for that word wn−1 (the reader
should take a moment to be convinced of this):

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.11)

Let’s work through an example using a mini-corpus of three sentences. We’ll
first need to augment each sentence with a special symbol <s> at the beginning
of the sentence, to give us the bigram context of the first word. We’ll also need a
special end-symbol. </s>2

<s> I am Sam </s>

<s> Sam I am </s>

<s> I do not like green eggs and ham </s>

Here are the calculations for some of the bigram probabilities from this corpus

P(I|<s>) = 2
3 = .67 P(Sam|<s>) = 1

3 = .33 P(am|I) = 2
3 = .67

P(</s>|Sam) = 1
2 = 0.5 P(Sam|am) = 1

2 = .5 P(do|I) = 1
3 = .33

1 For probabilistic models, normalizing means dividing by some total count so that the resulting proba-
bilities fall between 0 and 1.
2 We need the end-symbol to make the bigram grammar a true probability distribution. Without an end-
symbol, instead of the sentence probabilities of all sentences summing to one, the sentence probabilities
for all sentences of a given length would sum to one. This model would define an infinite set of probability
distributions, with one distribution per sentence length. See Exercise 3.5.
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For the general case of MLE n-gram parameter estimation:

P(wn|wn−N+1:n−1) =
C(wn−N+1:n−1 wn)

C(wn−N+1:n−1)
(3.12)

Equation 3.12 (like Eq. 3.11) estimates the n-gram probability by dividing the
observed frequency of a particular sequence by the observed frequency of a prefix.
This ratio is called a relative frequency. We said above that this use of relativerelative

frequency
frequencies as a way to estimate probabilities is an example of maximum likelihood
estimation or MLE. In MLE, the resulting parameter set maximizes the likelihood
of the training set T given the model M (i.e., P(T |M)). For example, suppose the
word Chinese occurs 400 times in a corpus of a million words like the Brown corpus.
What is the probability that a random word selected from some other text of, say,
a million words will be the word Chinese? The MLE of its probability is 400

1000000
or .0004. Now .0004 is not the best possible estimate of the probability of Chinese
occurring in all situations; it might turn out that in some other corpus or context
Chinese is a very unlikely word. But it is the probability that makes it most likely
that Chinese will occur 400 times in a million-word corpus. We present ways to
modify the MLE estimates slightly to get better probability estimates in Section 3.6.

Let’s move on to some examples from a slightly larger corpus than our 14-word
example above. We’ll use data from the now-defunct Berkeley Restaurant Project,
a dialogue system from the last century that answered questions about a database
of restaurants in Berkeley, California (Jurafsky et al., 1994). Here are some text-
normalized sample user queries (a sample of 9332 sentences is on the website):

can you tell me about any good cantonese restaurants close by
mid priced thai food is what i’m looking for
tell me about chez panisse
can you give me a listing of the kinds of food that are available
i’m looking for a good place to eat breakfast
when is caffe venezia open during the day

Figure 3.1 shows the bigram counts from a piece of a bigram grammar from the
Berkeley Restaurant Project. Note that the majority of the values are zero. In fact,
we have chosen the sample words to cohere with each other; a matrix selected from
a random set of eight words would be even more sparse.

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 3.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

Figure 3.2 shows the bigram probabilities after normalization (dividing each cell
in Fig. 3.1 by the appropriate unigram for its row, taken from the following set of
unigram probabilities):
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i want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 3.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Here are a few other useful probabilities:

P(i|<s>) = 0.25 P(english|want) = 0.0011
P(food|english) = 0.5 P(</s>|food) = 0.68

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)

= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)

= .25× .33× .0011×0.5×0.68
= .000031

We leave it as Exercise 3.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice we might use trigram models, which condition on thetrigram

previous two words rather than the previous word, or 4-gram or even 5-gram mod-4-gram

5-gram els, when there is sufficient training data. Note that for these larger n-grams, we’ll
need to assume extra contexts to the left and right of the sentence end. For example,
to compute trigram probabilities at the very beginning of the sentence, we use two
pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format
as log probabilities. Since probabilities are (by definition) less than or equal tolog

probabilities
1, the more probabilities we multiply together, the smaller the product becomes.
Multiplying enough n-grams together would result in numerical underflow. By using
log probabilities instead of raw probabilities, we get numbers that are not as small.
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Adding in log space is equivalent to multiplying in linear space, so we combine log
probabilities by adding them. The result of doing all computation and storage in log
space is that we only need to convert back into probabilities if we need to report
them at the end; then we can just take the exp of the logprob:

p1× p2× p3× p4 = exp(log p1 + log p2 + log p3 + log p4) (3.13)

In practice throughout this book, we’ll use log to mean natural log (ln) when the
base is not specified.

3.2 Evaluating Language Models: Training and Test Sets

The best way to evaluate the performance of a language model is to embed it in
an application and measure how much the application improves. Such end-to-end
evaluation is called extrinsic evaluation. Extrinsic evaluation is the only way toextrinsic

evaluation
know if a particular improvement in the language model (or any component) is really
going to help the task at hand. Thus for evaluating n-gram language models that are
a component of some task like speech recognition or machine translation, we can
compare the performance of two candidate language models by running the speech
recognizer or machine translator twice, once with each language model, and seeing
which gives the more accurate transcription.

Unfortunately, running big NLP systems end-to-end is often very expensive. In-
stead, it’s helpful to have a metric that can be used to quickly evaluate potential
improvements in a language model. An intrinsic evaluation metric is one that mea-intrinsic

evaluation
sures the quality of a model independent of any application. In the next section we’ll
introduce perplexity, which is the standard intrinsic metric for measuring language
model performance, both for simple n-gram language models and for the more so-
phisticated neural large language models of Chapter 10.

In order to evaluate any machine learning model, we need to have at least three
distinct data sets: the training set, the development set, and the test set.training set

development
set

test set
The training set is the data we use to learn the parameters of our model; for

simple n-gram language models it’s the corpus from which we get the counts that
we normalize into the probabilities of the n-gram language model.

The test set is a different, held-out set of data, not overlapping with the training
set, that we use to evaluate the model. We need a separate test set to give us an
unbiased estimate of how well the model we trained can generalize when we apply
it to some new unknown dataset. A machine learning model that perfectly captured
the training data, but performed terribly on any other data, wouldn’t be much use
when it comes time to apply it to any new data or problem! We thus measure the
quality of an n-gram model by its performance on this unseen test set or test corpus.

How should we choose a training and test set? The test set should reflect the
language we want to use the model for. If we’re going to use our language model
for speech recognition of chemistry lectures, the test set should be text of chemistry
lectures. If we’re going to use it as part of a system for translating hotel booking re-
quests from Chinese to English, the test set should be text of hotel booking requests.
If we want our language model to be general purpose, then the test test should be
drawn from a wide variety of texts. In such cases we might collect a lot of texts
from different sources, and then divide it up into a training set and a test set. It’s
important to do the dividing carefully; if we’re building a general purpose model,
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we don’t want the test set to consist of only text from one document, or one author,
since that wouldn’t be a good measure of general performance.

Thus if we are given a corpus of text and want to compare the performance of
two different n-gram models, we divide the data into training and test sets, and train
the parameters of both models on the training set. We can then compare how well
the two trained models fit the test set.

But what does it mean to “fit the test set”? The standard answer is simple:
whichever language model assigns a higher probability to the test set—which
means it more accurately predicts the test set—is a better model. Given two proba-
bilistic models, the better model is the one that has a tighter fit to the test data or that
better predicts the details of the test data, and hence will assign a higher probability
to the test data.

Since our evaluation metric is based on test set probability, it’s important not to
let the test sentences into the training set. Suppose we are trying to compute the
probability of a particular “test” sentence. If our test sentence is part of the training
corpus, we will mistakenly assign it an artificially high probability when it occurs
in the test set. We call this situation training on the test set. Training on the test
set introduces a bias that makes the probabilities all look too high, and causes huge
inaccuracies in perplexity, the probability-based metric we introduce below.

Even if we don’t train on the test set, if we test our language model on it many
times after making different changes, we might implicitly tune to its characteristics,
by noticing which changes seem to make the model better. For this reason, we only
want to run our model on the test set once, or a very few number of times, once we
are sure our model is ready.

For this reason we normally instead have a third dataset called a developmentdevelopment
test

test set or, devset. We do all our testing on this dataset until the very end, and then
we test on the test once to see how good our model is.

How do we divide our data into training, development, and test sets? We want
our test set to be as large as possible, since a small test set may be accidentally un-
representative, but we also want as much training data as possible. At the minimum,
we would want to pick the smallest test set that gives us enough statistical power
to measure a statistically significant difference between two potential models. It’s
important that the dev set be drawn from the same kind of text as the test set, since
its goal is to measure how we would do on the test set.

3.3 Evaluating Language Models: Perplexity

In practice we don’t use raw probability as our metric for evaluating language mod-
els, but a function of probability called perplexity. Perplexity is one of the most
important metrics in natural language processing, and we use it to evaluate neural
language models as well.

The perplexity (sometimes abbreviated as PP or PPL) of a language model on aperplexity

test set is the inverse probability of the test set (one over the probability of the test
set), normalized by the number of words. For this reason it’s sometimes called the
per-word perplexity. For a test set W = w1w2 . . .wN ,:
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perplexity(W ) = P(w1w2 . . .wN)
− 1

N (3.14)

= N

√
1

P(w1w2 . . .wN)

Or we can use the chain rule to expand the probability of W :

perplexity(W ) = N

√√√√ N∏
i=1

1
P(wi|w1 . . .wi−1)

(3.15)

Note that because of the inverse in Eq. 3.15, the higher the probability of the
word sequence, the lower the perplexity. Thus the lower the perplexity of a model on
the data, the better the model, and minimizing perplexity is equivalent to maximizing
the test set probability according to the language model. Why does perplexity use
the inverse probability? It turns out the inverse arises from the original definition
of perplexity from cross-entropy rate in information theory; for those interested,
the explanation is in the advanced section Section 3.9. Meanwhile, we just have to
remember that perplexity has an inverse relationship with probability.

The details of computing the perplexity of a test set W depends on which lan-
guage model we use. Here’s the perplexity of W with a unigram language model
(just the geometric mean of the unigram probabilities):

perplexity(W ) = N

√√√√ N∏
i=1

1
P(wi)

(3.16)

The perplexity of W computed with a bigram language model is still a geometric
mean, but now of the bigram probabilities:

perplexity(W ) = N

√√√√ N∏
i=1

1
P(wi|wi−1)

(3.17)

What we generally use for word sequence in Eq. 3.15 or Eq. 3.17 is the entire
sequence of words in some test set. Since this sequence will cross many sentence
boundaries, if our vocabulary includes a between-sentence token <EOS> or separate
begin- and end-sentence markers <s> and </s> then we can include them in the
probability computation. If we do, then we also include one token per sentence in
the total count of word tokens N.3

We mentioned above that perplexity is a function of both the text and the lan-
guage model: given a text W , different language models will have different perplex-
ities. Because of this, perplexity can be used to compare different n-gram models.
Let’s look at an example, in which we trained unigram, bigram, and trigram gram-
mars on 38 million words (including start-of-sentence tokens) from the Wall Street
Journal, using a 19,979 word vocabulary. We then computed the perplexity of each

3 For example if we use both begin and end tokens, we would include the end-of-sentence marker </s>
but not the beginning-of-sentence marker <s> in our count of N; This is because the end-sentence token is
followed directly by the begin-sentence token with probability almost 1, so we don’t want the probability
of that fake transition to influence our perplexity.
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of these models on a test set of 1.5 million words, using Eq. 3.16 for unigrams,
Eq. 3.17 for bigrams, and the corresponding equation for trigrams. The table below
shows the perplexity of a 1.5 million word WSJ test set according to each of these
grammars.

Unigram Bigram Trigram
Perplexity 962 170 109

As we see above, the more information the n-gram gives us about the word
sequence, the higher the probability the n-gram will assign to the string. A trigram
model is less surprised than a unigram model because it has a better idea of what
words might come next, and so it assigns them a higher probability. And the higher
the probability, the lower the perplexity (since as Eq. 3.15 showed, perplexity is
related inversely to the likelihood of the test sequence according to the model). So a
lower perplexity can tell us that a language model is a better predictor of the words
in the test set.

Note that in computing perplexities, the n-gram model P must be constructed
without any knowledge of the test set or any prior knowledge of the vocabulary of
the test set. Any kind of knowledge of the test set can cause the perplexity to be
artificially low. The perplexity of two language models is only comparable if they
use identical vocabularies.

An (intrinsic) improvement in perplexity does not guarantee an (extrinsic) im-
provement in the performance of a language processing task like speech recognition
or machine translation. Nonetheless, because perplexity usually correlates with task
improvements, it is commonly used as a convenient evaluation metric. Still, when
possible a model’s improvement in perplexity should be confirmed by an end-to-end
evaluation on a real task.

Advanced: Perplexity as Weighted Average Branching Factor

It turns out that perplexity can also be thought of as the weighted average branch-
ing factor of a language. The branching factor of a language is the number of
possible next words that can follow any word. If we have an artificial deterministic
language of integer numbers whose vocabulary consists of the 10 digits (zero, one,
two,..., nine), in which any digit can follow any other digit, then the branching factor
of that language is 10.

Let’s first convince ourselves that if we compute the perplexity of this artificial
digit language we indeed get 10. Let’s suppose that (in training and in test) each
of the 10 digits occurs with exactly equal probability P = 1

10 . Now imagine a test
string of digits of length N, and, again, assume that in the training set all the digits
occurred with equal probability. By Eq. 3.15, the perplexity will be

perplexity(W ) = P(w1w2 . . .wN)
− 1

N

= (
1
10

N
)−

1
N

=
1

10

−1

= 10 (3.18)

But suppose that the number zero is really frequent and occurs far more often
than other numbers. Let’s say that 0 occur 91 times in the training set, and each of the
other digits occurred 1 time each. Now we see the following test set: 0 0 0 0 0 3 0 0 0
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0. We should expect the perplexity of this test set to be lower since most of the time
the next number will be zero, which is very predictable, i.e. has a high probability.
Thus, although the branching factor is still 10, the perplexity or weighted branching
factor is smaller. We leave this exact calculation as exercise 3.12.

3.4 Sampling sentences from a language model

One important way to visualize what kind of knowledge a language model embodies
is to sample from it. Sampling from a distribution means to choose random pointssampling

according to their likelihood. Thus sampling from a language model—which rep-
resents a distribution over sentences—means to generate some sentences, choosing
each sentence according to its likelihood as defined by the model. Thus we are more
likely to generate sentences that the model thinks have a high probability and less
likely to generate sentences that the model thinks have a low probability.

This technique of visualizing a language model by sampling was first suggested
very early on by Shannon (1948) and Miller and Selfridge (1950). It’s simplest to
visualize how this works for the unigram case. Imagine all the words of the English
language covering the probability space between 0 and 1, each word covering an
interval proportional to its frequency. Fig. 3.3 shows a visualization, using a unigram
LM computed from the text of this book. We choose a random value between 0 and
1, find that point on the probability line, and print the word whose interval includes
this chosen value. We continue choosing random numbers and generating words
until we randomly generate the sentence-final token </s>.
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Figure 3.3 A visualization of the sampling distribution for sampling sentences by repeat-
edly sampling unigrams. The blue bar represents the relative frequency of each word (we’ve
ordered them from most frequent to least frequent, but the choice of order is arbitrary). The
number line shows the cumulative probabilities. If we choose a random number between 0
and 1, it will fall in an interval corresponding to some word. The expectation for the random
number to fall in the larger intervals of one of the frequent words (the, of, a) is much higher
than in the smaller interval of one of the rare words (polyphonic).

We can use the same technique to generate bigrams by first generating a ran-
dom bigram that starts with <s> (according to its bigram probability). Let’s say the
second word of that bigram is w. We next choose a random bigram starting with w
(again, drawn according to its bigram probability), and so on.

3.5 Generalization and Zeros

The n-gram model, like many statistical models, is dependent on the training corpus.
One implication of this is that the probabilities often encode specific facts about a
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given training corpus. Another implication is that n-grams do a better and better job
of modeling the training corpus as we increase the value of N.

We can use the sampling method from the prior section to visualize both of
these facts! To give an intuition for the increasing power of higher-order n-grams,
Fig. 3.4 shows random sentences generated from unigram, bigram, trigram, and 4-
gram models trained on Shakespeare’s works.

1
–To him swallowed confess hear both. Which. Of save on trail for are ay device and
rote life have

gram –Hill he late speaks; or! a more to leg less first you enter

2
–Why dost stand forth thy canopy, forsooth; he is this palpable hit the King Henry. Live
king. Follow.

gram –What means, sir. I confess she? then all sorts, he is trim, captain.

3
–Fly, and will rid me these news of price. Therefore the sadness of parting, as they say,
’tis done.

gram –This shall forbid it should be branded, if renown made it empty.

4
–King Henry. What! I will go seek the traitor Gloucester. Exeunt some of the watch. A
great banquet serv’d in;

gram –It cannot be but so.
Figure 3.4 Eight sentences randomly generated from four n-grams computed from Shakespeare’s works. All
characters were mapped to lower-case and punctuation marks were treated as words. Output is hand-corrected
for capitalization to improve readability.

The longer the context on which we train the model, the more coherent the sen-
tences. In the unigram sentences, there is no coherent relation between words or any
sentence-final punctuation. The bigram sentences have some local word-to-word
coherence (especially if we consider that punctuation counts as a word). The tri-
gram and 4-gram sentences are beginning to look a lot like Shakespeare. Indeed, a
careful investigation of the 4-gram sentences shows that they look a little too much
like Shakespeare. The words It cannot be but so are directly from King John. This is
because, not to put the knock on Shakespeare, his oeuvre is not very large as corpora
go (N = 884,647,V = 29,066), and our n-gram probability matrices are ridiculously
sparse. There are V 2 = 844,000,000 possible bigrams alone, and the number of pos-
sible 4-grams is V 4 = 7×1017. Thus, once the generator has chosen the first 3-gram
(It cannot be), there are only seven possible next words for the 4th element (but, I,
that, thus, this, and the period).

To get an idea of the dependence of a grammar on its training set, let’s look at an
n-gram grammar trained on a completely different corpus: the Wall Street Journal
(WSJ) newspaper. Shakespeare and the Wall Street Journal are both English, so
we might expect some overlap between our n-grams for the two genres. Fig. 3.5
shows sentences generated by unigram, bigram, and trigram grammars trained on
40 million words from WSJ.

Compare these examples to the pseudo-Shakespeare in Fig. 3.4. While they both
model “English-like sentences”, there is clearly no overlap in generated sentences,
and little overlap even in small phrases. Statistical models are likely to be pretty use-
less as predictors if the training sets and the test sets are as different as Shakespeare
and WSJ.

How should we deal with this problem when we build n-gram models? One step
is to be sure to use a training corpus that has a similar genre to whatever task we are
trying to accomplish. To build a language model for translating legal documents,
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1 Months the my and issue of year foreign new exchange’s september
were recession exchange new endorsed a acquire to six executives

gram

2
Last December through the way to preserve the Hudson corporation N.
B. E. C. Taylor would seem to complete the major central planners one

gram point five percent of U. S. E. has already old M. X. corporation of living
on information such as more frequently fishing to keep her

3
They also point to ninety nine point six billion dollars from two hundred
four oh six three percent of the rates of interest stores as Mexico and

gram Brazil on market conditions
Figure 3.5 Three sentences randomly generated from three n-gram models computed from
40 million words of the Wall Street Journal, lower-casing all characters and treating punctua-
tion as words. Output was then hand-corrected for capitalization to improve readability.

we need a training corpus of legal documents. To build a language model for a
question-answering system, we need a training corpus of questions.

It is equally important to get training data in the appropriate dialect or variety,
especially when processing social media posts or spoken transcripts. For exam-
ple some tweets will use features of African American English (AAE)— the name
for the many variations of language used in African American communities (King,
2020). Such features include words like finna—an auxiliary verb that marks imme-
diate future tense —that don’t occur in other varieties, or spellings like den for then,
in tweets like this one (Blodgett and O’Connor, 2017):

(3.19) Bored af den my phone finna die!!!

while tweets from English-based languages like Nigerian Pidgin have markedly dif-
ferent vocabulary and n-gram patterns from American English (Jurgens et al., 2017):

(3.20) @username R u a wizard or wat gan sef: in d mornin - u tweet, afternoon - u
tweet, nyt gan u dey tweet. beta get ur IT placement wiv twitter

Matching genres and dialects is still not sufficient. Our models may still be
subject to the problem of sparsity. For any n-gram that occurred a sufficient number
of times, we might have a good estimate of its probability. But because any corpus is
limited, some perfectly acceptable English word sequences are bound to be missing
from it. That is, we’ll have many cases of putative “zero probability n-grams” that
should really have some non-zero probability. Consider the words that follow the
bigram denied the in the WSJ Treebank3 corpus, together with their counts:

denied the allegations: 5
denied the speculation: 2
denied the rumors: 1
denied the report: 1

But suppose our test set has phrases like:

denied the offer
denied the loan

Our model will incorrectly estimate that the P(offer|denied the) is 0!
These zeros—things that don’t ever occur in the training set but do occur inzeros

the test set—are a problem for two reasons. First, their presence means we are
underestimating the probability of all sorts of words that might occur, which will
hurt the performance of any application we want to run on this data.

Second, if the probability of any word in the test set is 0, the entire probability
of the test set is 0. By definition, perplexity is based on the inverse probability of the
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test set. Thus if some words have zero probability, we can’t compute perplexity at
all, since we can’t divide by 0!

What do we do about zeros? There are two solutions, depending on the kind of
zero. For words whose n-gram probability is zero because they occur in a novel test
set context, like the example of denied the offer above, we’ll introduce in Section 3.6
algorithms called smoothing or discounting. Smoothing algorithms shave off a bit
of probability mass from some more frequent events and give it to these unseen
events. But first, let’s talk about an even more insidious form of zero: words that the
model has never seen before at all (in any context): unknown words!

Unknown Words

What do we do about words we have never seen before? Perhaps the word Jurafsky
simply did not occur in our training set, but pops up in the test set! We usually
disallow this situation by stipulating that we already know all the words that can
occur. In such a closed vocabulary system the test set can only contain words fromclosed

vocabulary
this known lexicon, and there will be no unknown words. This is what we do for the
neural language models of later chapters. For these models we use subword tokens
rather than words. With subword tokenization (like the BPE algorithm of Chapter 2)
any unknown word can be modeled as a sequence of smaller subwords, if necessary
by a sequence of individual letters, so we never have unknown words.

If our language model is using words instead of tokens, however, we have to
deal with unknown words, or out of vocabulary (OOV) words: words we haven’tOOV

seen before. The percentage of OOV words that appear in the test set is called the
OOV rate. One way to create an open vocabulary system is to model potentialopen

vocabulary
unknown words in the test set by adding a pseudo-word called <UNK>. Again, most
modern language models are closed vocabulary and don’t use an <UNK> token. But
when necessary, we can train <UNK> probabilities by turning the problem back into
a closed vocabulary one by choosing a fixed vocabulary in advance:

1. Choose a vocabulary (word list) that is fixed in advance.
2. Convert in the training set any word that is not in this set (any OOV word) to

the unknown word token <UNK> in a text normalization step.
3. Estimate the probabilities for <UNK> from its counts just like any other regular

word in the training set.

The exact choice of <UNK> has an effect on perplexity. A language model can
achieve low perplexity by choosing a small vocabulary and assigning the unknown
word a high probability. Thus perplexities can only be compared across language
models with <UNK> if they have the exact same vocabularies (Buck et al., 2014).

3.6 Smoothing

What do we do with words that are in our vocabulary (they are not unknown words)
but appear in a test set in an unseen context (for example they appear after a word
they never appeared after in training)? To keep a language model from assigning
zero probability to these unseen events, we’ll have to shave off a bit of probability
mass from some more frequent events and give it to the events we’ve never seen.
This modification is called smoothing or discounting. In this section and the fol-smoothing

discounting lowing ones we’ll introduce a variety of ways to do smoothing: Laplace (add-one)
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smoothing, add-k smoothing, and stupid backoff. At the end of the chapter we
also summarize a more complex method, Kneser-Ney smoothing.

3.6.1 Laplace Smoothing
The simplest way to do smoothing is to add one to all the n-gram counts, before
we normalize them into probabilities. All the counts that used to be zero will now
have a count of 1, the counts of 1 will be 2, and so on. This algorithm is called
Laplace smoothing. Laplace smoothing does not perform well enough to be usedLaplace

smoothing
in modern n-gram models, but it usefully introduces many of the concepts that we
see in other smoothing algorithms, gives a useful baseline, and is also a practical
smoothing algorithm for other tasks like text classification (Chapter 4).

Let’s start with the application of Laplace smoothing to unigram probabilities.
Recall that the unsmoothed maximum likelihood estimate of the unigram probability
of the word wi is its count ci normalized by the total number of word tokens N:

P(wi) =
ci

N

Laplace smoothing merely adds one to each count (hence its alternate name add-
one smoothing). Since there are V words in the vocabulary and each one was incre-add-one

mented, we also need to adjust the denominator to take into account the extra V
observations. (What happens to our P values if we don’t increase the denominator?)

PLaplace(wi) =
ci +1
N +V

(3.21)

Instead of changing both the numerator and denominator, it is convenient to
describe how a smoothing algorithm affects the numerator, by defining an adjusted
count c∗. This adjusted count is easier to compare directly with the MLE counts and
can be turned into a probability like an MLE count by normalizing by N. To define
this count, since we are only changing the numerator in addition to adding 1 we’ll
also need to multiply by a normalization factor N

N+V :

c∗i = (ci +1)
N

N +V
(3.22)

We can now turn c∗i into a probability P∗i by normalizing by N.
A related way to view smoothing is as discounting (lowering) some non-zerodiscounting

counts in order to get the probability mass that will be assigned to the zero counts.
Thus, instead of referring to the discounted counts c∗, we might describe a smooth-
ing algorithm in terms of a relative discount dc, the ratio of the discounted countsdiscount

to the original counts:

dc =
c∗

c

Now that we have the intuition for the unigram case, let’s smooth our Berkeley
Restaurant Project bigrams. Figure 3.6 shows the add-one smoothed counts for the
bigrams in Fig. 3.1.

Figure 3.7 shows the add-one smoothed probabilities for the bigrams in Fig. 3.2.
Recall that normal bigram probabilities are computed by normalizing each row of
counts by the unigram count:
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i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 3.6 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

P(wn|wn−1) =
C(wn−1wn)

C(wn−1)
(3.23)

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

PLaplace(wn|wn−1) =
C(wn−1wn)+1∑
w (C(wn−1w)+1)

=
C(wn−1wn)+1
C(wn−1)+V

(3.24)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 3.7.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 3.7 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 3.25. Figure 3.8 shows the reconstructed counts.

c∗(wn−1wn) =
[C(wn−1wn)+1]×C(wn−1)

C(wn−1)+V
(3.25)

Note that add-one smoothing has made a very big change to the counts. Com-
paring Fig. 3.8 to the original counts in Fig. 3.1, we can see that C(want to) changed
from 608 to 238! We can see this in probability space as well: P(to|want) decreases
from .66 in the unsmoothed case to .26 in the smoothed case. Looking at the dis-
count d (the ratio between new and old counts) shows us how strikingly the counts
for each prefix word have been reduced; the discount for the bigram want to is .39,
while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.
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i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 3.8 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.

3.6.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P∗Add-k(wn|wn−1) =
C(wn−1wn)+ k
C(wn−1)+ kV

(3.26)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

3.6.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency n-grams. But there is an additional source of knowledge we can draw on.
If we are trying to compute P(wn|wn−2wn−1) but we have no examples of a particular
trigram wn−2wn−1wn, we can instead estimate its probability by using the bigram
probability P(wn|wn−1). Similarly, if we don’t have counts to compute P(wn|wn−1),
we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this n-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order n-gram if we have zero evidence for a higher-order
n-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the n-gram estimators, weighting and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order n-grams by linearly
interpolating them. Thus, we estimate the trigram probability P(wn|wn−2wn−1) by
mixing together the unigram, bigram, and trigram probabilities, each weighted by a
λ :

P̂(wn|wn−2wn−1) = λ1P(wn)

+λ2P(wn|wn−1)

+λ3P(wn|wn−2wn−1) (3.27)
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The λ s must sum to 1, making Eq. 3.27 equivalent to a weighted average. In a
slightly more sophisticated version of linear interpolation, each λ weight is com-
puted by conditioning on the context. This way, if we have particularly accurate
counts for a particular bigram, we assume that the counts of the trigrams based on
this bigram will be more trustworthy, so we can make the λ s for those trigrams
higher and thus give that trigram more weight in the interpolation. Equation 3.28
shows the equation for interpolation with context-conditioned weights:

P̂(wn|wn−2wn−1) = λ1(wn−2:n−1)P(wn)

+λ2(wn−2:n−1)P(wn|wn−1)

+λ3(wn−2:n−1)P(wn|wn−2wn−1) (3.28)

How are these λ values set? Both the simple interpolation and conditional interpo-
lation λ s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus, so-called because we hold it out from the training data, that we use
to set hyperparameters like these λ values. We do so by choosing the λ values that
maximize the likelihood of the held-out corpus. That is, we fix the n-gram probabil-
ities and then search for the λ values that—when plugged into Eq. 3.27—give us the
highest probability of the held-out set. There are various ways to find this optimal
set of λ s. One way is to use the EM algorithm, an iterative learning algorithm that
converges on locally optimal λ s (Jelinek and Mercer, 1980).

In a backoff n-gram model, if the n-gram we need has zero counts, we approx-
imate it by backing off to the (n-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order n-grams to save some probability mass for the lowerdiscount

order n-grams. Just as with add-one smoothing, if the higher-order n-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as we
replaced an n-gram which has zero probability with a lower-order n-gram, we would
be adding probability mass, and the total probability assigned to all possible strings
by the language model would be greater than 1! In addition to this explicit discount
factor, we’ll need a function α to distribute this probability mass to the lower order
n-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P∗ if we’ve seen this n-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (n-1)-gram. The probability for a backoff n-gram PBO is
thus computed as follows:

PBO(wn|wn−N+1:n−1) =

 P∗(wn|wn−N+1:n−1), if C(wn−N+1:n)> 0

α(wn−N+1:n−1)PBO(wn|wn−N+2:n−1), otherwise. (3.29)

Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P∗ and α values.
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3.7 Huge Language Models and Stupid Backoff

By using text from the web or other enormous collections, it is possible to build
extremely large language models. The Web 1 Trillion 5-gram corpus released by
Google includes various large sets of n-grams, including 1-grams through 5-grams
from all the five-word sequences that appear at least 40 times from 1,024,908,267,229
words of text from publicly accessible Web pages in English (Franz and Brants,
2006). Google has also released Google Books Ngrams corpora with n-grams drawn
from their book collections, including another 800 billion tokens of n-grams from
Chinese, English, French, German, Hebrew, Italian, Russian, and Spanish (Lin et al.,
2012). Smaller but more carefully curated n-gram corpora for English include
the million most frequent n-grams drawn from the COCA (Corpus of Contempo-
rary American English) 1 billion word corpus of American English (Davies, 2020).
COCA is a balanced corpus, meaning that it has roughly equal numbers of words
from different genres: web, newspapers, spoken conversation transcripts, fiction,
and so on, drawn from the period 1990-2019, and has the context of each n-gram as
well as labels for genre and provenance.

Some example 4-grams from the Google Web corpus:

4-gram Count
serve as the incoming 92
serve as the incubator 99
serve as the independent 794
serve as the index 223
serve as the indication 72
serve as the indicator 120
serve as the indicators 45

Efficiency considerations are important when building language models that use
such large sets of n-grams. Rather than store each word as a string, it is generally
represented in memory as a 64-bit hash number, with the words themselves stored
on disk. Probabilities are generally quantized using only 4-8 bits (instead of 8-byte
floats), and n-grams are stored in reverse tries.

An n-gram language model can also be shrunk by pruning, for example only
storing n-grams with counts greater than some threshold (such as the count threshold
of 40 used for the Google n-gram release) or using entropy to prune less-important
n-grams (Stolcke, 1998). Another option is to build approximate language models
using techniques like Bloom filters (Talbot and Osborne 2007, Church et al. 2007).Bloom filters

Finally, efficient language model toolkits like KenLM (Heafield 2011, Heafield et al.
2013) use sorted arrays, efficiently combine probabilities and backoffs in a single
value, and use merge sorts to efficiently build the probability tables in a minimal
number of passes through a large corpus.

Although with these toolkits it is possible to build web-scale language models
using advanced smoothing algorithms like the Kneser-Ney algorithm we will see in
Section 3.8, Brants et al. (2007) show that with very large language models a much
simpler algorithm may be sufficient. The algorithm is called stupid backoff. Stupidstupid backoff

backoff gives up the idea of trying to make the language model a true probability dis-
tribution. There is no discounting of the higher-order probabilities. If a higher-order
n-gram has a zero count, we simply backoff to a lower order n-gram, weighed by a
fixed (context-independent) weight. This algorithm does not produce a probability
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distribution, so we’ll follow Brants et al. (2007) in referring to it as S:

S(wi|wi−N+1: i−1) =


count(wi−N+1: i)

count(wi−N+1: i−1)
if count(wi−N+1: i)> 0

λS(wi|wi−N+2: i−1) otherwise
(3.30)

The backoff terminates in the unigram, which has score S(w) = count(w)
N . Brants et al.

(2007) find that a value of 0.4 worked well for λ .

3.8 Advanced: Kneser-Ney Smoothing

A popular advanced n-gram smoothing method is the interpolated Kneser-Ney al-Kneser-Ney

gorithm (Kneser and Ney 1995, Chen and Goodman 1998).

3.8.1 Absolute Discounting
Kneser-Ney has its roots in a method called absolute discounting. Recall that dis-
counting of the counts for frequent n-grams is necessary to save some probability
mass for the smoothing algorithm to distribute to the unseen n-grams.

To see this, we can use a clever idea from Church and Gale (1991). Consider
an n-gram that has count 4. We need to discount this count by some amount. But
how much should we discount it? Church and Gale’s clever idea was to look at a
held-out corpus and just see what the count is for all those bigrams that had count
4 in the training set. They computed a bigram grammar from 22 million words of
AP newswire and then checked the counts of each of these bigrams in another 22
million words. On average, a bigram that occurred 4 times in the first 22 million
words occurred 3.23 times in the next 22 million words. Fig. 3.9 from Church and
Gale (1991) shows these counts for bigrams with c from 0 to 9.

Bigram count in Bigram count in
training set heldout set

0 0.0000270
1 0.448
2 1.25
3 2.24
4 3.23
5 4.21
6 5.23
7 6.21
8 7.21
9 8.26

Figure 3.9 For all bigrams in 22 million words of AP newswire of count 0, 1, 2,...,9, the
counts of these bigrams in a held-out corpus also of 22 million words.

Notice in Fig. 3.9 that except for the held-out counts for 0 and 1, all the other
bigram counts in the held-out set could be estimated pretty well by just subtracting
0.75 from the count in the training set! Absolute discounting formalizes this intu-absolute

discounting
ition by subtracting a fixed (absolute) discount d from each count. The intuition is
that since we have good estimates already for the very high counts, a small discount
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d won’t affect them much. It will mainly modify the smaller counts, for which we
don’t necessarily trust the estimate anyway, and Fig. 3.9 suggests that in practice this
discount is actually a good one for bigrams with counts 2 through 9. The equation
for interpolated absolute discounting applied to bigrams:

PAbsoluteDiscounting(wi|wi−1) =
C(wi−1wi)−d∑

v C(wi−1 v)
+λ (wi−1)P(wi) (3.31)

The first term is the discounted bigram, with 0 ≤ d ≤ 1, and the second term is the
unigram with an interpolation weight λ . By inspection of Fig. 3.9, it looks like just
setting all the d values to .75 would work very well, or perhaps keeping a separate
second discount value of 0.5 for the bigrams with counts of 1. There are principled
methods for setting d; for example, Ney et al. (1994) set d as a function of n1 and
n2, the number of unigrams that have a count of 1 and a count of 2, respectively:

d =
n1

n1 +2n2
(3.32)

3.8.2 Kneser-Ney Discounting
Kneser-Ney discounting (Kneser and Ney, 1995) augments absolute discounting
with a more sophisticated way to handle the lower-order unigram distribution. Con-
sider the job of predicting the next word in this sentence, assuming we are interpo-
lating a bigram and a unigram model.

I can’t see without my reading .

The word glasses seems much more likely to follow here than, say, the word
Kong, so we’d like our unigram model to prefer glasses. But in fact it’s Kong that is
more common, since Hong Kong is a very frequent word. A standard unigram model
will assign Kong a higher probability than glasses. We would like to capture the
intuition that although Kong is frequent, it is mainly only frequent in the phrase Hong
Kong, that is, after the word Hong. The word glasses has a much wider distribution.

In other words, instead of P(w), which answers the question “How likely is
w?”, we’d like to create a unigram model that we might call PCONTINUATION, which
answers the question “How likely is w to appear as a novel continuation?”. How can
we estimate this probability of seeing the word w as a novel continuation, in a new
unseen context? The Kneser-Ney intuition is to base our estimate of PCONTINUATION
on the number of different contexts word w has appeared in, that is, the number of
bigram types it completes. Every bigram type was a novel continuation the first time
it was seen. We hypothesize that words that have appeared in more contexts in the
past are more likely to appear in some new context as well. The number of times a
word w appears as a novel continuation can be expressed as:

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (3.33)

To turn this count into a probability, we normalize by the total number of word
bigram types. In summary:

PCONTINUATION(w) =
|{v : C(vw)> 0}|

|{(u′,w′) : C(u′w′)> 0}|
(3.34)

An equivalent formulation based on a different metaphor is to use the number of
word types seen to precede w (Eq. 3.33 repeated):

PCONTINUATION(w) ∝ |{v : C(vw)> 0}| (3.35)
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normalized by the number of words preceding all words, as follows:

PCONTINUATION(w) =
|{v : C(vw)> 0}|∑
w′ |{v : C(vw′)> 0}|

(3.36)

A frequent word (Kong) occurring in only one context (Hong) will have a low con-
tinuation probability.

The final equation for Interpolated Kneser-Ney smoothing for bigrams is then:Interpolated
Kneser-Ney

PKN(wi|wi−1) =
max(C(wi−1wi)−d,0)

C(wi−1)
+λ (wi−1)PCONTINUATION(wi) (3.37)

The λ is a normalizing constant that is used to distribute the probability mass we’ve
discounted:

λ (wi−1) =
d∑

v C(wi−1v)
|{w : C(wi−1w)> 0}| (3.38)

The first term,
d∑

v C(wi−1v)
, is the normalized discount (the discount d, 0 ≤ d ≤

1, was introduced in the absolute discounting section above). The second term,
|{w : C(wi−1w)> 0}|, is the number of word types that can follow wi−1 or, equiva-
lently, the number of word types that we discounted; in other words, the number of
times we applied the normalized discount.

The general recursive formulation is as follows:

PKN(wi|wi−n+1:i−1) =
max(cKN(w i−n+1: i)−d,0)∑

v cKN(wi−n+1:i−1 v)
+λ (wi−n+1:i−1)PKN(wi|wi−n+2:i−1) (3.39)

where the definition of the count cKN depends on whether we are counting the
highest-order n-gram being interpolated (for example trigram if we are interpolating
trigram, bigram, and unigram) or one of the lower-order n-grams (bigram or unigram
if we are interpolating trigram, bigram, and unigram):

cKN(·) =
{

count(·) for the highest order
continuationcount(·) for lower orders (3.40)

The continuation count of a string · is the number of unique single word contexts for
that string ·.

At the termination of the recursion, unigrams are interpolated with the uniform
distribution, where the parameter ε is the empty string:

PKN(w) =
max(cKN(w)−d,0)∑

w′ cKN(w′)
+λ (ε)

1
V

(3.41)

If we want to include an unknown word <UNK>, it’s just included as a regular vo-
cabulary entry with count zero, and hence its probability will be a lambda-weighted
uniform distribution λ (ε)

V .
The best performing version of Kneser-Ney smoothing is called modified Kneser-

Ney smoothing, and is due to Chen and Goodman (1998). Rather than use a singlemodified
Kneser-Ney

fixed discount d, modified Kneser-Ney uses three different discounts d1, d2, and
d3+ for n-grams with counts of 1, 2 and three or more, respectively. See Chen and
Goodman (1998, p. 19) or Heafield et al. (2013) for the details.
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3.9 Advanced: Perplexity’s Relation to Entropy

We introduced perplexity in Section 3.3 as a way to evaluate n-gram models on
a test set. A better n-gram model is one that assigns a higher probability to the
test data, and perplexity is a normalized version of the probability of the test set.
The perplexity measure actually arises from the information-theoretic concept of
cross-entropy, which explains otherwise mysterious properties of perplexity (why
the inverse probability, for example?) and its relationship to entropy. Entropy is aEntropy

measure of information. Given a random variable X ranging over whatever we are
predicting (words, letters, parts of speech, the set of which we’ll call χ) and with a
particular probability function, call it p(x), the entropy of the random variable X is:

H(X) =−
∑
x∈χ

p(x) log2 p(x) (3.42)

The log can, in principle, be computed in any base. If we use log base 2, the
resulting value of entropy will be measured in bits.

One intuitive way to think about entropy is as a lower bound on the number of
bits it would take to encode a certain decision or piece of information in the optimal
coding scheme.

Consider an example from the standard information theory textbook Cover and
Thomas (1991). Imagine that we want to place a bet on a horse race but it is too
far to go all the way to Yonkers Racetrack, so we’d like to send a short message to
the bookie to tell him which of the eight horses to bet on. One way to encode this
message is just to use the binary representation of the horse’s number as the code;
thus, horse 1 would be 001, horse 2 010, horse 3 011, and so on, with horse 8 coded
as 000. If we spend the whole day betting and each horse is coded with 3 bits, on
average we would be sending 3 bits per race.

Can we do better? Suppose that the spread is the actual distribution of the bets
placed and that we represent it as the prior probability of each horse as follows:

Horse 1 1
2 Horse 5 1

64
Horse 2 1

4 Horse 6 1
64

Horse 3 1
8 Horse 7 1

64
Horse 4 1

16 Horse 8 1
64

The entropy of the random variable X that ranges over horses gives us a lower
bound on the number of bits and is

H(X) = −
i=8∑
i=1

p(i) log2 p(i)

= − 1
2 log2

1
2−

1
4 log2

1
4−

1
8 log2

1
8−

1
16 log2

1
16−4( 1

64 log2
1

64 )

= 2 bits (3.43)

A code that averages 2 bits per race can be built with short encodings for more
probable horses, and longer encodings for less probable horses. For example, we
could encode the most likely horse with the code 0, and the remaining horses as 10,
then 110, 1110, 111100, 111101, 111110, and 111111.



24 CHAPTER 3 • N-GRAM LANGUAGE MODELS

What if the horses are equally likely? We saw above that if we used an equal-
length binary code for the horse numbers, each horse took 3 bits to code, so the
average was 3. Is the entropy the same? In this case each horse would have a
probability of 1

8 . The entropy of the choice of horses is then

H(X) =−
i=8∑
i=1

1
8

log2
1
8
=− log2

1
8
= 3 bits (3.44)

Until now we have been computing the entropy of a single variable. But most
of what we will use entropy for involves sequences. For a grammar, for example,
we will be computing the entropy of some sequence of words W = {w1,w2, . . . ,wn}.
One way to do this is to have a variable that ranges over sequences of words. For
example we can compute the entropy of a random variable that ranges over all finite
sequences of words of length n in some language L as follows:

H(w1,w2, . . . ,wn) =−
∑

w1:n∈L

p(w1:n) log p(w1:n) (3.45)

We could define the entropy rate (we could also think of this as the per-wordentropy rate

entropy) as the entropy of this sequence divided by the number of words:

1
n

H(w1:n) =−
1
n

∑
w1:n∈L

p(w1:n) log p(w1:n) (3.46)

But to measure the true entropy of a language, we need to consider sequences of
infinite length. If we think of a language as a stochastic process L that produces a
sequence of words, and allow W to represent the sequence of words w1, . . . ,wn, then
L’s entropy rate H(L) is defined as

H(L) = lim
n→∞

1
n

H(w1,w2, . . . ,wn)

= − lim
n→∞

1
n

∑
W∈L

p(w1, . . . ,wn) log p(w1, . . . ,wn) (3.47)

The Shannon-McMillan-Breiman theorem (Algoet and Cover 1988, Cover and
Thomas 1991) states that if the language is regular in certain ways (to be exact, if it
is both stationary and ergodic),

H(L) = lim
n→∞
−1

n
log p(w1w2 . . .wn) (3.48)

That is, we can take a single sequence that is long enough instead of summing
over all possible sequences. The intuition of the Shannon-McMillan-Breiman the-
orem is that a long-enough sequence of words will contain in it many other shorter
sequences and that each of these shorter sequences will reoccur in the longer se-
quence according to their probabilities.

A stochastic process is said to be stationary if the probabilities it assigns to aStationary

sequence are invariant with respect to shifts in the time index. In other words, the
probability distribution for words at time t is the same as the probability distribution
at time t + 1. Markov models, and hence n-grams, are stationary. For example, in
a bigram, Pi is dependent only on Pi−1. So if we shift our time index by x, Pi+x is
still dependent on Pi+x−1. But natural language is not stationary, since as we show
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in Appendix D, the probability of upcoming words can be dependent on events that
were arbitrarily distant and time dependent. Thus, our statistical models only give
an approximation to the correct distributions and entropies of natural language.

To summarize, by making some incorrect but convenient simplifying assump-
tions, we can compute the entropy of some stochastic process by taking a very long
sample of the output and computing its average log probability.

Now we are ready to introduce cross-entropy. The cross-entropy is useful whencross-entropy

we don’t know the actual probability distribution p that generated some data. It
allows us to use some m, which is a model of p (i.e., an approximation to p). The
cross-entropy of m on p is defined by

H(p,m) = lim
n→∞
−1

n

∑
W∈L

p(w1, . . . ,wn) logm(w1, . . . ,wn) (3.49)

That is, we draw sequences according to the probability distribution p, but sum
the log of their probabilities according to m.

Again, following the Shannon-McMillan-Breiman theorem, for a stationary er-
godic process:

H(p,m) = lim
n→∞
−1

n
logm(w1w2 . . .wn) (3.50)

This means that, as for entropy, we can estimate the cross-entropy of a model
m on some distribution p by taking a single sequence that is long enough instead of
summing over all possible sequences.

What makes the cross-entropy useful is that the cross-entropy H(p,m) is an up-
per bound on the entropy H(p). For any model m:

H(p)≤ H(p,m) (3.51)

This means that we can use some simplified model m to help estimate the true en-
tropy of a sequence of symbols drawn according to probability p. The more accurate
m is, the closer the cross-entropy H(p,m) will be to the true entropy H(p). Thus,
the difference between H(p,m) and H(p) is a measure of how accurate a model is.
Between two models m1 and m2, the more accurate model will be the one with the
lower cross-entropy. (The cross-entropy can never be lower than the true entropy, so
a model cannot err by underestimating the true entropy.)

We are finally ready to see the relation between perplexity and cross-entropy
as we saw it in Eq. 3.50. Cross-entropy is defined in the limit as the length of the
observed word sequence goes to infinity. We will need an approximation to cross-
entropy, relying on a (sufficiently long) sequence of fixed length. This approxima-
tion to the cross-entropy of a model M = P(wi|wi−N+1: i−1) on a sequence of words
W is

H(W ) =− 1
N

logP(w1w2 . . .wN) (3.52)

The perplexity of a model P on a sequence of words W is now formally defined asperplexity

2 raised to the power of this cross-entropy:
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Perplexity(W ) = 2H(W )

= P(w1w2 . . .wN)
− 1

N

= N

√
1

P(w1w2 . . .wN)

= N

√√√√ N∏
i=1

1
P(wi|w1 . . .wi−1)

(3.53)

3.10 Summary

This chapter introduced language modeling and the n-gram, one of the most widely
used tools in language processing.

• Language models offer a way to assign a probability to a sentence or other
sequence of words, and to predict a word from preceding words.

• n-grams are Markov models that estimate words from a fixed window of pre-
vious words. n-gram probabilities can be estimated by counting in a corpus
and normalizing (the maximum likelihood estimate).

• n-gram language models are evaluated extrinsically in some task, or intrinsi-
cally using perplexity.

• The perplexity of a test set according to a language model is the geometric
mean of the inverse test set probability computed by the model.

• Smoothing algorithms provide a more sophisticated way to estimate the prob-
ability of n-grams. Commonly used smoothing algorithms for n-grams rely on
lower-order n-gram counts through backoff or interpolation.

• Both backoff and interpolation require discounting to create a probability dis-
tribution.

• Kneser-Ney smoothing makes use of the probability of a word being a novel
continuation. The interpolated Kneser-Ney smoothing algorithm mixes a
discounted probability with a lower-order continuation probability.

Bibliographical and Historical Notes
The underlying mathematics of the n-gram was first proposed by Markov (1913),
who used what are now called Markov chains (bigrams and trigrams) to predict
whether an upcoming letter in Pushkin’s Eugene Onegin would be a vowel or a con-
sonant. Markov classified 20,000 letters as V or C and computed the bigram and
trigram probability that a given letter would be a vowel given the previous one or
two letters. Shannon (1948) applied n-grams to compute approximations to English
word sequences. Based on Shannon’s work, Markov models were commonly used in
engineering, linguistic, and psychological work on modeling word sequences by the
1950s. In a series of extremely influential papers starting with Chomsky (1956) and
including Chomsky (1957) and Miller and Chomsky (1963), Noam Chomsky argued
that “finite-state Markov processes”, while a possibly useful engineering heuristic,
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were incapable of being a complete cognitive model of human grammatical knowl-
edge. These arguments led many linguists and computational linguists to ignore
work in statistical modeling for decades.

The resurgence of n-gram models came from Fred Jelinek and colleagues at the
IBM Thomas J. Watson Research Center, who were influenced by Shannon, and
James Baker at CMU, who was influenced by the prior, classified work of Leonard
Baum and colleagues on these topics at labs like IDA. Independently these two labs
successfully used n-grams in their speech recognition systems at the same time
(Baker 1975b, Jelinek et al. 1975, Baker 1975a, Bahl et al. 1983, Jelinek 1990).
The terms “language model” and “perplexity” were first used for this technology by
the IBM group. Jelinek and his colleagues used the term language model in pretty
modern way, to mean the entire set of linguistic influences on word sequence prob-
abilities, including grammar, semantics, discourse, and even speaker characteristics,
rather than just the particular n-gram model itself.

Add-one smoothing derives from Laplace’s 1812 law of succession and was first
applied as an engineering solution to the zero frequency problem by Jeffreys (1948)
based on an earlier Add-K suggestion by Johnson (1932). Problems with the add-
one algorithm are summarized in Gale and Church (1994).

A wide variety of different language modeling and smoothing techniques were
proposed in the 80s and 90s, including Good-Turing discounting—first applied to the
n-gram smoothing at IBM by Katz (Nádas 1984, Church and Gale 1991)— Witten-
Bell discounting (Witten and Bell, 1991), and varieties of class-based n-gram mod-class-based

n-gram
els that used information about word classes. Starting in the late 1990s, Chen and
Goodman performed a number of carefully controlled experiments comparing differ-
ent discounting algorithms, cache models, class-based models, and other language
model parameters (Chen and Goodman 1999, Goodman 2006, inter alia). They
showed the advantages of Modified Interpolated Kneser-Ney, which became the
standard baseline for n-gram language modeling, especially because they showed
that caches and class-based models provided only minor additional improvement.
SRILM (Stolcke, 2002) and KenLM (Heafield 2011, Heafield et al. 2013) are pub-
licly available toolkits for building n-gram language models.

Modern language modeling is more commonly done with neural network lan-
guage models, which solve the major problems with n-grams: the number of param-
eters increases exponentially as the n-gram order increases, and n-grams have no
way to generalize from training to test set. Neural language models instead project
words into a continuous space in which words with similar contexts have similar
representations. We’ll introduce feedforward language models (Bengio et al. 2006,
Schwenk 2007) in Chapter 7, recurrent language models (Mikolov, 2012) in Chap-
ter 9, and transformer-based large language models in Chapter 10.

Exercises
3.1 Write out the equation for trigram probability estimation (modifying Eq. 3.11).

Now write out all the non-zero trigram probabilities for the I am Sam corpus
on page 4.

3.2 Calculate the probability of the sentence i want chinese food. Give two
probabilities, one using Fig. 3.2 and the ‘useful probabilities’ just below it on
page 6, and another using the add-1 smoothed table in Fig. 3.7. Assume the
additional add-1 smoothed probabilities P(i|<s>)= 0.19 and P(</s>|food)=
0.40.
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3.3 Which of the two probabilities you computed in the previous exercise is higher,
unsmoothed or smoothed? Explain why.

3.4 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

Using a bigram language model with add-one smoothing, what is P(Sam |
am)? Include <s> and </s> in your counts just like any other token.

3.5 Suppose we didn’t use the end-symbol </s>. Train an unsmoothed bigram
grammar on the following training corpus without using the end-symbol </s>:

<s> a b

<s> b b

<s> b a

<s> a a

Demonstrate that your bigram model does not assign a single probability dis-
tribution across all sentence lengths by showing that the sum of the probability
of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the
sum of the probability of all possible 3 word sentences over the alphabet {a,b}
is also 1.0.

3.6 Suppose we train a trigram language model with add-one smoothing on a
given corpus. The corpus contains V word types. Express a formula for esti-
mating P(w3|w1,w2), where w3 is a word which follows the bigram (w1,w2),
in terms of various n-gram counts and V. Use the notation c(w1,w2,w3) to
denote the number of times that trigram (w1,w2,w3) occurs in the corpus, and
so on for bigrams and unigrams.

3.7 We are given the following corpus, modified from the one in the chapter:

<s> I am Sam </s>

<s> Sam I am </s>

<s> I am Sam </s>

<s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bi-
gram model and a maximum-likelihood unigram model with λ1 =

1
2 and λ2 =

1
2 , what is P(Sam|am)? Include <s> and </s> in your counts just like any
other token.

3.8 Write a program to compute unsmoothed unigrams and bigrams.

3.9 Run your n-gram program on two different small corpora of your choice (you
might use email text or newsgroups). Now compare the statistics of the two
corpora. What are the differences in the most common unigrams between the
two? How about interesting differences in bigrams?

3.10 Add an option to your program to generate random sentences.

3.11 Add an option to your program to compute the perplexity of a test set.

3.12 You are given a training set of 100 numbers that consists of 91 zeros and 1
each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0
0 0. What is the unigram perplexity?
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